1. The effects of transparency on perceived and actual competence of a content-based recommender
- Author
-
Cramer, H.S.M., Wielinga, B.J., Ramlal, S., Evers, V., Someren, van, M.W., Rutledge, L.W., Stash, N., Degler, D., Schraefel, M.C., Golbeck, J., Bernstein, A., and Rutledge, L.
- Abstract
Perceptions of a system's competence influence acceptance of that system [31]. Ideally, users' perception of competence matches the actual competence of a system. This paper investigates the relation between actual and perceived competence of transparent Semantic Web recommender systems that explain recommendations in terms of shared item concepts. We report an experiment comparing non-transparent and transparent versions of a content-based recommender. Results indicate that in the transparent condition, perceived competence and actual competence (in specific recall) were related, while in the non-transparent condition they were not. Providing insight in what aspects of items triggered their recommendation, by showing the concepts that were the basis for a recommendation, gave users a better assessment of how well the system worked. Keywords: Actual competence; Explanations; Perceived competence; Recommender systems; Transparency
- Published
- 2009