1. Remote Sensing Data for Digital Soil Mapping in French Research—A Review
- Author
-
Richer-De-Forges, Anne, Chen, Qianqian, Baghdadi, Nicolas, Chen, Songchao, Gomez, Cécile, Jacquemoud, Stéphane, Martelet, Guillaume, Mulder, Vera L., Urbina-Salazar, Diego, Vaudour, Emmanuelle, Weiss, Marie, Wigneron, Jean-Pierre, Arrouays, D., Info&Sols (Info&Sols), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Zhejiang University, Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Wageningen University and Research [Wageningen] (WUR), Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Interactions Sol Plante Atmosphère (UMR ISPA), and Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
scale ,remote sensing ,soil digital soil mapping ,sampling density ,review ,resolution ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,covariates ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,sensors ,wavelengths - Abstract
International audience; Soils are at the crossroads of many existential issues that humanity is currently facing. Soils are a finite resource that is under threat, mainly due to human pressure. There is an urgent need to map and monitor them at field, regional, and global scales in order to improve their management and prevent their degradation. This remains a challenge due to the high and often complex spatial variability inherent to soils. Over the last four decades, major research efforts in the field of pedometrics have led to the development of methods allowing to capture the complex nature of soils. As a result, digital soil mapping (DSM) approaches have been developed for quantifying soils in space and time. DSM and monitoring have become operational thanks to the harmonization of soil databases, advances in spatial modeling and machine learning, and the increasing availability of spatiotemporal covariates, including the exponential increase in freely available remote sensing (RS) data. The latter boosted research in DSM, allowing the mapping of soils at high resolution and assessing the changes through time. We present a review of the main contributions and developments of French (inter)national research, which has a long history in both RS and DSM. Thanks to the French SPOT satellite constellation that started in the early 1980s, the French RS and soil research communities have pioneered DSM using remote sensing. This review describes the data, tools, and methods using RS imagery to support the spatial predictions of a wide range of soil properties and discusses their pros and cons. The review demonstrates that RS data are frequently used in soil mapping (i) by considering them as a substitute for analytical measurements, or (ii) by considering them as covariates related to the controlling factors of soil formation and evolution. It further highlights the great potential of RS imagery to improve DSM, and provides an overview of the main challenges and prospects related to digital soil mapping and future sensors. This opens up broad prospects for the use of RS for DSM and natural resource monitoring.
- Published
- 2023
- Full Text
- View/download PDF