1. Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids
- Author
-
Svetlana V. Cherepanova, Svetlana N. Pavlova, Aleksandra V. Selivanova, Andrzej Adamski, Marina Arapova, Anne-Cécile Roger, Arcady V. Ishchenko, Vladislav A. Sadykov, Vasilii V. Kaichev, Marina Yu. Smirnova, Aleksei S. Bobin, and Tamara Krieger
- Subjects
Carbon dioxide reforming ,Chemistry ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Supercritical fluid ,Methane ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,ni loading ,Chemical engineering ,synthesis in supercritical isopropanol ,Materials Chemistry ,ce-zr-o oxide ,characterization ,0210 nano-technology ,QD1-999 ,catalytic properties in methane dry reforming - Abstract
Ce0.5Zr0.5O2mixed oxides were prepared in a flow reactor in supercritical isopropanol with acetylacetone as a complexing agent. Variation of the nature of the Zr salt and the temperature of synthesis affected the phase composition, morphology and specific surface area of oxides. X-ray diffraction and Raman spectroscopy studies revealed formation of metastable t” and t’ phases. Oxides are comprised of agglomerates with sizes depending on the synthesis parameters. Loading NiO decreases the specific surface area without affecting X-ray particle sizes of supports. Such sintering was the most pronounced for a support with the highest specific surface area, which resulted in the lowest surface content of Ni as estimated by X-ray photoelectron spectroscopy and in the formation of flattened NiO particles partially embedded into the support. The catalytic activity and stability of these samples in the dry reforming of methane were determined by the surface concentration of Ni and the morphology of its particle controlled by the metal-support interaction, which also depends on the type of catalyst pretreatment. Samples based on ceria-zirconia oxides prepared under these conditions provide a higher specific catalytic activity as compared with the traditional Pechini route, which makes them promising for the practical application.
- Published
- 2017