The Sun reveals itself in the 385.8–2.439-nHz band of polar (φSun>|70°|) fast (>700 km·s−1) solar wind’s decade-scale dynamics as a globally completely vibrating and resonating revolving-field magnetoalternator rather than just a proverbial engine (as obscurely yet commonly referred to). Thus North–South separation of 1994–2008 Ulysses 7–2.5·109-erg base energies reveals Gauss–Vaníček spectral signatures of a ≥99%-significant Sun-borne global sharp Alfvén resonance (AR), Pi=PS/i, i=2…n, i∈ℤ ∧ n∈א, imprinted into the winds to the order n=100+ and co-triggered by the PS=~11-yr Schwabe (global) mode northside, the mode’s ~10-yr degeneration equatorially, and a ~9-yr degeneration southside. The overwhelming (anisotropy moderating) and deterministic (with Φ≫12 fidelity) AR is found accompanied by an also sharp symmetrical antiresonance, P-, whose both N/S tailing harmonics P-17 are the well-known PR=~154-day Rieger period from which the wind’s folded Rieger resonance (RR) sprouts, dominating the 30–180-days critical band of planetary dynamics and space weather. PR gets its value from being the tri-band resonance response of the Sun to its three global vibration degenerations, i.e., PR=PS/3/3/3. The Sun is a typical ~3-dB-attenuated ring system of differentially rotating and contrarily (out-of-phase) vibrating conveyor belts and layers with a continuous spectrum, patterns complete in both parities, and resolution better than 81.3 nHz (S) and 55.6 nHz (N) in lowermost frequencies (≲2 μHz in most modes). Unlike a resonating motor engine restrained from separating its casing, the freely resonating Sun exhausts the wind in an axial shake-off at highly coherent, discrete wave modes generated in the Sun, so to understand solar-type stars, only global decadal scales matter. The wind is transported effortlessly to distances beyond L1 in the form of a guided resonating flux of alternating fast-slow jets blanketing and flapping quasiperiodically (locally transiently) about the ecliptic rather than forming turbulently random flux tubes or ropes as held previously. Base energies of the solar-wind mechanism can multiply ~102-fold or more via frequency demultiplication and thus supply the known minimum input energy of ~102–104 W∙m−2 required for balancing the chromosphere and corona losses to radiation and supersonic wind. The result verified both against remote data and the experiment, so it instantly replaces dynamo with magnetoalternator and advances standard stellar models for the known universe, improving fundamental understanding of billions of trillions of solar-type stars. Deciphering the RR as solar in origin completes the knowledge of stellar wind dynamics. Gauss–Vaníček spectral analysis revolutionizes planetary and space sciences by rigorously simulating multiple spacecraft or entire fleet formations from a single spacecraft and physics by enabling direct computations of nonlinear global dynamics (renders spherical approximation obsolete)., HIGHLIGHTS: • Least-squares spectra of Ulysses total polar magnetometer data resemble well-known concepts from engineering • The first complete recovery of the Sun's global vibration (resonance & antiresonance) • Globally resonating Sun conclusively exposed operating as a magnetoalternator instead of dynamo • Sun conclusively revealed exhausting solar wind in an axial shake-off and into heliosphere coherently beyond L1 • Well-known & solar system-dominant Rieger period decisively (twice; hemispherically) deciphered as solar in origin • Now completely known global vibration improves Standard Stellar Models of billions of trillions of solar-type stars • Accurately computed vibration of solar wind enables macroscopic space weather forecasting and event prediction • First application of rigorous Gauss-Vaniček Spectral Analysis (GVSA) by least squares in global heliophysics • GVSA revolutionizes space physics by rigorously simulating multiple spacecraft/fleets from a single spacecraft • GVSA revolutionizes physics by enabling direct computations of nonlinear global dynamics (rendering spherical approximation obsolete)., {"references":["Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F. (2012) Is there a planetary influence on solar activity? Astron. Astroph. 548:A88. https://doi.org/10.1051/0004-6361/201219997","Alfvén, H. (1943) On Sunspots and the Solar Cycle. Arkiv f. Mat., Astron. o. Fys. 29A(12):1–17. https://ui.adsabs.harvard.edu/abs/1943ArMAF..29R...1A","Alfvén, H. (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406. https://doi.org/10.1038%2F150405d0","Alfvén, H. (1948) Cosmical electrodynamics. Oxford University Press (2nd ed. Clarendon Press, 1963), 228 pp. ISBN 9780198512011","Asplund, M., Grevesse, N., Sauval, A.J., Scott, P. (2009) The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47(1):481–522. https://doi.org/10.1146/annurev.astro.46.060407.145222","Bai T. and Cliver E. W. (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys. J. 363:299–309. https://doi.org/10.1086/169342","Balogh, A. (1988) The Ulysses magnetometer. In: IEEE Colloquium on Satellite Instrumentation, 20 January, London, United Kingdom. Institution of Engineering and Technology. https://ieeexplore.ieee.org/xpl/conhome/2179/proceeding","Bellan, P.M. (1996) Mode conversion into non-MHD waves at the Alfvén layer: The case against the field line resonance concept. J. Geophys. Res. 101(A11):24887–24898. https://doi.org/10.1029/96JA02253","Bellan, P.M. (1994) Alfvén 'resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma. Phys. Plasmas 1:3523–3541. https://doi.org/10.1063/1.870888","Bergemann M., Serenelli A. (2014) Solar Abundance Problem. In: Niemczura E., Smalley B., Pych W. (Eds.) Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-06956-2_21","Borovsky, J.E. (2018) The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1. J. Atmo. Solar-Terr. Phys. 177:2-11. https://doi.org/10.1016/j.jastp.2017.03.014","Bose, S., Nagaraju, K. (2018) On the variability of the Solar Mean Magnetic Field: contributions from various magnetic features on the surface of the Sun. Astrophys. J. 862:35. https://doi.org/10.3847/1538-4357/aaccf1","Brooks, D., Ugarte-Urra, I., Warren, H. (2015) Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6:5947. https://doi.org/10.1038/ncomms6947","Bruno, R., Carbone, V. (2013) The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10:2. https://doi.org/10.12942/lrsp-2013-2","Campos, L. (1977) On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81(3):529–549. https://doi.org/10.1017/S0022112077002213","Cane, H.V., Richardson, I.G., von Rosenvinge, T.T. (1998) Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24):4437–4440. https://doi.org/10.1029/1998GL900208","Carbonell, M., Oliver, R., Ballester, J.L. (1992) Power spectra of gapped time series: a comparison of several methods. Astron. & Astrophys. 264:350–360. https://ui.adsabs.harvard.edu/#abs/1992A&A...264..350C","Choi, K.-E., Lee, D.-Y. (2019) Origin of solar rotational periodicity and harmonics identified in the Interplanetary Magnetic Field Bz component near the Earth during solar cycles 23 and 24. Sol. Phys. 294:44. https://doi.org/10.1007/s11207-019-1433-7","Cole, M.O.T (2008) On stability of rotordynamic systems with rotor–stator contact interaction. Proc. R. Soc. A. 4643353–3375. https://doi.org/10.1098/rspa.2008.0237","Craymer, M.R. (1998) The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Some Applications in Geodesy. Ph.D. Dissertation, University of Toronto, Canada. https://hdl.handle.net/1807/12263","Danilović, S., Vince, I., Vitas, N., Jovanović, P. (2005) Time series analysis of long term full disk observations of the Mn I 539.4 nm solar line. Serb. Astron. J. 170:79–88. https://doi.org/10.2298/SAJ0570079D","Davila, J.M. (1987) Heating of the solar corona by the resonant absorption of Alfven waves. Astrophys. J. 317:514–521. https://ui.adsabs.harvard.edu/#abs/1987ApJ...317..514D","Den Hartog, J.P. (1985) Mechanical Vibrations. Dover Publications, New York, United States. ISBN 0486647854","Deng, L.H. Li, B., Xiang, Y.Y., Dun, G.T. (2014) On mid-term periodicities of high-latitude solar activity. Adv. Space Res. 54(1):125–131. https://doi.org/10.1016/j.asr.2014.03.006","Deubner, F.-L., Gough, D. (1984) Helioseismology: Oscillations as a Diagnostic of the Solar Interior. Ann. Rev. Astron. Astrophys. 22(1):593–619. https://doi.org/10.1146/annurev.aa.22.090184.003113","Dimitropoulou, M., Moussas, X., Strintzi, D. (2008) Enhanced Rieger type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence. Proc. Int. Astron. Union 4(S257):159–163. https://doi.org/10.1017/S1743921309029226","Dzhalilov, N.S., Staude, J., Oraevsky, V.N. (2002) Eigenoscillations of the differentially rotating Sun - I. 22-year, 4000-year, and quasi-biennial modes. Astron. Astrophys. 384(1):282–298. https://doi.org/10.1051/0004-6361:20011836","Ewins, D.J. (1995) Modal Testing: Theory and Practice. Research Studies Press Ltd., Taunton, England, ISBN 0863800173. John Wiley & Sons lnc., ISBN 04719904724. 313 pp.","Forgacs-Dajka, E., Borkovits, T. (2007) Searching for mid-term variations in different aspects of solar activity – looking for probable common origins and studying temporal variations of magnetic polarities. Mon. Not. R. Astron. Soc. 374:282–291. https://doi.org/doi:10.1111/j.1365-2966.2006.11167.x","Fossat, E., Boumier, P., Corbard, T., Provost, J., Salabert, D., Schmider, F.X., Gabriel, A.H., Grec, G., Renaud, C., Robillot, J.M., Roca-Cortés, T., Turck-Chièze, S., Ulrich, R.K., Lazrek, M. (2017) Asymptotic g modes: Evidence for a rapid rotation of the solar core. Astron. Astrophys. 604:A40. https://doi.org/10.1051/0004-6361/201730460","Goedbloed, J.P., Lifschitz, A. (1995) Comment on \"Alfvén 'resonance' reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma\" [Phys. Plasmas 1:3523 (1994)]. Phys. Plasmas 2:3550–3551. https://doi.org/10.1063/1.871471","Gough, D. (1995) Waves in the wind. Nature 376:120–121. https://doi.org/10.1038/376120a0","Grail, R., Coles, W., Klinglesmith, M., Breen, A.R., Williams, P.J.S., Markkanen, J., Esser, R. (1996) Rapid acceleration of the polar solar wind. Nature 379:429–432. https://doi.org/10.1038/379429a0","Grant, S.D.T., Jess, D.B., Zaqarashvili, T.V. Beck, C., Socas-Navarro, H., Aschwanden, M.J., Keys, P.H., Christian, D.J., Houston, S.J., Hewitt, R.L. (2018) Alfvén wave dissipation in the solar chromosphere. Nature Phys. 14:480–483. https://doi.org/10.1038/s41567-018-0058-3","Grote, E., Busse, F.H. (2000) Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62:4457–4460. https://doi.org/10.1103/PhyARevE.62.4457","Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Dikpati, M., McIntosh, S.W. (2017) North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23. Astrophys. J. 845(2):137–148. https://dx.doi.org/10.3847/1538-4357/aa830a","Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S. (2016) Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1):55. https://doi.org/10.3847/0004-637X/826/1/55","He, J., Fu, Z.-F. (2001) Modal Analysis. Butterworth-Heinemann. ISBN 9780750650793. https://doi.org/10.1016/B978-0-7506-5079-3.X5000-1","Jones, G., Balogh, A. (2003) The global heliospheric magnetic field polarity distribution as seen at Ulysses. Annales Geophysicae 21(6):1377–1382. https://doi.org/10.5194/angeo-21-1377-2003","Kasper, J.C., Maruca, B.A., Stevens, M.L., Zaslavsky, A. (2013) Sensitive Test for Ion-Cyclotron Resonant Heating in the Solar Wind. Phys. Rev. Lett. 110:091102. https://doi.org/10.1103/PhysRevLett.110.091102","Kinkhabwala, A. (2013) Maximum Fidelity. Max Planck Institute of Molecular Physiology report. https://arxiv.org/abs/1301.5186","Knaack, R., Stenflo, J.O. (2005) Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438(1):349–363. https://doi.org/10.1051/0004-6361:20052765","Kurochkin, N.E. (1998) Transient periodicity in solar activity. Astron. Astrophys. Trans. 15(1–4):277–279. https://doi.org/10.1080/10556799808201781","Markovskii, S.A., Vasquez, B.J., Hollweg, J.V. (2009) Proton heating by nonlinear field-aligned Alfvén waves in solar coronal holes. Astrophys. J. 695(2):1413. https://doi.org/10.1088/0004-637X/695/2/1413","Mattsson, L., Wahlin, R., Höfner, S. (2010) Dust driven mass loss from carbon stars as a function of stellar parameters - I. A grid of solar-metallicity wind models. Astron. Astrophys. 509:A14. https://doi.org/10.1051/0004-6361/200912084","McLeod, A.F., Dale, J.E., Evans, C.J., Ginsburg, A., Kruijssen, J.M.D., Pellegrini, E.W., Ramsay, S.K., Testi, L. (2019) Feedback from massive stars at low metallicities: MUSE observations of N44 and N180 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 486:5263–5288. https://doi.org/10.1093/mnras/sty2696","Omerbashich, M. (2021a) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34(1):188-191. https://doi.org/10.1080/08912963.2021.1907367","Omerbashich, M. (2007) Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. DOI: https://doi.org/10.1109/MCSE.2007.79; https://arxiv.org/abs/math-ph/0608014)","Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68","Omerbashich, M. (2003) Earth-model Discrimination Method. Ph.D. Dissertation, pp.129. ProQuest, USA. https://doi.org/10.6084/m9.figshare.12847304","Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67–78. https://doi.org/10.1007/s001900050220","Pap, J., Tobiska, W.K., Bouwer, S.D. (1990) Periodicities of solar irradiance and solar activity indices, I. Sol. Phys. 129:165–189. https://doi.org/10.1007/BF00154372","Papaloizou, J., Pringle, J.E. (1978) Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables. Mon. Not. R. Astron. Soc. 182:423–442. https://doi.org/10.1093/mnras/182.3.423","Parker, E.N. (1988) Nanoflares and the solar X-ray corona. Astrophys. J. 330:474–479. https://ui.adsabs.harvard.edu/abs/1988ApJ...330..474P","de Pontieu B., McIntosh S.W., Carlsson M., Hansteen V.H., Tarbell T.D., et al. (2007) Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind. Science 318:1574-1577. https://doi.org/10.1126/science.1151747","Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688","Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L. (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0","Robson J.D., Dodds C.J., Macvean D.B., Paling, V.R. (1971) Vibration Theory I: Receptance. In: Random Vibrations. International Centre for Mechanical Sciences (Courses and Lectures), Vol. 115. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2734-6_4","Route, M. (2016) The discovery of solar-like activity cycles beyond the end of the main sequence? Astrophys. J. Lett. 830:L27. https://doi.org/10.3847/2041-8205/830/2/L27","Scherrer, P.H., Wilcox, J.M., Svalgaard, L., Duvall, Jr. T.L., Dittmer, P.H., Gustafson, E.K. (1977) The mean magnetic field of the Sun: Observations at Stanford. Sol. Phys. 54:353–361. https://doi.org/10.1007/BF00159925","Schwabe, H. (1844) Solar observations during 1843. Astronomische Nachrichten 20(495):233–236. https://ui.adsabs.harvard.edu/abs/1844AN.....21..233S","Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Tech. J. 27:379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x","Singh, Y.P., Badruddin (2019) Study of the solar rotational period and its harmonics in solar activity, interplanetary, geomagnetic, and cosmic ray intensity indicators during solar polarity reversal periods. Sol. Phys. 294:27. https://doi.org/10.1007/s11207-019-1413-y","Smith, E.J., Marsden, R.G. (2003) Ulysses observations at solar maximum: introduction. Geophys. Res. Lett. 30:8027. https://doi.org/10.1029/2003GL018223","Solanki, S.K., Inhester, B., Schussler, M. (2006) The solar magnetic field. Rep. Prog. Phys. 69(3):563–668. https://doi.org/10.1088/0034-4885/69/3/R02","Soler, R., Terradas, J., Oliver, R., Ballester, J.L. (2021) Resonances in a coronal loop driven by torsional Alfvén waves propagating from the photosphere. Astrophys. J. 909(2):190. https://doi.org/10.3847/1538-4357/abdec5","Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B., Pietropaolo, E. (2007) Observation of Inertial Energy Cascade in Interplanetary Space Plasma. Phys. Rev. Lett. 99(11):115001. https://doi.org/10.1103/PhysRevLett.99.115001","Steeves, R.R. (1981). A statistical test for significance of peaks in the least squares spectrum. Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa Canada, pp. 149–166.","Stenflo, J., Vogel, M. (1986) Global resonances in the evolution of solar magnetic fields. Nature 319:285–290. https://doi.org/10.1038/319285a0","Srivastava, A., Shetye, J., Murawski, K., Doyle, J.G., Stangalini, M., Scullion, E., Ray, T., Wojcik, D.P., Dwivedi, B.N. (2017) High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep. 7:43147. https://doi.org/10.1038/srep43147","Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907","Thomas, S.R., Owens, M.J., Lockwood, M. (2014) The 22-year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation. Sol. Phys. 289(1):407–421. https://doi.org/10.1007/s11207-013-0341-5","Thomson, D., Maclennan, C., Lanzerotti, L. (1995) Propagation of solar oscillations through the interplanetary medium. Nature 376:139–144. https://doi.org/10.1038/376139a0","Tokumaru, M., Fujiki, K., Iju, T. (2015) North-south asymmetry in global distribution of the solar wind speed during 1985–2013. J. Geophys. Res. Space Phys. 120:3283–3296. https://doi.org/10.1002/2014JA020765","Vaníček, P. (1969) Approximate spectral analysis by least-squares fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344","Vaníček, P. (1971) Further development and properties of the spectral analysis by least-squares fit. Astrophys. Space Sci. 12(1):10–33. https://doi.org/10.1007/BF00656134","Vecchio, A., Carbone, V. (2009) Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astron. Astrophys. 502(3):981–987. https://doi.org/10.1051/0004-6361/200811024","Verscharen, D., Klein, K.G., Maruca, B.A. (2019) The multi-scale nature of the solar wind. Living Rev. Sol. Phys. 16:5, pp.136. https://doi.org/10.1007/s41116-019-0021-0","Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. http://www2.unb.ca/gge/Pubs/TR84.pdf","Withbroe, G.L., Noyes, R.W. (1977) Mass and Energy Flow in the Solar Chromosphere and Corona. Ann. Rev. Astron. Astrophys. 15(1):363–387. https://doi.org/10.1146/annurev.aa.15.090177.002051","Wolff, C.L., Blizard, J.B. (1986) Properties of r-modes in the Sun. Sol. Phys. 105:1–15. https://doi.org/10.1007/BF00156371","Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L. (2010) Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2):749–758. https://doi.org/10.1088/0004-637X/709/2/749"]}