96 results on '"Ruhui Li"'
Search Results
2. Superhydrophobic and oleophobic coatings from flower‐like zinc oxide and fluorinated epoxy with good comprehensive property
- Author
-
Ruhui Li, Xiaoye Huang, and Ruobing Yu
- Subjects
Materials Chemistry ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,Surfaces, Coatings and Films - Published
- 2022
- Full Text
- View/download PDF
3. Discovery of a new polerovirus infecting Bidens pilosa
- Author
-
Qin-hai Liu, Ping-xiu Lan, Guo-xie Jin, Peng Chen, Guan-lin Tan, Xiao-jiao Chen, Ruhui Li, and Fan Li
- Abstract
A new virus of the genus Polerovirus in the family Solemoviridae was identified in Bidens Pilosa displaying mosaic and mottle symptoms. Its nearly complete genome of 5,705 nucleotides (nt) contains seven open reading frames (ORFs). The virus shares nucleotide sequence identities 53.2–67.1% with other poleroviruses at whole genome level. The amino acid (aa) sequence identities of each of the five ORFs are less than 84% between the new virus and other known poleroviruses. Phylogenetic analyses showed that the virus was most closely related to beet western yellows virus and cucurbit aphid-borne yellows virus in the genus Polerovirus. Our results suggest that this virus, named “bidens polerovirus 1 (BiPV-1)”, should be a distinct member of the genus Polerovirus. Recombination analysis of the genome sequence of the virus showed that BiPV-1 is a recombinant of the species of two different genera of the family Solemoviridae.
- Published
- 2023
- Full Text
- View/download PDF
4. High-throughput sequencing reveals the presence of novel and known viruses in diseased Paris yunnanensis
- Author
-
Ping-xiu Lan, Peng He, Jie Yang, Guo-hua Zhou, Xiao-jiao Chen, Tai-yun Wei, Chen-rong Li, Rong Gu, Ruhui Li, and Fan Li
- Subjects
Microbiology (medical) ,Microbiology - Abstract
Paris spp. are important medicinal plant and main raw material for many Chinese patent medicines, but viral diseases have became serious problems in cultivation of this group of important medicinal plants in China. In this study, eight viruses were identified in the diseased plants of Paris yunnanensis by high-throughput sequencing (HTS) and RT–PCR. These viruses include three novel viruses (two potyviruses and one nepovirus), Hippeastrum chlorotic ringspot virus (HCRV), Lychnis mottle virus (LycMoV), Paris mosaic necrosis virus (PMNV), Paris virus 1 and pepper mild mottle virus. The three new viruses were tentatively named Paris potyvirus 3 (ParPV-3), Paris potyvirus 4 (ParPV-4), Paris nepovirus 1 (ParNV-1) and their complete genome sequences were determined. Sequence analyses showed ParPV-3 and ParPV-4 shared the highest amino acid (aa) sequence identities of 54.3% to each other and 53.0–57.8% to other known potyviruses. ParNV-1 had aa sequence identities of 28.8–63.7% at protease-polymerase (Pro-Pol) with other nepoviruses. Phylogenetic analyses further support that the three viruses are new members of their corresponding genera. Analyses of the partial sequences of HCRV and LycMoV infecting P. yunnanensis revealed they diverged from existing isolates by aa sequence identities of 97.1% at glycoprotein precursor of HCRV and 93.3% at polyprotein of LycMoV. These two viruses are reported for the first time in Paris spp. A total of 123 field samples collected from P. yunnanensis in four counties of Yunnan, Southwest China were tested by RT–PCR for detecting each of the eight viruses. Results showed that nearly half of the samples were positive for at least one of the eight viruses. Two potyviruses, ParPV-3 (26.8%) and PMNV (24.4%), were predominant and widely distributed in the fields, while other viruses occurred in low rates and/or had limited distribution. This study insights into the virome infecting P. yunnanensis and provides valuable information for diagnosis and control of viral diseases in P. yunnanensis.
- Published
- 2022
- Full Text
- View/download PDF
5. Calibration strategy of the JUNO-TAO experiment
- Author
-
Hangkun Xu, Angel Abusleme, Nikolay V. Anfimov, Stéphane Callier, Agustin Campeny, Guofu Cao, Jun Cao, Cedric Cerna, Yu Chen, Alexander Chepurnov, Yayun Ding, Frederic Druillole, Andrea Fabbri, Zhengyong Fei, Maxim Gromov, Miao He, Wei He, Yuanqiang He, Joseph Y. K. Hor, Shaojing Hou, Jianrun Hu, Jun Hu, Cédric Huss, Xiaolu Ji, Tao Jiang, Xiaoshan Jiang, Cécile Jolliet, Daozheng Li, Min Li, Ruhui Li, Yichen Li, Caimei Liu, Mengchao Liu, Yunzhe Liu, Claudio Lombardo, Selma Conforti Di Lorenzo, Peizhi Lu, Guang Luo, Stefano M. Mari, Xiaoyan Ma, Paolo Montini, Juan Pedro Ochoa-Ricoux, Yatian Pei, Frédéric Perrot, Fabrizio Petrucci, Xiaohui Qian, Abdel Rebii, Bedr̆ich Roskovec, Arsenij Rybnikov, Hans Steiger, Xilei Sun, Pablo Walker, Derun Wang, Meifen Wang, Wei Wang, Zhimin Wang, Diru Wu, Xiang Xiao, Yuguang Xie, Zhangquan Xie, Wenqi Yan, Huan Yang, Haifeng Yao, Mei Ye, Chengzhuo Yuan, Kirill Zamogilnyi, Liang Zhan, Jie Zhang, Shuihan Zhang, Rong Zhao, Xu, Hangkun, Abusleme, Angel, Anfimov, Nikolay V., Callier, St??phane, Campeny, Agustin, Cao, Guofu, Cao, Jun, Cerna, Cedric, Chen, Yu, Chepurnov, Alexander, Ding, Yayun, Druillole, Frederic, Fabbri, Andrea, Fei, Zhengyong, Gromov, Maxim, He, Miao, He, Wei, He, Yuanqiang, Hor, Joseph Y. K., Hou, Shaojing, Hu, Jianrun, Hu, Jun, Huss, C??dric, Ji, Xiaolu, Jiang, Tao, Jiang, Xiaoshan, Jolliet, C??cile, Li, Daozheng, Li, Min, Li, Ruhui, Li, Yichen, Liu, Caimei, Liu, Mengchao, Liu, Yunzhe, Lombardo, Claudio, Conforti Di Lorenzo, Selma, Lu, Peizhi, Luo, Guang, Mari, Stefano M., Ma, Xiaoyan, Montini, Paolo, Pedro Ochoa-Ricoux, Juan, Pei, Yatian, Perrot, Fr??d??ric, Petrucci, Fabrizio, Qian, Xiaohui, Rebii, Abdel, Roskovec, Bedr??ich, Rybnikov, Arsenij, Steiger, Han, Sun, Xilei, Walker, Pablo, Wang, Derun, Wang, Meifen, Wang, Wei, Wang, Zhimin, Wu, Diru, Xiao, Xiang, Xie, Yuguang, Xie, Zhangquan, Yan, Wenqi, Yang, Huan, Yao, Haifeng, Ye, Mei, Yuan, Chengzhuo, Zamogilnyi, Kirill, Zhan, Liang, Zhang, Jie, Zhang, Shuihan, and Zhao, Rong
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,High Energy Physics::Experiment ,Instrumentation and Detectors (physics.ins-det) ,Engineering (miscellaneous) ,High Energy Physics - Experiment - Abstract
The Taishan Antineutrino Observatory (TAO or JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). Located near a reactor of the Taishan Nuclear Power Plant, TAO will measure the reactor antineutrino energy spectrum with an unprecedented energy resolution of $$ < 2 % at 1 MeV. Energy calibration is critical to achieve such a high energy resolution. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS), multiple radioactive sources are deployed to various positions in the TAO detector for energy calibration. The residual non-uniformity can be controlled within 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. The uncertainty of the non-linear energy response can be controlled within 0.6% with the radioactive sources of various energies, and could be further improved with cosmogenic $$^{12}{\textrm{B}}$$ 12 B which is produced by the interaction of cosmic muon in the liquid scintillator. The stability of other detector parameters, e.g., the gain of each Silicon Photo-multiplier, will be monitored with an ultraviolet LED calibration system.
- Published
- 2022
6. High-throughput sequencing reveals the presence of novel and known viruses in diseased
- Author
-
Ping-Xiu, Lan, Peng, He, Jie, Yang, Guo-Hua, Zhou, Xiao-Jiao, Chen, Tai-Yun, Wei, Chen-Rong, Li, Rong, Gu, Ruhui, Li, and Fan, Li
- Published
- 2022
7. Complete genome sequence of a novel citrus virus with characteristics of members of the family Tymoviridae
- Author
-
Mengji Cao, Liu Yang, Ruhui Li, Shiqiang Mei, Song Zhang, Yan Zhou, and Qiyan Liu
- Subjects
Whole genome sequencing ,0303 health sciences ,food.ingredient ,biology ,030306 microbiology ,Marafivirus ,Sequence analysis ,RNA virus ,General Medicine ,biology.organism_classification ,Genome ,Tymoviridae ,Virology ,Virus ,03 medical and health sciences ,food ,ORFS ,030304 developmental biology - Abstract
A novel positive-stranded RNA virus provisionally named "citrus virus C" (CVC) was discovered in citrus trees displaying mottling symptoms. Its genome comprises 7,215 nucleotides (nt), excluding the 3’ poly(A) tail, and contains two open reading frames (ORFs) that encode a replication-associated polyprotein (RP) and a putative coat protein (CP). The CVC genome contains a 16-nt ‘marafibox’, which is highly conserved in most viruses belonging to the genus Marafivirus of the same family. Sequence analysis suggested that the virus is most closely related to grapevine Red Globe virus (GRGV), which is yet to be officially classified in the family Tymoviridae. The sequence identities between CVC and GRGV in the whole genome (50.7%, nt) and CP (49.4% for amino acid, and 53.9% for nt) are lower than the thresholds (80% in the genome and 90% in the CP) for species demarcation in the family. Therefore, it is legitimate to propose that CVC is a member of new species in the family Tymoviridae.
- Published
- 2021
- Full Text
- View/download PDF
8. Status of JUNO Taishan Antineutrino Observatory
- Author
-
Ruhui Li
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment ,Physics::Geophysics - Abstract
Taishan Antineutrino Observatory (TAO) is a satellite experiment of JUNO. It consists of a ton-level liquid scintillator detector at around 30 meters from a reactor core of the Taishan Nuclear Power Plant. It detects reactor antineutrinos by inverse beta decay (IBD). Silicon photomultipliers which have ~95% coverage and ~50% photon detection efficiency are used to collect photoelectrons, resulting in the light yield is ~4500 photoelectrons per MeV. Dark noise of SiPM is suppressed by orders of magnitude by cooling the detector down to -50 degrees. The main goal of TAO is to get the precise energy spectrum of reactor antineutrinos with very high energy resolution ( This poster will present the latest status of TAO detector.
- Published
- 2022
- Full Text
- View/download PDF
9. Status of JUNO Taishan Antineutrino Observatory
- Author
-
Ruhui Li
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment ,Physics::Geophysics - Abstract
Taishan Antineutrino Observatory (TAO) is a satellite experiment of JUNO. It consists of a ton-level liquid scintillator detector at around 30 meters from a reactor core of the Taishan Nuclear Power Plant. It detects reactor antineutrinos by inverse beta decay (IBD). Silicon photomultipliers which have ~95% coverage and ~50% photon detection efficiency are used to collect photoelectrons, resulting in the light yield is ~4500 photoelectrons per MeV. Dark noise of SiPM is suppressed by orders of magnitude by cooling the detector down to -50 degrees. The main goal of TAO is to get the precise energy spectrum of reactor antineutrinos with very high energy resolution ( This poster will present the latest status of TAO detector.
- Published
- 2022
- Full Text
- View/download PDF
10. First identification and molecular characterization of a novel cavemovirus infecting Epiphyllum spp
- Author
-
Mengji Cao, Ruhui Li, Luping Zheng, Huawei Liu, Liping Wu, and Madeleine Chen
- Subjects
Cactaceae ,food.ingredient ,Caulimoviridae ,Genome, Viral ,Cavemovirus ,Biology ,Genome ,Virus ,Open Reading Frames ,Viral Proteins ,03 medical and health sciences ,food ,Virology ,Epiphyllum ,Gene ,Phylogeny ,Plant Diseases ,030304 developmental biology ,Genomic organization ,Genetics ,0303 health sciences ,Phylogenetic tree ,030306 microbiology ,Nucleic acid sequence ,General Medicine ,biology.organism_classification - Abstract
A new virus with sequence similarities to members of the genus Cavemovirus in the family Caulimoviridae was identified in an Epiphyllum hybrid. The complete genome of the virus, tentatively named "epiphyllum virus 4" (EpV-4), was determined to be 7,296 nucleotides long. Its circular genome organization is typical of cavemoviruses, containing four open reading frames. This virus and the two known cavemoviruses share 67-69% and 72-75% overall nucleotide sequence identity in the replicase gene. Phylogenetic analysis placed EpV-4 in a same cluster with the two recognized cavemoviruses. Thus, EpV-4 should be considered a representative of a third species of the genus Cavemovirus. The virus was transmitted by grafting.
- Published
- 2020
- Full Text
- View/download PDF
11. Camellia ringspot-associated virus 4, a proposed new foveavirus from Camellia japonica
- Author
-
Ruhui Li, Luping Zheng, and Madeleine Chen
- Subjects
food.ingredient ,Genome, Viral ,Genome ,Foveavirus ,Open Reading Frames ,03 medical and health sciences ,food ,Genome Size ,Virology ,Genome size ,Phylogeny ,Plant Diseases ,030304 developmental biology ,Genomic organization ,0303 health sciences ,biology ,Phylogenetic tree ,Contig ,030306 microbiology ,food and beverages ,Camellia ,General Medicine ,biology.organism_classification ,Camellia japonica ,Flexiviridae - Abstract
One large contig with high sequence similarity to Asian prunus virus 2 was identified by high-throughput sequencing from a camellia (Camellia japonica) tree with ringspot symptoms. The complete genome of this new virus was determined to be 8829 nucleotides long, excluding the 3' poly(A) tail. Its genome organization resembles that of known foveaviruses but contains an additional open reading frame in the 3'-terminal region. Phylogenetic analysis also places this virus with members of the genus Foveavirus in the family Betaflexiviridae in the same subgroup. The virus, which is provisionally named "camellia ringspot-associated virus 4″, shares 50-56% nucleotide sequence identity with other foveaviruses and should represent a new species in the genus.
- Published
- 2020
- Full Text
- View/download PDF
12. Discovery and molecular characterization of a novel trichovirus infecting sweet cherry
- Author
-
Margarita Bateman, Eric P. Brewer, Ruhui Li, Benjamin Gutierrez, and Mengji Cao
- Subjects
Genome, Viral ,Prunus avium ,Trichovirus ,DNA sequencing ,03 medical and health sciences ,Latent Virus ,Virology ,Plant virus ,Genetics ,Movement protein ,Molecular Biology ,Peptide sequence ,Phylogeny ,Plant Diseases ,030304 developmental biology ,Genomic organization ,Recombination, Genetic ,Whole genome sequencing ,0303 health sciences ,Whole Genome Sequencing ,biology ,030306 microbiology ,High-Throughput Nucleotide Sequencing ,food and beverages ,General Medicine ,biology.organism_classification ,Flexiviridae - Abstract
Contigs with the highest sequence similarity (73%) to Apricot pseudo-chlorotic leaf spot virus (genus Trichovirus, family Betaflexiviridae) were identified by high-throughput sequencing from a symptomless sweet cherry accession. The complete genome sequence of this new virus is 7460 nucleotides, excluding the 3' poly(A) tail. Its genome organization is very similar to several trichoviruses infecting fruit trees, with three open reading frames encoding putative replicase, movement protein and coat protein (CP). The virus shares amino acid sequence identities of 60-73% at replicase and 53-76% at CP with other trichoviruses. Phylogenetic analyses group it and other trichoviruses in a cluster. These results support that this virus, which is tentatively named cherry latent virus 1, should be considered a new member in the genus Trichovirus.
- Published
- 2020
- Full Text
- View/download PDF
13. Feasibility of detecting B8 solar neutrinos at JUNO
- Author
-
Athayde Marcondes de André, João Pedro, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Fengpeng, An, Qi, An, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, Auguste, Didier, Babic, Andrej, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Buscemi, Mario, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callegari, Riccardo, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chang, Jinfan, Chang, Yun, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Xurong, Chen, Yi-Wen, Chen, Yixue, Chen, Yu, Chen, Zhang, Cheng, Jie, Cheng, Yaping, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, CONFORTI DI LORENZO, Selma, Corti, Daniele, Dal Corso, Flavio, Dalager, Olivia, De La Taille, Christophe, Deng, Jiawei, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dracos, Marcos, Druillole, Frédéric, Ran, Du, Shuxian, Du, Dusini, Stefano, Dvorak, Martin, Enqvist, Timo, Enzmann, Heike, Fabbri, Andrea, Fajt, Lukas, Fan, Donghua, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fekete, Vladko, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giaz, Agnese, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre Sébastien, Grassi, Marco, Grewing, Christian, Gromov, Vasily, Minghao, Gu, Xiaofei, Gu, Yu, Gu, Guan, Mengyun, Guardone, Nunzio, Gul, Maria, Guo, Cong, Guo, Jingyuan, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hackspacher, Paul, Hagner, Caren, Han, Ran, Han, Yang, Hassan, Muhammad Sohaib, Miao, He, Wei, He, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, Yuenkeung, Hou, Shaojing, Hsiung, Yee Bob, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Zhuojun, Hu, Huang, Chunhao, Huang, Guihong, Huang, Hanxiong, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jen, Kuo-Lun, Jeria, Ignacio, Xiaolu, Ji, Xingzhao, Ji, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jin, Ruyi, Jing, Xiaoping, Jollet, Cecile, Joutsenvaara, Jari, Jungthawan, Sirichok, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kruth, Andre, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Demin, Li, Fei, Li, Fule, Li, Haitao, Li, Huiling, Li, Jiaqi, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Shanfeng, Li, Tao, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yu-Feng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Liang, Hao, Liao, Jiajun, Liebau, Daniel, Limphirat, Ayut, Limpijumnong, Sukit, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shuangyu, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yan, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Shuxiang, Lu, Xiaoxu, Lu, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Fengjiao, Luo, Guang, Luo, Pengwei, Luo, Shu, Luo, Wuming, Lyashuk, Vladimir, Bangzheng, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Ma, Maalmi, Jihane, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Manzali, Francesco, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Marium, Sadia, Martellini, Cristina, Martin-Chassard, Gisele, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas Nicolas, Diana, Nemchenok, Igor, Nguyen Thi, Minh Thuan, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Pan, Hsiao-Ru, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelliccia, Nicomede, Peng, Anguo, Peng, Haiping, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Piñeres Rico, Luis Felipe, Popov, Artyom, Poussot, Pascal, Pratumwan, Wathan, Previtali, Ezio, Fazhi, Qi, Ming, Qi, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Rajput, Muhammad Usman, Ranucci, Gioacchino, Raper, Neill, Alessandra Carlotta, Re, Rebber, Henning, Rebii, Abdel, Ren, Bin, Ren, Jie, Ricci, Barbara, Robens, Markus, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedrich, Roth, Christian, Ruan, Xiangdong, Ruan, Xichao, Rujirawat, Saroj, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sanfilippo, Simone, Sangka, Anut, Sanguansak, Nuanwan, Sawangwit, Utane, Sawatzki, Julia, Sawy, Fatma, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shao, Zhuang, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrei Yu., Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Tietzsch, Alexander, Tkachev, Igor, Tměj, Tomáš, Torri, Marco Danilo Claudio, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw Henryk, Tuve, Cristina, Ushakov, Nikita, van den Boom, Johannes, van Waasen, Stefan, Vanroyen, Guillaume, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Moritz, Volpe, Cristina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Kunyu, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Waqas, Muhammad, Watcharangkool, Apimook, Wei, Lianghong, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Wiebusch, Christopher, Wong, Steven Chan-Fai, Wonsak, Bjoern, Diru, Wu, Qun, Wu, Zhi, Wu, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Yufei, Xi, Xia, Dongmei, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xing, Zhizhong, Benda D., Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Xu, Yan, Baojun, Yan, Taylor, Yan, Wenqi, Yan, Xiongbo, Yan, Yupeng, Yang, Anbo, Yang, Changgen, Yang, Chengfeng, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Yasin, Zafar, Jiaxuan, Ye, Mei, Ye, Ziping, Ye, Yegin, Ugur, Yermia, Frederic, Peihuai, Yi, Yin, Na, Yin, Xiangwei, You, Zhengyun, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yu, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yuan, Ziyi, Yue, Baobiao, Zafar, Noman, Zambanini, André, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Feiyang, Zhang, Guoqing, Zhang, Haiqiong, Zhang, Honghao, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Tao, Zhang, Xiaomei, Zhang, Xuantong, Zhang, Xueyao, Zhang, Yan, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Fengyi, Zhao, Jie, Zhao, Rong, Zhao, Shujun, Zhao, Tianchi, Zheng, Dongqin, Zheng, Hua, Zheng, Minshan, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jiang, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
JUNO experiment - Published
- 2022
14. Genomic Characterization of a New Enamovirus Infecting Common Bean
- Author
-
Ruo-bin Lu, Ping-xiu Lan, Ru-jing Kang, Guan-lin Tan, Xiao-jiao Chen, Ruhui Li, and Fan Li
- Subjects
Luteoviridae ,Phaseolus ,Open Reading Frames ,Virology ,RNA, Viral ,Genome, Viral ,Genomics ,General Medicine ,Phylogeny ,Plant Diseases - Abstract
A novel enamovirus was identified from bean plants with disease symptoms. Its genome of 5,781 nucleotides (nt) encodes five open reading frames. The virus and other species of the genus Enamovirus share identities of 50.4%-68.4% at the complete genome, and 19.9%-51.9% of P0, 24.9%-52.5% of P1, 33.4%-62.9% of P1-P2, 30.6%-81.1% of P3, 32.3%-74.2% of P3-P5 at amino acid sequence level, respectively. Phylogenetic analysis showed that the virus is most closely related to Alfalfa enamovirus 1 and Pea enation mosaic virus 1 in the genus Enamovirus within family Solemoviridae. These results suggest that the virus should be considered as a novel species in the genus Enamovirus and tentatively named as “bean enamovirus 1”.
- Published
- 2021
- Full Text
- View/download PDF
15. Development of a sensitive and reliable reverse transcription-droplet digital polymerase chain reaction (RT-ddPCR) assay for the detection of Citrus tristeza virus
- Author
-
Jinfa Zhao, Zhengwen Li, Qin Wang, Yan Zhou, Yingli Wang, Ruhui Li, Jifen Li, and Zhen Yang
- Subjects
0106 biological sciences ,0301 basic medicine ,Serial dilution ,Citrus tristeza virus ,RNA ,Plant Science ,Horticulture ,Biology ,biology.organism_classification ,01 natural sciences ,Quantitative correlation ,Molecular biology ,Reverse transcriptase ,03 medical and health sciences ,030104 developmental biology ,Real-time polymerase chain reaction ,Digital polymerase chain reaction ,Detection rate ,Agronomy and Crop Science ,010606 plant biology & botany - Abstract
Citrus tristeza virus (CTV) is one of the most important citrus viruses in the world. In this study, we established a reverse-transcription droplet digital polymerase chain reaction (RT-ddPCR) method for the sensitive and accurate quantification of CTV. Quantitative linearity, sensitivity and accuracy of RT-ddPCR were compared to those of reverse-transcription real time PCR (RT-qPCR) by using 10-fold serial dilutions of the CTV RNA transcripts. Both methods showed a high degree of linearity (R2 = 0.991) and quantitative correlation, although RT-ddPCR revealed 100-fold higher sensitivity than RT-qPCR. The detection results for heat-treatment citrus samples also showed that the positive detection rate of RT-ddPCR (73.2%) was higher than that of RT-qPCR (53.6%). In summary, the results indicated that RT-ddPCR may contribute to improved analytical sensitivity and accuracy for CTV detection.
- Published
- 2020
- Full Text
- View/download PDF
16. Tailoring the structures and transformations between copper complexes in gas–solid reactions and solid-state synthesis
- Author
-
Haitao Li, Ruhui Li, and Fang Guo
- Subjects
Chemistry ,Coordination polymer ,Recrystallization (metallurgy) ,chemistry.chemical_element ,Chloride ,Copper ,Inorganic Chemistry ,chemistry.chemical_compound ,Adsorption ,Covalent bond ,medicine ,Physical chemistry ,Molecule ,Stoichiometry ,medicine.drug - Abstract
In this study, two copper(II) salts with different configurations, 2[H3LCuCl4][Cu2Cl6] (1) and [H4L][CuCl4]2Cl (2) (L = (1R,2R)-N,N′-bis(pyridin-4-ylmethyl)cyclohexane-1,2-diamine), have been synthesized and applied in the following solid–gas and solid–solid reactions. Both salts 1 and 2 gave rise to the salt ([H4L][Cu2Cl8]H2O (3) upon exposure to HCl gas or grinding with equal moles of CuCl2·2H2O. In the reaction from 1 to 3, the Cu–N coordination bond of [H3LCuCl4]+ in 1 was broken by the hydrated vapours of HCl and new N–H, Cu–Cl–Cu and Cu-H2O bonds of mixture products 3 and [H4L][CuCl3(H2O)]3Cl (4) were generated. In the reaction from 2 to 3, a stoichiometric ratio-controlled transformation occurred with the change in the geometry of copper(II) anions from [CuCl4]2− to [Cu2Cl8]4−. The detailed structural changes between covalent and coordination bonds and the transformations of these copper complexes are described in the paper, which has provided a good model for understanding the reaction pathways and insight into the structural transformation of materials of interest. Recrystallization of the grinding product of the ligand L with CuCl2·2H2O obtained a novel coordination polymer ([Cu2(L′)2Cl3]Cl)n (5, L′ = (1R,2R)-N-(pyridin-4-ylmethyl)cyclohexane-1,2-diamine) with a clear channel of the pore size being 16 × 13 A, which is accessible to chloride anions and water molecules and shows a good adsorption performance on dyes and I2 ethanol solutions.
- Published
- 2020
- Full Text
- View/download PDF
17. Understanding the Transmissibility of Cucumber Green Mottle Mosaic Virus in Watermelon Seeds and Seed Health Assays
- Author
-
Ruhui Li, Kai-Shu Ling, Z. J. Wu, Shamimuzzaman M, and X. Sui
- Subjects
0106 biological sciences ,0301 basic medicine ,biology ,Tobamovirus ,food and beverages ,Outbreak ,Enzyme-Linked Immunosorbent Assay ,Plant Science ,biology.organism_classification ,01 natural sciences ,Virology ,Transmissibility (vibration) ,Citrullus ,03 medical and health sciences ,030104 developmental biology ,Seeds ,Biological Assay ,Cucumber green mottle mosaic virus ,Nucleic Acid Amplification Techniques ,Agronomy and Crop Science ,Plant Diseases ,010606 plant biology & botany - Abstract
Cucumber green mottle mosaic virus (CGMMV), an emerging tobamovirus, has caused serious disease outbreaks to cucurbit crops in several countries, including the United States. Although CGMMV is seed-borne, the mechanism of its transmission from a contaminated seed to germinating seedling is still not fully understood, and the most suitable seed health assay method has not been well established. To evaluate the mechanism of seed transmissibility, using highly contaminated watermelon seeds collected from CGMMV-infected experimental plants, bioassays were conducted in a greenhouse through seedling grow-out and by mechanical inoculation. Through natural seedling grow-out, we did not observe seed transmission of CGMMV to germinating seedlings. However, efficient transmission of CGMMV was observed using bioassays on melon plants through mechanical inoculation of seed extract prepared from CGMMV-contaminated seeds. Understanding the seed-borne property and the ease of mechanical transmission of CGMMV from a contaminated seed to seedling is an important finding. In comparative evaluation of various laboratory techniques for seed health assays, we found that enzyme-linked immunosorbent assay and loop-mediated isothermal amplification were the most sensitive and reliable methods to detect CGMMV on cucurbit seeds. Because CGMMV is a seed-borne and highly contagious virus, a new infection might not result in a natural seedling grow-out; it could occur through mechanical transmission from contaminated seeds. Therefore, a sensitive seed health test is necessary to ensure CGMMV-free seed lots are used for planting.
- Published
- 2019
- Full Text
- View/download PDF
18. Educational Reform and Innovation in the Era of 'Internet +'
- Author
-
Ruhui Li
- Subjects
Education reform ,business.industry ,Political science ,ComputingMilieux_COMPUTERSANDEDUCATION ,Social environment ,The Internet ,Public relations ,China ,business ,Pace ,Traditional education - Abstract
Internet education is an important part of education in China, the development of Internet education is closely linked with the development of Internet technology. At present, the drawbacks of the traditional education model have become increasingly prominent, Internet education has expanded the influence of education by sharing high-quality resources, and online education has begun to affect offline education, forming a new education model more suitable for the current social environment. The arrival of the new era urges education to keep up with the pace of reform and innovation, in the future, Internet education will attract more people to accept online education, but also with the integration and development of offline education, education reform in the “Internet +”era is bound to change with each passing day.
- Published
- 2021
- Full Text
- View/download PDF
19. Calibration strategy of the JUNO experiment
- Author
-
Andrea Barresi, Muhammad Usman Rajput, Chengzhuo Yuan, Demin Li, Cédric Huss, Jie Zhao, Xianghui Yu, W. H. Huang, Feng Gao, Sen Qian, Patrick Kinz, Miao He, Axel Müller, Davit Mayilyan, Utane Sawangwit, Jacques Wurtz, Wenju Huo, Hang Hu, Guanghua Gong, G. Andronico, Giuseppe Verde, Si Ma, Livia Ludhova, Xiaoyu Yang, Lucia Votano, Waqas Muhammad, Oleg Smirnov, Jie Yang, Zhe Ning, Y. X. Zhang, Zhuang Shao, Jun Wang, Martin Dvorak, Hao Liang, Nikolay Morozov, Ara Ioannisian, Qingmin Zhang, Ezio Previtali, Barbara Ricci, Ints Mednieks, Wuming Luo, Rossella Caruso, Diru Wu, Alexander Studenikin, Sadia Marium, Jingbo Zhang, M. Settimo, A. Popov, Enrico Bernieri, Xiaowei Liu, Yumei Zhang, Anut Sangka, Feipeng Ning, F. Z. Qi, Simon Blyth, Anatael Cabrera, Antonio Insolia, Donglian Xu, Amir N. Khan, Minghao Gu, Daniel Liebau, Shouyang Hu, Thilo Birkenfeld, Mengyun Guan, Gérard Claverie, Xin Mao, Xingtao Huang, Guoqing Zhang, Markus Robens, Jari Joutsenvaara, Zhibing Li, Can Fang, Nuanwan Sanguansak, Andrey Formozov, Ugur Yegin, Yuekun Heng, Xiaohui Qian, Riccardo Bruno, Zafar Yasin, Selma Conforti Di Lorenzo, Weidong Li, Xiaonan Li, Cédric Schwab, Yuguang Xie, Narumon Suwonjandee, Michael Wurm, Teerapat Payupol, Andrea Serafini, Chunhao Huang, Fangliang Wu, Haoqi Lu, Di Jiang, Salvatore Costa, Yue Meng, Y. Sun, S. Dusini, Mathieu Roche, Stefano Maria Mari, S. Parmeggiano, N. Raper, M. A. Szelezniak, W. J. Wu, Jingbin Lu, Heike Enzmann, Nan Li, Zhonghua Qin, Min Liu, Q. J. Li, Tobias Heinz, Frédéric Druillole, Qun Wu, Anbo Yang, Hongjuan Liu, Sukit Limpijumnong, Peihuai Yi, Cecilia Landini, Jonathan Miller, Yu Xu, Agnese Martini, Vito Antonelli, A. Bolshakova, Alexandre Göttel, X. L. Ji, Yuanqing Wang, Haonan Gan, Lei Yang, Sebastiano Aiello, Leonidas Kalousis, Andre Zambanini, R. T. Lei, Stefan van Waasen, Dmitry Selivanov, Khanchai Khosonthongkee, Yanke Cai, F. Yermia, Yuman Wang, Rong Zhao, Jian Wang, E. Meroni, Filippo Marini, Narine Kazarian, Y. F. Wang, Shanfeng Li, Q. An, Alessandra Re, Chung-Hsiang Wang, Agnese Giaz, Tingxuan Zeng, Guihong Huang, Andrej Babic, Fabio Mantovani, Fang Liu, Richard Ford, Zhe Wang, Christian Grewing, Antonio Bergnoli, Warintorn Sreethawong, Georgy Donchenko, S. Krokhaleva, Mengzhao Li, Rupert Leitner, Monica Sisti, Domizia Orestano, Mario Buscemi, Paolo Montini, Marco Grassi, Zeyuan Yu, Tobias Lachenmaier, Jianrun Hu, Victor Lebrin, Angel Abusleme, Boxiang Yu, Tao Li, Maciej Slupecki, Boonrucksar Soonthornthum, Catia Clementi, Marco Giammarchi, Francesco Manzali, B. Z. Hu, Virginia Strati, Alexey Krasnoperov, Zhang Chen, Hua Zheng, P. Saggese, Minshan Zheng, Xiaolu Ji, Gisele Martin-Chassard, Matthias Raphael Stock, Pablo Walker, Jose Busto, Agustin Campeny, Burin Asavapibhop, Yinhong Zhang, S. B. Liu, Vitaly Shutov, Barbara Clerbaux, Peng Zhang, Zhengyun You, Yayun Ding, Shubin Liu, Ayut Limphirat, S. Dmitrievsky, Siyu Jian, S. Sanfilippo, Cristina Tuve, Shoukang Qiu, Shifeng Sun, Jie Ren, Sébastien Leblanc, Po-An Chen, Xubo Ma, Safeer Hussain, Guangpeng An, Nicomede Pelliccia, Yuhang Guo, Shan Zeng, Konstantin A. Kouzakov, Shaojing Hou, Jing Xu, X. H. Guo, Feiyang Zhang, Dongqin Zheng, Ilya Butorov, Maria Gul, Kunyu Wang, Claudio Lombardo, Zhi Deng, Zhiyan Cai, Yu Gu, Yufei Xi, K. Loo, R. Brugnera, Shu Luo, Jiaheng Zou, Ran Han, Giancarlo Troni, M. H. Ye, Xiaoxu Lu, Fengjiao Luo, H. D. Liu, Haitao Li, Fei Li, Julanan Songwadhana, Xiaomei Zhang, Fengpeng An, X. D. Ruan, Chunxu Yu, Vadim Vedin, Mauro Mezzetto, Jiaqi Li, Caren Hagner, Shu Zhang, Wander Baldini, Yangheng Zheng, Antonio Budano, Michele Montuschi, Zheng Wang, Qin Liu, Pierre-Alexandre Petitjean, Xuefeng Ding, H. R. Pan, Lukas Fajt, Jingyan Shi, David Meyhöfer, Fanrong Xu, Marco Bellato, Zhenyu Zhang, S. J. Zhao, Clément Bordereau, Yan Zhang, Bayarto Lubsandorzhiev, Guang Luo, Benda Xu, Xiangyue Wang, Christophe De La Taille, Miao Yu, Christian Roth, Nina Parkalian, Andrea Fabbri, Fausto Ortica, João Pedro Athayde Marcondes de André, Y. Wang, Liangjian Wen, S. X. Du, Jian Tang, Frederic Lefevre, Tao Hu, Vasily Gromov, Guofu Cao, Liang Zhan, E. Doroshkevich, Steven Chan-Fai Wong, Amélie Fournier, Apimook Watcharangkool, Jinchang Liu, Qian Liu, Yongbo Huang, Bayu Dirgantara, Chiara Sirignano, Qiumei Ma, Yi Wang, A. Sadovsky, Xichao Ruan, Caishen Wang, G. Settanta, Flavio Dal Corso, Beatrice Jelmini, Guillaume Vanroyen, Baojun Yan, Ruhui Li, Mikhail Smirnov, Huan Yang, Z. Wu, Xiao Cai, Yun Chang, Meng Wang, Yufeng Li, Tianchi Zhao, K. L. Jen, Li-Cheng Feng, Guey-Lin Lin, Shuxiang Lu, Massimiliano Nastasi, Thomas Adam, Rizwan Ahmed, David Blum, Marco Fargetta, Didier Auguste, Weiguo Li, Jian Fang, Patrick Hellmuth, Muhammad Akram, Hui Liu, Tomas Tmej, G. X. Sun, Fengyi Zhao, Christian Wysotzki, Wladyslaw Henryk Trzaska, Achim Stahl, Sylvie Blin, Yin Xu, Alexander Tietzsch, Fedor Šimkovic, Haiping Peng, Ziping Ye, Baobiao Yue, A. Sotnikov, Aldo Romani, Anna Chuvashova, Noman Zafar, Tatiana Antoshkina, Wanlei Guo, C. Jollet, Christoph Genster, Sultim Lubsandorzhiev, Y. K. Sun, Xiangwei Yin, Xiaoping Jing, H. Steiger, Muhammad Sohaib Hassan, Cristina Martellini, Wei Wang, B. Viaud, Igor Nemchenok, Zhijian Zhang, Fatma Sawy, Xiaofei Gu, Alexander Olshevskiy, Liang Zong, Pavithra Muralidharan, Xiaomei Li, Alexandr Selyunin, Yu Chen, Jochen Steinmann, Qiang Tang, Daojin Hong, Daniele Corti, Yatian Pei, S. Zhang, Denis Korablev, Yi Chen, Dominique Breton, Franco Giuliani, F. Li, Augusto Brigatti, Artem Chukanov, Nikolaos Vassilopoulos, Jiaxuan Ye, Yi-Wen Chen, K. Treskov, Michael Karagounis, Haiqiong Zhang, Jiang Zhu, Nunzio Giudice, Zongyi Wang, H. L. Zhuang, Marco Aurelio Diaz, Nikolay Kutovskiy, Shakeel Ahmad, Narongkiat Rodphai, Yifan Yang, Huihui Jia, Juan Pedro Ochoa-Ricoux, Jin Li, Hongtao Liu, Andrey Sidorenkov, Qichun Feng, Jiawen Zhang, T. Enqvist, Ruyi Jin, J. J. Ling, Arseniy Rybnikov, Lino Miramonti, Yi Li, Luis Felipe Piñeres Rico, Ziyuan Li, Ziyi Yuan, A. Lokhov, Jie Cheng, Rafael Herrera, Jiaqi Hui, Wathan Pratumwan, En Wang, Konstantin Schweizer, A. Kruth, Tobias Sterr, Shengxin Lin, Anna Fatkina, Fabrizio Petrucci, Mathieu Bongrand, Olivia Dalager, Alessandro Paoloni, Philipp Kampmann, Roberto Isocrate, Jianmeng Dong, Weirong Zhong, Yiyu Zhang, Saroj Rujirawat, Giuseppe Salamanna, Maxim Vialkov, Abdel Rebii, Mengjiao Xiao, Jing Zhou, P. Chimenti, Jingjing Liang, Yuanyuan Zhang, Pingping Chen, Igor Tkachev, A. Cammi, Oliver Pilarczyk, Vit Vorobel, Zhimin Wang, Honghao Zhang, Zhenxiong Yuan, Xiang Zhou, Damien Dornic, Jie Zhang, Zhangquan Xie, Yaping Cheng, Ying Yuan, Maxim Gonchar, Wei Wei, Zhuojun Hu, Ivano Lippi, Xilei Sun, Shaomin Chen, Jun Cao, Li Zhou, Ruiguang Wang, Nikolay Anfimov, Andrea Triossi, Runxuan Liu, Xinglong Li, Waseem Khan, Pasi Kuusiniemi, Xi Wang, Salvatore Monforte, Meihang Xu, Eric Baussan, Haifeng Yao, Xuantong Zhang, Yang Han, Pascal Poussot, Dongmei Xia, Jacky Schuler, Hao Qiao, Hu Liu, Henning Rebber, Dmitry V. Naumov, Luca Stanco, Paul Hackspacher, Y. K. Hor, Lei Fan, Ziyan Deng, Lei Huo, Ondrej Sramek, K. J. Li, Jianglai Liu, Lu Wang, Paolo Lombardi, Marcos Dracos, B. Roskovec, Taras Rezinko, Quan Tang, Jiawei Deng, Jason Leung, Xiao Tang, Junji Jia, Huiling Li, Nunzio Guardone, Chuanya Cao, Diana Navas-Nicolas, A. Meregaglia, Zhi-zhong Xing, V. Fekete, Jilei Xu, W. Wang, Siguang Wang, Yupeng Yan, Hao Cai, Christopher Wiebusch, Y. B. Hsiung, Z. V. Krumshteyn, Sirichok Jungthawan, Thiago Sogo-Bezerra, Yury Malyshkin, S. Li, Dmitry Fedoseev, Tao Lin, Chuan Lu, J. F. Chang, Davide Chiesa, Changgen Yang, A. Garfagnini, F. Perrot, Wilfried Depnering, Xiaoyan Ma, Yadong Wei, M. Wang, O. Gorchakov, Yajun Mao, Anguo Peng, C. Cerna, Wei He, Lothar Oberauer, Konstantin Stankevich, Yuri Gornushkin, Donghua Fan, Cong Guo, Dušan Štefánik, Ming Qi, Lianghong Wei, Jihane Maalmi, E. Naumova, Jaruchit Siripak, Tadeas Dohnal, Julia Sawatzki, Hongbang Liu, X. R. Chen, Bjoern Wonsak, Vladimir Lyashuk, Johannes van den Boom, Qinhua Huang, Jingyuan Guo, Yuda Zeng, Shulin Liu, Tao Zhang, Guo-Li Wang, Hui Gong, Michaela Schever, Jun Hu, K. J. Zhu, P. W. Luo, Shun Zhou, Bin Ren, Nan Zhou, Yan Liu, Li Kang, Junguang Lu, Gioacchino Ranucci, Chiye Yu, Cheng Xu, Hongzhao Yu, Hanxiong Huang, Xiongbo Yan, Sai-Juan Chen, C. Volpe, Hiroshi Nunokawa, Yanchu Wang, Vladislav Sharov, Xiaoshan Jiang, Abusleme, A, Adam, T, Ahmad, S, Ahmed, R, Aiello, S, Akram, M, An, F, An, G, An, Q, Andronico, G, Anfimov, N, Antonelli, V, Antoshkina, T, Asavapibhop, B, de Andre, J, Auguste, D, Babic, A, Baldini, W, Barresi, A, Baussan, E, Bellato, M, Bergnoli, A, Bernieri, E, Birkenfeld, T, Blin, S, Blum, D, Blyth, S, Bolshakova, A, Bongrand, M, Bordereau, C, Breton, D, Brigatti, A, Brugnera, R, Bruno, R, Budano, A, Buscemi, M, Busto, J, Butorov, I, Cabrera, A, Cai, H, Cai, X, Cai, Y, Cai, Z, Cammi, A, Campeny, A, Cao, C, Cao, G, Cao, J, Caruso, R, Cerna, C, Chang, J, Chang, Y, Chen, P, Chen, S, Chen, X, Chen, Y, Chen, Z, Cheng, J, Cheng, Y, Chiesa, D, Chimenti, P, Chukanov, A, Chuvashova, A, Claverie, G, Clementi, C, Clerbaux, B, Lorenzo, S, Corti, D, Costa, S, Corso, F, Dalager, O, Taille, C, Deng, J, Deng, Z, Depnering, W, Diaz, M, Ding, X, Ding, Y, Dirgantara, B, Dmitrievsky, S, Dohnal, T, Donchenko, G, Dong, J, Dornic, D, Doroshkevich, E, Dracos, M, Druillole, F, Du, S, Dusini, S, Dvorak, M, Enqvist, T, Enzmann, H, Fabbri, A, Fajt, L, Fan, D, Fan, L, Fang, C, Fang, J, Fargetta, M, Fatkina, A, Fedoseev, D, Fekete, V, Feng, L, Feng, Q, Ford, R, Formozov, A, Fournier, A, Gan, H, Gao, F, Garfagnini, A, Gottel, A, Genster, C, Giammarchi, M, Giaz, A, Giudice, N, Giuliani, F, Gonchar, M, Gong, G, Gong, H, Gorchakov, O, Gornushkin, Y, Grassi, M, Grewing, C, Gromov, V, Gu, M, Gu, X, Gu, Y, Guan, M, Guardone, N, Gul, M, Guo, C, Guo, J, Guo, W, Guo, X, Guo, Y, Hackspacher, P, Hagner, C, Han, R, Han, Y, Hassan, M, He, M, He, W, Heinz, T, Hellmuth, P, Heng, Y, Herrera, R, Hong, D, Hor, Y, Hou, S, Hsiung, Y, Hu, B, Hu, H, Hu, J, Hu, S, Hu, T, Hu, Z, Huang, C, Huang, G, Huang, H, Huang, Q, Huang, W, Huang, X, Huang, Y, Hui, J, Huo, L, Huo, W, Huss, C, Hussain, S, Insolia, A, Ioannisian, A, Isocrate, R, Jelmini, B, Jen, K, Ji, X, Jia, H, Jia, J, Jian, S, Jiang, D, Jiang, X, Jin, R, Jing, X, Jollet, C, Joutsenvaara, J, Jungthawan, S, Kalousis, L, Kampmann, P, Kang, L, Karagounis, M, Kazarian, N, Khan, A, Khan, W, Khosonthongkee, K, Kinz, P, Korablev, D, Kouzakov, K, Krasnoperov, A, Krokhaleva, S, Krumshteyn, Z, Kruth, A, Kutovskiy, N, Kuusiniemi, P, Lachenmaier, T, Landini, C, Leblanc, S, Lebrin, V, Lefevre, F, Lei, R, Leitner, R, Leung, J, Li, D, Li, F, Li, H, Li, J, Li, K, Li, M, Li, N, Li, Q, Li, R, Li, S, Li, T, Li, W, Li, X, Li, Y, Li, Z, Liang, H, Liang, J, Liebau, D, Limphirat, A, Limpijumnong, S, Lin, G, Lin, S, Lin, T, Ling, J, Lippi, I, Liu, F, Liu, H, Liu, J, Liu, M, Liu, Q, Liu, R, Liu, S, Liu, X, Liu, Y, Lokhov, A, Lombardi, P, Lombardo, C, Loo, K, Lu, C, Lu, H, Lu, J, Lu, S, Lu, X, Lubsandorzhiev, B, Lubsandorzhiev, S, Ludhova, L, Luo, F, Luo, G, Luo, P, Luo, S, Luo, W, Lyashuk, V, Ma, Q, Ma, S, Ma, X, Maalmi, J, Malyshkin, Y, Mantovani, F, Manzali, F, Mao, X, Mao, Y, Mari, S, Marini, F, Marium, S, Martellini, C, Martin-Chassard, G, Martini, A, Mayilyan, D, Muller, A, Mednieks, I, Meng, Y, Meregaglia, A, Meroni, E, Meyhofer, D, Mezzetto, M, Miller, J, Miramonti, L, Monforte, S, Montini, P, Montuschi, M, Morozov, N, Muhammad, W, Muralidharan, P, Nastasi, M, Naumov, D, Naumova, E, Navas-Nicolas, D, Nemchenok, I, Ning, F, Ning, Z, Nunokawa, H, Oberauer, L, Ochoa-Ricoux, J, Olshevskiy, A, Orestano, D, Ortica, F, Pan, H, Paoloni, A, Parkalian, N, Parmeggiano, S, Payupol, T, Pei, Y, Pelliccia, N, Peng, A, Peng, H, Perrot, F, Petitjean, P, Petrucci, F, Rico, L, Pilarczyk, O, Popov, A, Poussot, P, Pratumwan, W, Previtali, E, Qi, F, Qi, M, Qian, S, Qian, X, Qiao, H, Qin, Z, Qiu, S, Rajput, M, Ranucci, G, Raper, N, Re, A, Rebber, H, Rebii, A, Ren, B, Ren, J, Rezinko, T, Ricci, B, Robens, M, Roche, M, Rodphai, N, Romani, A, Roskovec, B, Roth, C, Ruan, X, Rujirawat, S, Rybnikov, A, Sadovsky, A, Saggese, P, Salamanna, G, Sanfilippo, S, Sangka, A, Sanguansak, N, Sawangwit, U, Sawatzki, J, Sawy, F, Schever, M, Schuler, J, Schwab, C, Schweizer, K, Selivanov, D, Selyunin, A, Serafini, A, Settanta, G, Settimo, M, Shao, Z, Sharov, V, Shi, J, Shutov, V, Sidorenkov, A, Simkovic, F, Sirignano, C, Siripak, J, Sisti, M, Slupecki, M, Smirnov, M, Smirnov, O, Sogo-Bezerra, T, Songwadhana, J, Soonthornthum, B, Sotnikov, A, Sramek, O, Sreethawong, W, Stahl, A, Stanco, L, Stankevich, K, Stefanik, D, Steiger, H, Steinmann, J, Sterr, T, Stock, M, Strati, V, Studenikin, A, Sun, G, Sun, S, Sun, X, Sun, Y, Suwonjandee, N, Szelezniak, M, Tang, J, Tang, Q, Tang, X, Tietzsch, A, Tkachev, I, Tmej, T, Treskov, K, Triossi, A, Troni, G, Trzaska, W, Tuve, C, van Waasen, S, van den Boom, J, Vanroyen, G, Vassilopoulos, N, Vedin, V, Verde, G, Vialkov, M, Viaud, B, Volpe, C, Vorobel, V, Votano, L, Walker, P, Wang, C, Wang, E, Wang, G, Wang, J, Wang, K, Wang, L, Wang, M, Wang, R, Wang, S, Wang, W, Wang, X, Wang, Y, Wang, Z, Watcharangkool, A, Wei, L, Wei, W, Wei, Y, Wen, L, Wiebusch, C, Wong, S, Wonsak, B, Wu, D, Wu, F, Wu, Q, Wu, W, Wu, Z, Wurm, M, Wurtz, J, Wysotzki, C, Xi, Y, Xia, D, Xiao, M, Xie, Y, Xie, Z, Xing, Z, Xu, B, Xu, C, Xu, D, Xu, F, Xu, J, Xu, M, Xu, Y, Yan, B, Yan, X, Yan, Y, Yang, A, Yang, C, Yang, H, Yang, J, Yang, L, Yang, X, Yang, Y, Yao, H, Yasin, Z, Ye, J, Ye, M, Ye, Z, Yegin, U, Yermia, F, Yi, P, Yin, X, You, Z, Yu, B, Yu, C, Yu, H, Yu, M, Yu, X, Yu, Z, Yuan, C, Yuan, Y, Yuan, Z, Yue, B, Zafar, N, Zambanini, A, Zeng, S, Zeng, T, Zeng, Y, Zhan, L, Zhang, F, Zhang, G, Zhang, H, Zhang, J, Zhang, P, Zhang, Q, Zhang, S, Zhang, T, Zhang, X, Zhang, Y, Zhang, Z, Zhao, F, Zhao, J, Zhao, R, Zhao, S, Zhao, T, Zheng, D, Zheng, H, Zheng, M, Zheng, Y, Zhong, W, Zhou, J, Zhou, L, Zhou, N, Zhou, S, Zhou, X, Zhu, J, Zhu, K, Zhuang, H, Zong, L, Zou, J, Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), JUNO, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Abusleme A., Adam T., Ahmad S., Ahmed R., Aiello S., Akram M., An F., An G., An Q., Andronico G., Anfimov N., Antonelli V., Antoshkina T., Asavapibhop B., de Andre J.P.A.M., Auguste D., Babic A., Baldini W., Barresi A., Baussan E., Bellato M., Bergnoli A., Bernieri E., Birkenfeld T., Blin S., Blum D., Blyth S., Bolshakova A., Bongrand M., Bordereau C., Breton D., Brigatti A., Brugnera R., Bruno R., Budano A., Buscemi M., Busto J., Butorov I., Cabrera A., Cai H., Cai X., Cai Y., Cai Z., Cammi A., Campeny A., Cao C., Cao G., Cao J., Caruso R., Cerna C., Chang J., Chang Y., Chen P., Chen P.-A., Chen S., Chen X., Chen Y.-W., Chen Y., Chen Z., Cheng J., Cheng Y., Chiesa D., Chimenti P., Chukanov A., Chuvashova A., Claverie G., Clementi C., Clerbaux B., Lorenzo S.C.D., Corti D., Costa S., Corso F.D., Dalager O., Taille C.D.L., Deng J., Deng Z., Depnering W., Diaz M., Ding X., Ding Y., Dirgantara B., Dmitrievsky S., Dohnal T., Donchenko G., Dong J., Dornic D., Doroshkevich E., Dracos M., Druillole F., Du S., Dusini S., Dvorak M., Enqvist T., Enzmann H., Fabbri A., Fajt L., Fan D., Fan L., Fang C., Fang J., Fargetta M., Fatkina A., Fedoseev D., Fekete V., Feng L.-C., Feng Q., Ford R., Formozov A., Fournier A., Gan H., Gao F., Garfagnini A., Gottel A., Genster C., Giammarchi M., Giaz A., Giudice N., Giuliani F., Gonchar M., Gong G., Gong H., Gorchakov O., Gornushkin Y., Grassi M., Grewing C., Gromov V., Gu M., Gu X., Gu Y., Guan M., Guardone N., Gul M., Guo C., Guo J., Guo W., Guo X., Guo Y., Hackspacher P., Hagner C., Han R., Han Y., Hassan M., He M., He W., Heinz T., Hellmuth P., Heng Y., Herrera R., Hong D., Hor Y., Hou S., Hsiung Y., Hu B.-Z., Hu H., Hu J., Hu S., Hu T., Hu Z., Huang C., Huang G., Huang H., Huang Q., Huang W., Huang X., Huang Y., Hui J., Huo L., Huo W., Huss C., Hussain S., Insolia A., Ioannisian A., Isocrate R., Jelmini B., Jen K.-L., Ji X., Jia H., Jia J., Jian S., Jiang D., Jiang X., Jin R., Jing X., Jollet C., Joutsenvaara J., Jungthawan S., Kalousis L., Kampmann P., Kang L., Karagounis M., Kazarian N., Khan A., Khan W., Khosonthongkee K., Kinz P., Korablev D., Kouzakov K., Krasnoperov A., Krokhaleva S., Krumshteyn Z., Kruth A., Kutovskiy N., Kuusiniemi P., Lachenmaier T., Landini C., Leblanc S., Lebrin V., Lefevre F., Lei R., Leitner R., Leung J., Li D., Li F., Li H., Li J., Li K., Li M., Li N., Li Q., Li R., Li S., Li T., Li W., Li X., Li Y., Li Z., Liang H., Liang J., Liebau D., Limphirat A., Limpijumnong S., Lin G.-L., Lin S., Lin T., Ling J., Lippi I., Liu F., Liu H., Liu J., Liu M., Liu Q., Liu R., Liu S., Liu X., Liu Y., Lokhov A., Lombardi P., Lombardo C., Loo K., Lu C., Lu H., Lu J., Lu S., Lu X., Lubsandorzhiev B., Lubsandorzhiev S., Ludhova L., Luo F., Luo G., Luo P., Luo S., Luo W., Lyashuk V., Ma Q., Ma S., Ma X., Maalmi J., Malyshkin Y., Mantovani F., Manzali F., Mao X., Mao Y., Mari S.M., Marini F., Marium S., Martellini C., Martin-Chassard G., Martini A., Mayilyan D., Muller A., Mednieks I., Meng Y., Meregaglia A., Meroni E., Meyhofer D., Mezzetto M., Miller J., Miramonti L., Monforte S., Montini P., Montuschi M., Morozov N., Muhammad W., Muralidharan P., Nastasi M., Naumov D.V., Naumova E., Navas-Nicolas D., Nemchenok I., Ning F., Ning Z., Nunokawa H., Oberauer L., Ochoa-Ricoux J.P., Olshevskiy A., Orestano D., Ortica F., Pan H.-R., Paoloni A., Parkalian N., Parmeggiano S., Payupol T., Pei Y., Pelliccia N., Peng A., Peng H., Perrot F., Petitjean P.-A., Petrucci F., Rico L.F.P., Pilarczyk O., Popov A., Poussot P., Pratumwan W., Previtali E., Qi F., Qi M., Qian S., Qian X., Qiao H., Qin Z., Qiu S., Rajput M., Ranucci G., Raper N., Re A., Rebber H., Rebii A., Ren B., Ren J., Rezinko T., Ricci B., Robens M., Roche M., Rodphai N., Romani A., Roskovec B., Roth C., Ruan X., Rujirawat S., Rybnikov A., Sadovsky A., Saggese P., Salamanna G., Sanfilippo S., Sangka A., Sanguansak N., Sawangwit U., Sawatzki J., Sawy F., Schever M., Schuler J., Schwab C., Schweizer K., Selivanov D., Selyunin A., Serafini A., Settanta G., Settimo M., Shao Z., Sharov V., Shi J., Shutov V., Sidorenkov A., Simkovic F., Sirignano C., Siripak J., Sisti M., Slupecki M., Smirnov M., Smirnov O., Sogo-Bezerra T., Songwadhana J., Soonthornthum B., Sotnikov A., Sramek O., Sreethawong W., Stahl A., Stanco L., Stankevich K., Stefanik D., Steiger H., Steinmann J., Sterr T., Stock M.R., Strati V., Studenikin A., Sun G., Sun S., Sun X., Sun Y., Suwonjandee N., Szelezniak M., Tang J., Tang Q., Tang X., Tietzsch A., Tkachev I., Tmej T., Treskov K., Triossi A., Troni G., Trzaska W., Tuve C., van Waasen S., van den Boom J., Vanroyen G., Vassilopoulos N., Vedin V., Verde G., Vialkov M., Viaud B., Volpe C., Vorobel V., Votano L., Walker P., Wang C., Wang C.-H., Wang E., Wang G., Wang J., Wang K., Wang L., Wang M., Wang R., Wang S., Wang W., Wang X., Wang Y., Wang Z., Watcharangkool A., Wei L., Wei W., Wei Y., Wen L., Wiebusch C., Wong S.C.-F., Wonsak B., Wu D., Wu F., Wu Q., Wu W., Wu Z., Wurm M., Wurtz J., Wysotzki C., Xi Y., Xia D., Xiao M., Xie Y., Xie Z., Xing Z., Xu B., Xu C., Xu D., Xu F., Xu J., Xu M., Xu Y., Yan B., Yan X., Yan Y., Yang A., Yang C., Yang H., Yang J., Yang L., Yang X., Yang Y., Yao H., Yasin Z., Ye J., Ye M., Ye Z., Yegin U., Yermia F., Yi P., Yin X., You Z., Yu B., Yu C., Yu H., Yu M., Yu X., Yu Z., Yuan C., Yuan Y., Yuan Z., Yue B., Zafar N., Zambanini A., Zeng S., Zeng T., Zeng Y., Zhan L., Zhang F., Zhang G., Zhang H., Zhang J., Zhang P., Zhang Q., Zhang S., Zhang T., Zhang X., Zhang Y., Zhang Z., Zhao F., Zhao J., Zhao R., Zhao S., Zhao T., Zheng D., Zheng H., Zheng M., Zheng Y., Zhong W., Zhou J., Zhou L., Zhou N., Zhou S., Zhou X., Zhu J., Zhu K., Zhuang H., Zong L., Zou J., Abusleme, A., Adam, T., Ahmad, S., Ahmed, R., Aiello, S., Akram, M., An, F., An, G., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., de Andre, J. P. A. M., Auguste, D., Babic, A., Baldini, W., Barresi, A., Baussan, E., Bellato, M., Bergnoli, A., Bernieri, E., Birkenfeld, T., Blin, S., Blum, D., Blyth, S., Bolshakova, A., Bongrand, M., Bordereau, C., Breton, D., Brigatti, A., Brugnera, R., Bruno, R., Budano, A., Buscemi, M., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y., Cai, Z., Cammi, A., Campeny, A., Cao, C., Cao, G., Cao, J., Caruso, R., Cerna, C., Chang, J., Chang, Y., Chen, P., Chen, P. -A., Chen, S., Chen, X., Chen, Y. -W., Chen, Y., Chen, Z., Cheng, J., Cheng, Y., Chiesa, D., Chimenti, P., Chukanov, A., Chuvashova, A., Claverie, G., Clementi, C., Clerbaux, B., Lorenzo, S. C. D., Corti, D., Costa, S., Corso, F. D., Dalager, O., Taille, C. D. L., Deng, J., Deng, Z., Depnering, W., Diaz, M., Ding, X., Ding, Y., Dirgantara, B., Dmitrievsky, S., Dohnal, T., Donchenko, G., Dong, J., Dornic, D., Doroshkevich, E., Dracos, M., Druillole, F., Du, S., Dusini, S., Dvorak, M., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D., Fan, L., Fang, C., Fang, J., Fargetta, M., Fatkina, A., Fedoseev, D., Fekete, V., Feng, L. -C., Feng, Q., Ford, R., Formozov, A., Fournier, A., Gan, H., Gao, F., Garfagnini, A., Gottel, A., Genster, C., Giammarchi, M., Giaz, A., Giudice, N., Giuliani, F., Gonchar, M., Gong, G., Gong, H., Gorchakov, O., Gornushkin, Y., Grassi, M., Grewing, C., Gromov, V., Gu, M., Gu, X., Gu, Y., Guan, M., Guardone, N., Gul, M., Guo, C., Guo, J., Guo, W., Guo, X., Guo, Y., Hackspacher, P., Hagner, C., Han, R., Han, Y., Hassan, M., He, M., He, W., Heinz, T., Hellmuth, P., Heng, Y., Herrera, R., Hong, D., Hor, Y., Hou, S., Hsiung, Y., Hu, B. -Z., Hu, H., Hu, J., Hu, S., Hu, T., Hu, Z., Huang, C., Huang, G., Huang, H., Huang, Q., Huang, W., Huang, X., Huang, Y., Hui, J., Huo, L., Huo, W., Huss, C., Hussain, S., Insolia, A., Ioannisian, A., Isocrate, R., Jelmini, B., Jen, K. -L., Ji, X., Jia, H., Jia, J., Jian, S., Jiang, D., Jiang, X., Jin, R., Jing, X., Jollet, C., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karagounis, M., Kazarian, N., Khan, A., Khan, W., Khosonthongkee, K., Kinz, P., Korablev, D., Kouzakov, K., Krasnoperov, A., Krokhaleva, S., Krumshteyn, Z., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachenmaier, T., Landini, C., Leblanc, S., Lebrin, V., Lefevre, F., Lei, R., Leitner, R., Leung, J., Li, D., Li, F., Li, H., Li, J., Li, K., Li, M., Li, N., Li, Q., Li, R., Li, S., Li, T., Li, W., Li, X., Li, Y., Li, Z., Liang, H., Liang, J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, G. -L., Lin, S., Lin, T., Ling, J., Lippi, I., Liu, F., Liu, H., Liu, J., Liu, M., Liu, Q., Liu, R., Liu, S., Liu, X., Liu, Y., Lokhov, A., Lombardi, P., Lombardo, C., Loo, K., Lu, C., Lu, H., Lu, J., Lu, S., Lu, X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Luo, F., Luo, G., Luo, P., Luo, S., Luo, W., Lyashuk, V., Ma, Q., Ma, S., Ma, X., Maalmi, J., Malyshkin, Y., Mantovani, F., Manzali, F., Mao, X., Mao, Y., Mari, S. M., Marini, F., Marium, S., Martellini, C., Martin-Chassard, G., Martini, A., Mayilyan, D., Muller, A., Mednieks, I., Meng, Y., Meregaglia, A., Meroni, E., Meyhofer, D., Mezzetto, M., Miller, J., Miramonti, L., Monforte, S., Montini, P., Montuschi, M., Morozov, N., Muhammad, W., Muralidharan, P., Nastasi, M., Naumov, D. V., Naumova, E., Navas-Nicolas, D., Nemchenok, I., Ning, F., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Orestano, D., Ortica, F., Pan, H. -R., Paoloni, A., Parkalian, N., Parmeggiano, S., Payupol, T., Pei, Y., Pelliccia, N., Peng, A., Peng, H., Perrot, F., Petitjean, P. -A., Petrucci, F., Rico, L. F. P., Pilarczyk, O., Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Qi, F., Qi, M., Qian, S., Qian, X., Qiao, H., Qin, Z., Qiu, S., Rajput, M., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Rezinko, T., Ricci, B., Robens, M., Roche, M., Rodphai, N., Romani, A., Roskovec, B., Roth, C., Ruan, X., Rujirawat, S., Rybnikov, A., Sadovsky, A., Saggese, P., Salamanna, G., Sanfilippo, S., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schuler, J., Schwab, C., Schweizer, K., Selivanov, D., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shao, Z., Sharov, V., Shi, J., Shutov, V., Sidorenkov, A., Simkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Sramek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Stefanik, D., Steiger, H., Steinmann, J., Sterr, T., Stock, M. R., Strati, V., Studenikin, A., Sun, G., Sun, S., Sun, X., Sun, Y., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Treskov, K., Triossi, A., Troni, G., Trzaska, W., Tuve, C., van Waasen, S., van den Boom, J., Vanroyen, G., Vassilopoulos, N., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Volpe, C., Vorobel, V., Votano, L., Walker, P., Wang, C., Wang, C. -H., Wang, E., Wang, G., Wang, J., Wang, K., Wang, L., Wang, M., Wang, R., Wang, S., Wang, W., Wang, X., Wang, Y., Wang, Z., Watcharangkool, A., Wei, L., Wei, W., Wei, Y., Wen, L., Wiebusch, C., Wong, S. C. -F., Wonsak, B., Wu, D., Wu, F., Wu, Q., Wu, W., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y., Xia, D., Xiao, M., Xie, Y., Xie, Z., Xing, Z., Xu, B., Xu, C., Xu, D., Xu, F., Xu, J., Xu, M., Xu, Y., Yan, B., Yan, X., Yan, Y., Yang, A., Yang, C., Yang, H., Yang, J., Yang, L., Yang, X., Yang, Y., Yao, H., Yasin, Z., Ye, J., Ye, M., Ye, Z., Yegin, U., Yermia, F., Yi, P., Yin, X., You, Z., Yu, B., Yu, C., Yu, H., Yu, M., Yu, X., Yu, Z., Yuan, C., Yuan, Y., Yuan, Z., Yue, B., Zafar, N., Zambanini, A., Zeng, S., Zeng, T., Zeng, Y., Zhan, L., Zhang, F., Zhang, G., Zhang, H., Zhang, J., Zhang, P., Zhang, Q., Zhang, S., Zhang, T., Zhang, X., Zhang, Y., Zhang, Z., Zhao, F., Zhao, J., Zhao, R., Zhao, S., Zhao, T., Zheng, D., Zheng, H., Zheng, M., Zheng, Y., Zhong, W., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, X., Zhu, J., Zhu, K., Zhuang, H., Zong, L., and Zou, J.
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,measurement methods ,scintillation counter: liquid ,energy resolution ,FOS: Physical sciences ,Photodetector ,Scintillator ,01 natural sciences ,NO ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,hal-03022811 ,PE2_2 ,Optics ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Calibration ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,ddc:530 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Astrophysique ,Jiangmen Underground Neutrino Observatory ,Physics ,JUNO ,liquid [scintillation counter] ,010308 nuclear & particles physics ,business.industry ,Settore FIS/01 - Fisica Sperimentale ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Linearity ,Instrumentation and Detectors (physics.ins-det) ,calibration ,Neutrino Detectors and Telescopes (experiments) ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino ,business ,Energy (signal processing) - Abstract
We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.], 0, info:eu-repo/semantics/published
- Published
- 2021
- Full Text
- View/download PDF
20. Antineutrino Energy Spectrum Unfolding Based on the Daya Bay Measurement and Its Applications
- Author
-
Jinjuan Ren, Dmitry Dolzhikov, Haifeng Li, Yuman Wang, S. Zeng, W. Q. Gu, Z. M. Wang, X. L. Ji, Minfang Yeh, Y. X. Zhang, C. Morales Reveco, Michael Kramer, Yufeng Li, K. L. Jen, Tomas Tmej, J. P. Gallo, Chun S. J. Pun, Zhuojun Hu, Shaomin Chen, Jun Cao, Haifeng Yao, J. J. Cherwinka, S. F. Li, Bangzheng Ma, Dmitry V. Naumov, Yinhong Zhang, Yongzhu Chen, Yue Meng, Q. J. Li, H. R. Pan, Kam-Biu Luk, N. Raper, H. Liang, Yixue Chen, Hongzhao Yu, Olivia Dalager, Z. Guo, D. C. Jones, Hanxiong Huang, L. Kang, N. Y. Wang, B. Viren, X. T. Huang, Tianpeng Xu, A. B. Balantekin, C. G. Yang, Zhi-zhong Xing, Baobiao Yue, W. J. Wu, Y. Z. Yang, R. D. McKeown, C. E. Tull, S. Kohn, L. H. Wei, Rong Zhao, R. T. Lei, F. Li, Simon Blyth, R. C. Mandujano, Guanghua Gong, Li Zhou, S. Hans, M. Z. Wang, Ming Chung Chu, W. H. Tse, Diru Wu, M. Ye, Jingyuan Guo, Chi Lin, K. T. McDonald, F. L. Wu, Jen-Chieh Peng, Y. K. Hor, Jianrun Hu, Qinglong Wu, Junwei Huang, Jianglai Liu, J. Dove, Yuda Zeng, J. M. Link, J. P. Cummings, L. Guo, Alexander Olshevskiy, M. Qi, Tian Xue, M. Bishai, Chao Zhang, S. J. Patton, Y. K. Heng, H. S. Chen, Xiaohui Qian, J. Lee, H. Y. Wei, K. M. Heeger, Zhijian Zhang, Rupert Leitner, L. S. Littenberg, H. L. H. Wong, H. H. Zhang, H. L. Zhuang, K. Treskov, Richard Rosero, Juan Pedro Ochoa-Ricoux, X. Wang, J. J. Ling, B. R. Littlejohn, M. Grassi, D. E. Jaffe, Miao He, E. Naumova, D. A. Dwyer, B. Z. Hu, Haoqi Lu, T. J. Langford, Ruhui Li, Yaoyu Zhang, Y. B. Huang, Vitalii Zavadskyi, Y. F. Wang, Y. H. Chang, Vit Vorobel, S. Zhang, Jing Wang, T. Hu, Xiaolu Ji, Wei Li, H. M. Steiner, R. W. Hackenburg, Y. Q. Ma, Z. Wang, Honghan Gong, K. Whisnant, Zhiyong Zhang, J. Cheng, Yuhang Guo, B. Roskovec, Jiaheng Zou, D. M. Xia, F. S. Deng, Bing-Lin Young, Liangjian Wen, Guofu Cao, X. C. Ruan, Z. K. Cheng, Z. P. Zhang, Jianmin Li, Y. Y. Ding, Fengpeng An, Zhangquan Xie, Qingmin Zhang, Jim Napolitano, W. Wang, Y. B. Hsiung, Z. Y. Yu, M. V. Diwan, X. Q. Li, H. K. Xu, Patrick Huber, Tadeas Dohnal, J. L. Sun, X. T. Zhang, J. Park, T. M. T. Nguyen, J. H. C. Lee, Z. B. Li, Shengxin Lin, E. T. Worcester, Lin Yang, F. Z. Qi, Jinmei Liu, Jing Zhao, X. Y. Ma, Christopher L. Marshall, J. F. Chang, X. H. Guo, Jiawen Zhang, M. Dvořák, C. H. Wang, R. G. Wang, Feiyang Zhang, Liang Zhan, Christopher G. White, C. Lu, J. L. Xu, Shanfeng Li, Guey-Lin Lin, Jian Liu, J. K. C. Leung, S. H. Kettell, X. B. Ma, Maxim Gonchar, Xinglong Li, and R. A. Johnson
- Subjects
Physics ,Nuclear and High Energy Physics ,Isotope ,Fissile material ,010308 nuclear & particles physics ,Fission ,Detector ,FOS: Physical sciences ,Astronomy and Astrophysics ,01 natural sciences ,Spectral line ,Physics::Geophysics ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Inverse beta decay ,0103 physical sciences ,Energy spectrum ,High Energy Physics::Experiment ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Energy (signal processing) - Abstract
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era. The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment, in combination with the fission rates of fissile isotopes in the reactor, is used to extract the positron energy spectra resulting from the fission of specific isotopes. This information can be used to produce a precise, data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay. The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method. Consistent results are obtained with other unfolding methods. A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated. Given the reactor fission fractions, the technique can predict the energy spectrum to a 2% precision. In addition, we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method., 22 pages, 10 figures, 6 supplemental materials
- Published
- 2021
21. A Multiyear Survey and Identification of Pepper- and Tomato-Infecting Viruses in Yunnan Province, China
- Author
-
Yueyue Li, Guanlin Tan, Long Xiao, Wenpeng Zhou, Pingxiu Lan, Xiaojiao Chen, Yong Liu, Ruhui Li, and Fan Li
- Subjects
0106 biological sciences ,Microbiology (medical) ,Veterinary medicine ,viruses ,lcsh:QR1-502 ,Virus diseases ,tomato ,01 natural sciences ,Microbiology ,Virus ,lcsh:Microbiology ,law.invention ,03 medical and health sciences ,pepper ,law ,Pepper ,virus identification ,virus disease ,Polymerase chain reaction ,Original Research ,030304 developmental biology ,0303 health sciences ,Potato leafroll virus ,biology ,Host (biology) ,fungi ,food and beverages ,biology.organism_classification ,mixed infection ,Chilli veinal mottle virus ,010606 plant biology & botany ,Mixed infection - Abstract
During pepper and tomato production seasons in 2013–2017, large-scale virus disease surveys were conducted in different regions of Yunnan Province, China. A total of 1,267 pepper and tomato samples with various virus-like symptoms were collected and analyzed for virus infections through dot enzyme-linked immunosorbent assay (dot-ELISA), polymerase chain reaction (PCR), and reverse-transcription (RT)-PCR. The detection results showed that 19 different viruses were present in about 50.9% of the assayed samples, and among these viruses, seven viruses were found in both pepper and tomato samples. Mixed infections with two to three of the 15 identified mixed infection types were found in the pepper samples and 10 identified mixed infection types were found in the tomato samples. Among the infected samples, Tomato spotted wilt orthotospovirus (TSWV) was the most common virus, with a detection rate of about 20.0% followed by Pepper vein yellows virus (PeVYV, 13.0%). This survey revealed for the first time that pepper is a natural host of Tobacco vein distorting virus (TVDV) worldwide and tomato is a natural host of Potato leafroll virus (PLRV) in China. PeVYV, Tobacco mild green mosaic virus (TMGMV) and Wild tomato mosaic virus (WTMV) were first time found in pepper and Tomato mottle mosaic virus (ToMMV) and Chilli veinal mottle virus (ChiVMV) were first time found in tomato in Yunnan Province. Finally, the virus incidences were higher in Kunming, Yuxi, Chuxiong, and Honghe region than other regions.
- Published
- 2021
- Full Text
- View/download PDF
22. Application of traditional Chinese medicine syndrome differentiation in identification of body constitution of hypertensive and diabetic patients
- Author
-
Yuxi, Fang, Le, Luo, and Ruhui, Li
- Subjects
Original Article - Abstract
Objective: To investigate the application of traditional Chinese medicine (TCM) syndrome differentiation in identification of body constitution of hypertensive and diabetic patients. Methods: A total of 110 hypertensive patients with diabetes treated in our hospital were enrolled in this study, and were divided into a study group (SG, n=60) and a control group (CG, n=50) according to different intervention methods. Patients in the CG received conventional western medical intervention for hypertension and diabetes, while patients in the SG received body constitution-identified TCM syndrome differentiation intervention additionally. The changes of blood pressure and plasma glucose during the intervention were compared between the two groups, the clinical effect and quality of life of the two groups were evaluated, and multivariate stepwise Logistic regression analysis on influencing factor of TCM body constitution was conducted. Results: Compared with that before intervention, the proportion of gentleness constitution in the SG showed a significant increase (P
- Published
- 2021
23. Radioactivity control strategy for the JUNO detector
- Author
-
The JUNO collaboration, Angel Abusleme, Thomas Adam, Shakeel Ahmad, Rizwan Ahmed, Sebastiano Aiello, Muhammad Akram, Fengpeng An, Qi An, Giuseppe Andronico, Nikolay Anfimov, Vito Antonelli, Tatiana Antoshkina, Burin Asavapibhop, João Pedro Athayde Marcondes de André, Didier Auguste, Andrej Babic, Wander Baldini, Andrea Barresi, Davide Basilico, Eric Baussan, Marco Bellato, Antonio Bergnoli, Thilo Birkenfeld, Sylvie Blin, David Blum, Simon Blyth, Anastasia Bolshakova, Mathieu Bongrand, Clément Bordereau, Dominique Breton, Augusto Brigatti, Riccardo Brugnera, Riccardo Bruno, Antonio Budano, Mario Buscemi, Jose Busto, Ilya Butorov, Anatael Cabrera, Hao Cai, Xiao Cai, Yanke Cai, Zhiyan Cai, Antonio Cammi, Agustin Campeny, Chuanya Cao, Guofu Cao, Jun Cao, Rossella Caruso, Cédric Cerna, Jinfan Chang, Yun Chang, Pingping Chen, Po-An Chen, Shaomin Chen, Xurong Chen, Yi-Wen Chen, Yixue Chen, Yu Chen, Zhang Chen, Jie Cheng, Yaping Cheng, Alexey Chetverikov, Davide Chiesa, Pietro Chimenti, Artem Chukanov, Gérard Claverie, Catia Clementi, Barbara Clerbaux, Selma Conforti Di Lorenzo, Daniele Corti, Oliviero Cremonesi, Flavio Dal Corso, Olivia Dalager, Christophe De La Taille, Jiawei Deng, Zhi Deng, Ziyan Deng, Wilfried Depnering, Marco Diaz, Xuefeng Ding, Yayun Ding, Bayu Dirgantara, Sergey Dmitrievsky, Tadeas Dohnal, Dmitry Dolzhikov, Georgy Donchenko, Jianmeng Dong, Evgeny Doroshkevich, Marcos Dracos, Frédéric Druillole, Shuxian Du, Stefano Dusini, Martin Dvorak, Timo Enqvist, Heike Enzmann, Andrea Fabbri, Lukas Fajt, Donghua Fan, Lei Fan, Jian Fang, Wenxing Fang, Marco Fargetta, Dmitry Fedoseev, Vladko Fekete, Li-Cheng Feng, Qichun Feng, Richard Ford, Andrey Formozov, Amélie Fournier, Haonan Gan, Feng Gao, Alberto Garfagnini, Marco Giammarchi, Agnese Giaz, Nunzio Giudice, Maxim Gonchar, Guanghua Gong, Hui Gong, Yuri Gornushkin, Alexandre Göttel, Marco Grassi, Christian Grewing, Vasily Gromov, Minghao Gu, Xiaofei Gu, Yu Gu, Mengyun Guan, Nunzio Guardone, Maria Gul, Cong Guo, Jingyuan Guo, Wanlei Guo, Xinheng Guo, Yuhang Guo, Paul Hackspacher, Caren Hagner, Ran Han, Yang Han, Muhammad Sohaib Hassan, Miao He, Wei He, Tobias Heinz, Patrick Hellmuth, Yuekun Heng, Rafael Herrera, YuenKeung Hor, Shaojing Hou, Yee Hsiung, Bei-Zhen Hu, Hang Hu, Jianrun Hu, Jun Hu, Shouyang Hu, Tao Hu, Zhuojun Hu, Chunhao Huang, Guihong Huang, Hanxiong Huang, Wenhao Huang, Xin Huang, Xingtao Huang, Yongbo Huang, Jiaqi Hui, Lei Huo, Wenju Huo, Cédric Huss, Safeer Hussain, Ara Ioannisian, Roberto Isocrate, Beatrice Jelmini, Kuo-Lun Jen, Ignacio Jeria, Xiaolu Ji, Xingzhao Ji, Huihui Jia, Junji Jia, Siyu Jian, Di Jiang, Xiaoshan Jiang, Ruyi Jin, Xiaoping Jing, Cécile Jollet, Jari Joutsenvaara, Sirichok Jungthawan, Leonidas Kalousis, Philipp Kampmann, Li Kang, Rebin Karaparambil, Narine Kazarian, Waseem Khan, Khanchai Khosonthongkee, Denis Korablev, Konstantin Kouzakov, Alexey Krasnoperov, Andre Kruth, Nikolay Kutovskiy, Pasi Kuusiniemi, Tobias Lachenmaier, Cecilia Landini, Sébastien Leblanc, Victor Lebrin, Frederic Lefevre, Ruiting Lei, Rupert Leitner, Jason Leung, Demin Li, Fei Li, Fule Li, Haitao Li, Huiling Li, Jiaqi Li, Mengzhao Li, Min Li, Nan Li, Qingjiang Li, Ruhui Li, Shanfeng Li, Tao Li, Weidong Li, Weiguo Li, Xiaomei Li, Xiaonan Li, Xinglong Li, Yi Li, Yufeng Li, Zhaohan Li, Zhibing Li, Ziyuan Li, Hao Liang, Jiajun Liao, Daniel Liebau, Ayut Limphirat, Sukit Limpijumnong, Guey-Lin Lin, Shengxin Lin, Tao Lin, Jiajie Ling, Ivano Lippi, Fang Liu, Haidong Liu, Hongbang Liu, Hongjuan Liu, Hongtao Liu, Hui Liu, Jianglai Liu, Jinchang Liu, Min Liu, Qian Liu, Qin Liu, Runxuan Liu, Shuangyu Liu, Shubin Liu, Shulin Liu, Xiaowei Liu, Xiwen Liu, Yan Liu, Yunzhe Liu, Alexey Lokhov, Paolo Lombardi, Claudio Lombardo, Kai Loo, Chuan Lu, Haoqi Lu, Jingbin Lu, Junguang Lu, Shuxiang Lu, Xiaoxu Lu, Bayarto Lubsandorzhiev, Sultim Lubsandorzhiev, Livia Ludhova, Fengjiao Luo, Guang Luo, Pengwei Luo, Shu Luo, Wuming Luo, Vladimir Lyashuk, Bangzheng Ma, Qiumei Ma, Si Ma, Xiaoyan Ma, Xubo Ma, Jihane Maalmi, Yury Malyshkin, Fabio Mantovani, Francesco Manzali, Xin Mao, Yajun Mao, Stefano M. Mari, Filippo Marini, Sadia Marium, Cristina Martellini, Gisele Martin-Chassard, Agnese Martini, Matthias Mayer, Davit Mayilyan, Ints Mednieks, Yue Meng, Anselmo Meregaglia, Emanuela Meroni, David Meyhöfer, Mauro Mezzetto, Jonathan Miller, Lino Miramonti, Paolo Montini, Michele Montuschi, Axel Müller, Massimiliano Nastasi, Dmitry V. Naumov, Elena Naumova, Diana Navas-Nicolas, Igor Nemchenok, Minh Thuan Nguyen Thi, Feipeng Ning, Zhe Ning, Hiroshi Nunokawa, Lothar Oberauer, Juan Pedro Ochoa-Ricoux, Alexander Olshevskiy, Domizia Orestano, Fausto Ortica, Rainer Othegraven, Hsiao-Ru Pan, Alessandro Paoloni, Sergio Parmeggiano, Yatian Pei, Nicomede Pelliccia, Anguo Peng, Haiping Peng, Frédéric Perrot, Pierre-Alexandre Petitjean, Fabrizio Petrucci, Oliver Pilarczyk, Luis Felipe Piñeres Rico, Artyom Popov, Pascal Poussot, Wathan Pratumwan, Ezio Previtali, Fazhi Qi, Ming Qi, Sen Qian, Xiaohui Qian, Zhen Qian, Hao Qiao, Zhonghua Qin, Shoukang Qiu, Muhammad Usman Rajput, Gioacchino Ranucci, Neill Raper, Alessandra Re, Henning Rebber, Abdel Rebii, Bin Ren, Jie Ren, Barbara Ricci, Markus Robens, Mathieu Roche, Narongkiat Rodphai, Aldo Romani, Bedřich Roskovec, Christian Roth, Xiangdong Ruan, Xichao Ruan, Saroj Rujirawat, Arseniy Rybnikov, Andrey Sadovsky, Paolo Saggese, Simone Sanfilippo, Anut Sangka, Nuanwan Sanguansak, Utane Sawangwit, Julia Sawatzki, Fatma Sawy, Michaela Schever, Cédric Schwab, Konstantin Schweizer, Alexandr Selyunin, Andrea Serafini, Giulio Settanta, Mariangela Settimo, Zhuang Shao, Vladislav Sharov, Arina Shaydurova, Jingyan Shi, Yanan Shi, Vitaly Shutov, Andrey Sidorenkov, Fedor Šimkovic, Chiara Sirignano, Jaruchit Siripak, Monica Sisti, Maciej Slupecki, Mikhail Smirnov, Oleg Smirnov, Thiago Sogo-Bezerra, Sergey Sokolov, Julanan Songwadhana, Boonrucksar Soonthornthum, Albert Sotnikov, Ondřej Šrámek, Warintorn Sreethawong, Achim Stahl, Luca Stanco, Konstantin Stankevich, Dušan Štefánik, Hans Steiger, Jochen Steinmann, Tobias Sterr, Matthias Raphael Stock, Virginia Strati, Alexander Studenikin, Shifeng Sun, Xilei Sun, Yongjie Sun, Yongzhao Sun, Narumon Suwonjandee, Michal Szelezniak, Jian Tang, Qiang Tang, Quan Tang, Xiao Tang, Alexander Tietzsch, Igor Tkachev, Tomas Tmej, Konstantin Treskov, Andrea Triossi, Giancarlo Troni, Wladyslaw Trzaska, Cristina Tuve, Nikita Ushakov, Johannes van den Boom, Stefan van Waasen, Guillaume Vanroyen, Nikolaos Vassilopoulos, Vadim Vedin, Giuseppe Verde, Maxim Vialkov, Benoit Viaud, Moritz Cornelius Vollbrecht, Cristina Volpe, Vit Vorobel, Dmitriy Voronin, Lucia Votano, Pablo Walker, Caishen Wang, Chung-Hsiang Wang, En Wang, Guoli Wang, Jian Wang, Jun Wang, Kunyu Wang, Lu Wang, Meifen Wang, Meng Wang, Ruiguang Wang, Siguang Wang, Wei Wang, Wenshuai Wang, Xi Wang, Xiangyue Wang, Yangfu Wang, Yaoguang Wang, Yi Wang, Yifang Wang, Yuanqing Wang, Yuman Wang, Zhe Wang, Zheng Wang, Zhimin Wang, Zongyi Wang, Muhammad Waqas, Apimook Watcharangkool, Lianghong Wei, Wei Wei, Wenlu Wei, Yadong Wei, Liangjian Wen, Christopher Wiebusch, Steven Chan-Fai Wong, Bjoern Wonsak, Diru Wu, Fangliang Wu, Qun Wu, Zhi Wu, Michael Wurm, Jacques Wurtz, Christian Wysotzki, Yufei Xi, Dongmei Xia, Xiaochuan Xie, Yuguang Xie, Zhangquan Xie, Zhizhong Xing, Benda Xu, Cheng Xu, Donglian Xu, Fanrong Xu, Hangkun Xu, Jilei Xu, Jing Xu, Meihang Xu, Yin Xu, Yu Xu, Baojun Yan, Taylor Yan, Wenqi Yan, Xiongbo Yan, Yupeng Yan, Anbo Yang, Changgen Yang, Chengfeng Yang, Huan Yang, Jie Yang, Lei Yang, Xiaoyu Yang, Yifan Yang, Haifeng Yao, Zafar Yasin, Jiaxuan Ye, Mei Ye, Ziping Ye, Ugur Yegin, Frédéric Yermia, Peihuai Yi, Na Yin, Xiangwei Yin, Zhengyun You, Boxiang Yu, Chiye Yu, Chunxu Yu, Hongzhao Yu, Miao Yu, Xianghui Yu, Zeyuan Yu, Zezhong Yu, Chengzhuo Yuan, Ying Yuan, Zhenxiong Yuan, Ziyi Yuan, Baobiao Yue, Noman Zafar, Andre Zambanini, Vitalii Zavadskyi, Shan Zeng, Tingxuan Zeng, Yuda Zeng, Liang Zhan, Aiqiang Zhang, Feiyang Zhang, Guoqing Zhang, Haiqiong Zhang, Honghao Zhang, Jiawen Zhang, Jie Zhang, Jin Zhang, Jingbo Zhang, Jinnan Zhang, Peng Zhang, Qingmin Zhang, Shiqi Zhang, Shu Zhang, Tao Zhang, Xiaomei Zhang, Xuantong Zhang, Xueyao Zhang, Yan Zhang, Yinhong Zhang, Yiyu Zhang, Yongpeng Zhang, Yuanyuan Zhang, Yumei Zhang, Zhenyu Zhang, Zhijian Zhang, Fengyi Zhao, Jie Zhao, Rong Zhao, Shujun Zhao, Tianchi Zhao, Dongqin Zheng, Hua Zheng, Minshan Zheng, Yangheng Zheng, Weirong Zhong, Jing Zhou, Li Zhou, Nan Zhou, Shun Zhou, Tong Zhou, Xiang Zhou, Jiang Zhu, Kangfu Zhu, Kejun Zhu, Zhihang Zhu, Bo Zhuang, Honglin Zhuang, Liang Zong, Jiaheng Zou, Abusleme, A, Adam, T, Ahmad, S, Ahmed, R, Aiello, S, Akram, M, An, F, An, Q, Andronico, G, Anfimov, N, Antonelli, V, Antoshkina, T, Asavapibhop, B, de Andre, J, Auguste, D, Babic, A, Baldini, W, Barresi, A, Basilico, D, Baussan, E, Bellato, M, Bergnoli, A, Birkenfeld, T, Blin, S, Blum, D, Blyth, S, Bolshakova, A, Bongrand, M, Bordereau, C, Breton, D, Brigatti, A, Brugnera, R, Bruno, R, Budano, A, Buscemi, M, Busto, J, Butorov, I, Cabrera, A, Cai, H, Cai, X, Cai, Y, Cai, Z, Cammi, A, Campeny, A, Cao, C, Cao, G, Cao, J, Caruso, R, Cerna, C, Chang, J, Chang, Y, Chen, P, Chen, S, Chen, X, Chen, Y, Chen, Z, Cheng, J, Cheng, Y, Chetverikov, A, Chiesa, D, Chimenti, P, Chukanov, A, Claverie, G, Clementi, C, Clerbaux, B, Conforti Di Lorenzo, S, Corti, D, Cremonesi, O, Dal Corso, F, Dalager, O, De La Taille, C, Deng, J, Deng, Z, Depnering, W, Diaz, M, Ding, X, Ding, Y, Dirgantara, B, Dmitrievsky, S, Dohnal, T, Dolzhikov, D, Donchenko, G, Dong, J, Doroshkevich, E, Dracos, M, Druillole, F, Du, S, Dusini, S, Dvorak, M, Enqvist, T, Enzmann, H, Fabbri, A, Fajt, L, Fan, D, Fan, L, Fang, J, Fang, W, Fargetta, M, Fedoseev, D, Fekete, V, Feng, L, Feng, Q, Ford, R, Formozov, A, Fournier, A, Gan, H, Gao, F, Garfagnini, A, Giammarchi, M, Giaz, A, Giudice, N, Gonchar, M, Gong, G, Gong, H, Gornushkin, Y, Gottel, A, Grassi, M, Grewing, C, Gromov, V, Gu, M, Gu, X, Gu, Y, Guan, M, Guardone, N, Gul, M, Guo, C, Guo, J, Guo, W, Guo, X, Guo, Y, Hackspacher, P, Hagner, C, Han, R, Han, Y, Hassan, M, He, M, He, W, Heinz, T, Hellmuth, P, Heng, Y, Herrera, R, Hor, Y, Hou, S, Hsiung, Y, Hu, B, Hu, H, Hu, J, Hu, S, Hu, T, Hu, Z, Huang, C, Huang, G, Huang, H, Huang, W, Huang, X, Huang, Y, Hui, J, Huo, L, Huo, W, Huss, C, Hussain, S, Ioannisian, A, Isocrate, R, Jelmini, B, Jen, K, Jeria, I, Ji, X, Jia, H, Jia, J, Jian, S, Jiang, D, Jiang, X, Jin, R, Jing, X, Jollet, C, Joutsenvaara, J, Jungthawan, S, Kalousis, L, Kampmann, P, Kang, L, Karaparambil, R, Kazarian, N, Khan, W, Khosonthongkee, K, Korablev, D, Kouzakov, K, Krasnoperov, A, Kruth, A, Kutovskiy, N, Kuusiniemi, P, Lachenmaier, T, Landini, C, Leblanc, S, Lebrin, V, Lefevre, F, Lei, R, Leitner, R, Leung, J, Li, D, Li, F, Li, H, Li, J, Li, M, Li, N, Li, Q, Li, R, Li, S, Li, T, Li, W, Li, X, Li, Y, Li, Z, Liang, H, Liao, J, Liebau, D, Limphirat, A, Limpijumnong, S, Lin, G, Lin, S, Lin, T, Ling, J, Lippi, I, Liu, F, Liu, H, Liu, J, Liu, M, Liu, Q, Liu, R, Liu, S, Liu, X, Liu, Y, Lokhov, A, Lombardi, P, Lombardo, C, Loo, K, Lu, C, Lu, H, Lu, J, Lu, S, Lu, X, Lubsandorzhiev, B, Lubsandorzhiev, S, Ludhova, L, Luo, F, Luo, G, Luo, P, Luo, S, Luo, W, Lyashuk, V, Ma, B, Ma, Q, Ma, S, Ma, X, Maalmi, J, Malyshkin, Y, Mantovani, F, Manzali, F, Mao, X, Mao, Y, Mari, S, Marini, F, Marium, S, Martellini, C, Martin-Chassard, G, Martini, A, Mayer, M, Mayilyan, D, Mednieks, I, Meng, Y, Meregaglia, A, Meroni, E, Meyhofer, D, Mezzetto, M, Miller, J, Miramonti, L, Montini, P, Montuschi, M, Muller, A, Nastasi, M, Naumov, D, Naumova, E, Navas-Nicolas, D, Nemchenok, I, Nguyen Thi, M, Ning, F, Ning, Z, Nunokawa, H, Oberauer, L, Ochoa-Ricoux, J, Olshevskiy, A, Orestano, D, Ortica, F, Othegraven, R, Pan, H, Paoloni, A, Parmeggiano, S, Pei, Y, Pelliccia, N, Peng, A, Peng, H, Perrot, F, Petitjean, P, Petrucci, F, Pilarczyk, O, Pineres Rico, L, Popov, A, Poussot, P, Pratumwan, W, Previtali, E, Qi, F, Qi, M, Qian, S, Qian, X, Qian, Z, Qiao, H, Qin, Z, Qiu, S, Rajput, M, Ranucci, G, Raper, N, Re, A, Rebber, H, Rebii, A, Ren, B, Ren, J, Ricci, B, Robens, M, Roche, M, Rodphai, N, Romani, A, Roskovec, B, Roth, C, Ruan, X, Rujirawat, S, Rybnikov, A, Sadovsky, A, Saggese, P, Sanfilippo, S, Sangka, A, Sanguansak, N, Sawangwit, U, Sawatzki, J, Sawy, F, Schever, M, Schwab, C, Schweizer, K, Selyunin, A, Serafini, A, Settanta, G, Settimo, M, Shao, Z, Sharov, V, Shaydurova, A, Shi, J, Shi, Y, Shutov, V, Sidorenkov, A, Simkovic, F, Sirignano, C, Siripak, J, Sisti, M, Slupecki, M, Smirnov, M, Smirnov, O, Sogo-Bezerra, T, Sokolov, S, Songwadhana, J, Soonthornthum, B, Sotnikov, A, Sramek, O, Sreethawong, W, Stahl, A, Stanco, L, Stankevich, K, Stefanik, D, Steiger, H, Steinmann, J, Sterr, T, Stock, M, Strati, V, Studenikin, A, Sun, S, Sun, X, Sun, Y, Suwonjandee, N, Szelezniak, M, Tang, J, Tang, Q, Tang, X, Tietzsch, A, Tkachev, I, Tmej, T, Treskov, K, Triossi, A, Troni, G, Trzaska, W, Tuve, C, Ushakov, N, van den Boom, J, van Waasen, S, Vanroyen, G, Vassilopoulos, N, Vedin, V, Verde, G, Vialkov, M, Viaud, B, Vollbrecht, M, Volpe, C, Vorobel, V, Voronin, D, Votano, L, Walker, P, Wang, C, Wang, E, Wang, G, Wang, J, Wang, K, Wang, L, Wang, M, Wang, R, Wang, S, Wang, W, Wang, X, Wang, Y, Wang, Z, Waqas, M, Watcharangkool, A, Wei, L, Wei, W, Wei, Y, Wen, L, Wiebusch, C, Wong, S, Wonsak, B, Wu, D, Wu, F, Wu, Q, Wu, Z, Wurm, M, Wurtz, J, Wysotzki, C, Xi, Y, Xia, D, Xie, X, Xie, Y, Xie, Z, Xing, Z, Xu, B, Xu, C, Xu, D, Xu, F, Xu, H, Xu, J, Xu, M, Xu, Y, Yan, B, Yan, T, Yan, W, Yan, X, Yan, Y, Yang, A, Yang, C, Yang, H, Yang, J, Yang, L, Yang, X, Yang, Y, Yao, H, Yasin, Z, Ye, J, Ye, M, Ye, Z, Yegin, U, Yermia, F, Yi, P, Yin, N, Yin, X, You, Z, Yu, B, Yu, C, Yu, H, Yu, M, Yu, X, Yu, Z, Yuan, C, Yuan, Y, Yuan, Z, Yue, B, Zafar, N, Zambanini, A, Zavadskyi, V, Zeng, S, Zeng, T, Zeng, Y, Zhan, L, Zhang, A, Zhang, F, Zhang, G, Zhang, H, Zhang, J, Zhang, P, Zhang, Q, Zhang, S, Zhang, T, Zhang, X, Zhang, Y, Zhang, Z, Zhao, F, Zhao, J, Zhao, R, Zhao, S, Zhao, T, Zheng, D, Zheng, H, Zheng, M, Zheng, Y, Zhong, W, Zhou, J, Zhou, L, Zhou, N, Zhou, S, Zhou, T, Zhou, X, Zhu, J, Zhu, K, Zhu, Z, Zhuang, B, Zhuang, H, Zong, L, Zou, J, Abusleme, Angel, Adam, Thoma, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marconde, Auguste, Didier, Babic, Andrej, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Buscemi, Mario, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chang, Jinfan, Chang, Yun, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Xurong, Chen, Yi-Wen, Chen, Yixue, Chen, Yu, Chen, Zhang, Cheng, Jie, Cheng, Yaping, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Conforti Di Lorenzo, Selma, Corti, Daniele, Cremonesi, Oliviero, Dal Corso, Flavio, Dalager, Olivia, De La Taille, Christophe, Deng, Jiawei, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadea, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dracos, Marco, Druillole, Frédéric, Du, Shuxian, Dusini, Stefano, Dvorak, Martin, Enqvist, Timo, Enzmann, Heike, Fabbri, Andrea, Fajt, Luka, Fan, Donghua, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fekete, Vladko, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Formozov, Andrey, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Giammarchi, Marco, Giaz, Agnese, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Grewing, Christian, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guardone, Nunzio, Gul, Maria, Guo, Cong, Guo, Jingyuan, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hackspacher, Paul, Hagner, Caren, Han, Ran, Han, Yang, Hassan, Muhammad Sohaib, He, Miao, He, Wei, Heinz, Tobia, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, Yuenkeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Zhuojun, Huang, Chunhao, Huang, Guihong, Huang, Hanxiong, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jen, Kuo-Lun, Jeria, Ignacio, Ji, Xiaolu, Ji, Xingzhao, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Xiaoshan, Jin, Ruyi, Jing, Xiaoping, Jollet, Cécile, Joutsenvaara, Jari, Jungthawan, Sirichok, Kalousis, Leonida, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Waseem, Khosonthongkee, Khanchai, Korablev, Deni, Kouzakov, Konstantin, Krasnoperov, Alexey, Kruth, Andre, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobia, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Haitao, Li, Huiling, Li, Jiaqi, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Shanfeng, Li, Tao, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Liang, Hao, Liao, Jiajun, Liebau, Daniel, Limphirat, Ayut, Limpijumnong, Sukit, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shuangyu, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yan, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Shuxiang, Lu, Xiaoxu, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Luo, Fengjiao, Luo, Guang, Luo, Pengwei, Luo, Shu, Luo, Wuming, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Malyshkin, Yury, Mantovani, Fabio, Manzali, Francesco, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Marium, Sadia, Martellini, Cristina, Martin-Chassard, Gisele, Martini, Agnese, Mayer, Matthia, Mayilyan, Davit, Mednieks, Int, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Nguyen Thi, Minh Thuan, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Pan, Hsiao-Ru, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelliccia, Nicomede, Peng, Anguo, Peng, Haiping, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Piñeres Rico, Luis Felipe, Popov, Artyom, Poussot, Pascal, Pratumwan, Wathan, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Rajput, Muhammad Usman, Ranucci, Gioacchino, Raper, Neill, Re, Alessandra, Rebber, Henning, Rebii, Abdel, Ren, Bin, Ren, Jie, Ricci, Barbara, Robens, Marku, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Roth, Christian, Ruan, Xiangdong, Ruan, Xichao, Rujirawat, Saroj, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sanfilippo, Simone, Sangka, Anut, Sanguansak, Nuanwan, Sawangwit, Utane, Sawatzki, Julia, Sawy, Fatma, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shao, Zhuang, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Han, Steinmann, Jochen, Sterr, Tobia, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Tietzsch, Alexander, Tkachev, Igor, Tmej, Toma, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw, Tuve, Cristina, Ushakov, Nikita, van den Boom, Johanne, van Waasen, Stefan, Vanroyen, Guillaume, Vassilopoulos, Nikolao, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Moritz Corneliu, Volpe, Cristina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Kunyu, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Waqas, Muhammad, Watcharangkool, Apimook, Wei, Lianghong, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Liangjian, Wiebusch, Christopher, Wong, Steven Chan-Fai, Wonsak, Bjoern, Wu, Diru, Wu, Fangliang, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacque, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Taylor, Yan, Wenqi, Yan, Xiongbo, Yan, Yupeng, Yang, Anbo, Yang, Changgen, Yang, Chengfeng, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Yasin, Zafar, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yegin, Ugur, Yermia, Frédéric, Yi, Peihuai, Yin, Na, Yin, Xiangwei, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yuan, Ziyi, Yue, Baobiao, Zafar, Noman, Zambanini, Andre, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Feiyang, Zhang, Guoqing, Zhang, Haiqiong, Zhang, Honghao, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Tao, Zhang, Xiaomei, Zhang, Xuantong, Zhang, Xueyao, Zhang, Yan, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Fengyi, Zhao, Jie, Zhao, Rong, Zhao, Shujun, Zhao, Tianchi, Zheng, Dongqin, Zheng, Hua, Zheng, Minshan, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jiang, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Abusleme A., Adam T., Ahmad S., Ahmed R., Aiello S., Akram M., An F., An Q., Andronico G., Anfimov N., Antonelli V., Antoshkina T., Asavapibhop B., de Andre J.P.A.M., Auguste D., Babic A., Baldini W., Barresi A., Basilico D., Baussan E., Bellato M., Bergnoli A., Birkenfeld T., Blin S., Blum D., Blyth S., Bolshakova A., Bongrand M., Bordereau C., Breton D., Brigatti A., Brugnera R., Bruno R., Budano A., Buscemi M., Busto J., Butorov I., Cabrera A., Cai H., Cai X., Cai Y., Cai Z., Cammi A., Campeny A., Cao C., Cao G., Cao J., Caruso R., Cerna C., Chang J., Chang Y., Chen P., Chen P.-A., Chen S., Chen X., Chen Y.-W., Chen Y., Chen Z., Cheng J., Cheng Y., Chetverikov A., Chiesa D., Chimenti P., Chukanov A., Claverie G., Clementi C., Clerbaux B., Conforti Di Lorenzo S., Corti D., Cremonesi O., Dal Corso F., Dalager O., De La Taille C., Deng J., Deng Z., Depnering W., Diaz M., Ding X., Ding Y., Dirgantara B., Dmitrievsky S., Dohnal T., Dolzhikov D., Donchenko G., Dong J., Doroshkevich E., Dracos M., Druillole F., Du S., Dusini S., Dvorak M., Enqvist T., Enzmann H., Fabbri A., Fajt L., Fan D., Fan L., Fang J., Fang W., Fargetta M., Fedoseev D., Fekete V., Feng L.-C., Feng Q., Ford R., Formozov A., Fournier A., Gan H., Gao F., Garfagnini A., Giammarchi M., Giaz A., Giudice N., Gonchar M., Gong G., Gong H., Gornushkin Y., Gottel A., Grassi M., Grewing C., Gromov V., Gu M., Gu X., Gu Y., Guan M., Guardone N., Gul M., Guo C., Guo J., Guo W., Guo X., Guo Y., Hackspacher P., Hagner C., Han R., Han Y., Hassan M.S., He M., He W., Heinz T., Hellmuth P., Heng Y., Herrera R., Hor Y.K., Hou S., Hsiung Y., Hu B.-Z., Hu H., Hu J., Hu S., Hu T., Hu Z., Huang C., Huang G., Huang H., Huang W., Huang X., Huang Y., Hui J., Huo L., Huo W., Huss C., Hussain S., Ioannisian A., Isocrate R., Jelmini B., Jen K.-L., Jeria I., Ji X., Jia H., Jia J., Jian S., Jiang D., Jiang X., Jin R., Jing X., Jollet C., Joutsenvaara J., Jungthawan S., Kalousis L., Kampmann P., Kang L., Karaparambil R., Kazarian N., Khan W., Khosonthongkee K., Korablev D., Kouzakov K., Krasnoperov A., Kruth A., Kutovskiy N., Kuusiniemi P., Lachenmaier T., Landini C., Leblanc S., Lebrin V., Lefevre F., Lei R., Leitner R., Leung J., Li D., Li F., Li H., Li J., Li M., Li N., Li Q., Li R., Li S., Li T., Li W., Li X., Li Y., Li Z., Liang H., Liao J., Liebau D., Limphirat A., Limpijumnong S., Lin G.-L., Lin S., Lin T., Ling J., Lippi I., Liu F., Liu H., Liu J., Liu M., Liu Q., Liu R., Liu S., Liu X., Liu Y., Lokhov A., Lombardi P., Lombardo C., Loo K., Lu C., Lu H., Lu J., Lu S., Lu X., Lubsandorzhiev B., Lubsandorzhiev S., Ludhova L., Luo F., Luo G., Luo P., Luo S., Luo W., Lyashuk V., Ma B., Ma Q., Ma S., Ma X., Maalmi J., Malyshkin Y., Mantovani F., Manzali F., Mao X., Mao Y., Mari S.M., Marini F., Marium S., Martellini C., Martin-Chassard G., Martini A., Mayer M., Mayilyan D., Mednieks I., Meng Y., Meregaglia A., Meroni E., Meyhofer D., Mezzetto M., Miller J., Miramonti L., Montini P., Montuschi M., Muller A., Nastasi M., Naumov D.V., Naumova E., Navas-Nicolas D., Nemchenok I., Nguyen Thi M.T., Ning F., Ning Z., Nunokawa H., Oberauer L., Ochoa-Ricoux J.P., Olshevskiy A., Orestano D., Ortica F., Othegraven R., Pan H.-R., Paoloni A., Parmeggiano S., Pei Y., Pelliccia N., Peng A., Peng H., Perrot F., Petitjean P.-A., Petrucci F., Pilarczyk O., Pineres Rico L.F., Popov A., Poussot P., Pratumwan W., Previtali E., Qi F., Qi M., Qian S., Qian X., Qian Z., Qiao H., Qin Z., Qiu S., Rajput M.U., Ranucci G., Raper N., Re A., Rebber H., Rebii A., Ren B., Ren J., Ricci B., Robens M., Roche M., Rodphai N., Romani A., Roskovec B., Roth C., Ruan X., Rujirawat S., Rybnikov A., Sadovsky A., Saggese P., Sanfilippo S., Sangka A., Sanguansak N., Sawangwit U., Sawatzki J., Sawy F., Schever M., Schwab C., Schweizer K., Selyunin A., Serafini A., Settanta G., Settimo M., Shao Z., Sharov V., Shaydurova A., Shi J., Shi Y., Shutov V., Sidorenkov A., Simkovic F., Sirignano C., Siripak J., Sisti M., Slupecki M., Smirnov M., Smirnov O., Sogo-Bezerra T., Sokolov S., Songwadhana J., Soonthornthum B., Sotnikov A., Sramek O., Sreethawong W., Stahl A., Stanco L., Stankevich K., Stefanik D., Steiger H., Steinmann J., Sterr T., Stock M.R., Strati V., Studenikin A., Sun S., Sun X., Sun Y., Suwonjandee N., Szelezniak M., Tang J., Tang Q., Tang X., Tietzsch A., Tkachev I., Tmej T., Treskov K., Triossi A., Troni G., Trzaska W., Tuve C., Ushakov N., van den Boom J., van Waasen S., Vanroyen G., Vassilopoulos N., Vedin V., Verde G., Vialkov M., Viaud B., Vollbrecht M.C., Volpe C., Vorobel V., Voronin D., Votano L., Walker P., Wang C., Wang C.-H., Wang E., Wang G., Wang J., Wang K., Wang L., Wang M., Wang R., Wang S., Wang W., Wang X., Wang Y., Wang Z., Waqas M., Watcharangkool A., Wei L., Wei W., Wei Y., Wen L., Wiebusch C., Wong S.C.-F., Wonsak B., Wu D., Wu F., Wu Q., Wu Z., Wurm M., Wurtz J., Wysotzki C., Xi Y., Xia D., Xie X., Xie Y., Xie Z., Xing Z., Xu B., Xu C., Xu D., Xu F., Xu H., Xu J., Xu M., Xu Y., Yan B., Yan T., Yan W., Yan X., Yan Y., Yang A., Yang C., Yang H., Yang J., Yang L., Yang X., Yang Y., Yao H., Yasin Z., Ye J., Ye M., Ye Z., Yegin U., Yermia F., Yi P., Yin N., Yin X., You Z., Yu B., Yu C., Yu H., Yu M., Yu X., Yu Z., Yuan C., Yuan Y., Yuan Z., Yue B., Zafar N., Zambanini A., Zavadskyi V., Zeng S., Zeng T., Zeng Y., Zhan L., Zhang A., Zhang F., Zhang G., Zhang H., Zhang J., Zhang P., Zhang Q., Zhang S., Zhang T., Zhang X., Zhang Y., Zhang Z., Zhao F., Zhao J., Zhao R., Zhao S., Zhao T., Zheng D., Zheng H., Zheng M., Zheng Y., Zhong W., Zhou J., Zhou L., Zhou N., Zhou S., Zhou T., Zhou X., Zhu J., Zhu K., Zhu Z., Zhuang B., Zhuang H., Zong L., Zou J., Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), JUNO collaboration, The, Pedro Athayde Marcondes de André, João, Sohaib Hassan, Muhammad, Thuan Nguyen Thi, Minh, Pedro Ochoa-Ricoux, Juan, Felipe Piñeres Rico, Lui, Usman Rajput, Muhammad, Raphael Stock, Matthia, Cornelius Vollbrecht, Moritz, and Chan-Fai Wong, Steven
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Nuclear engineering ,Monte Carlo method ,Control (management) ,measurement methods ,FOS: Physical sciences ,QC770-798 ,Scintillator ,7. Clean energy ,01 natural sciences ,NO ,PE2_2 ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,ddc:530 ,Sensitivity (control systems) ,010306 general physics ,Physics ,JUNO ,liquid [scintillation counter] ,010308 nuclear & particles physics ,business.industry ,Detector ,Settore FIS/01 - Fisica Sperimentale ,radioactivity [background] ,suppression [background] ,Instrumentation and Detectors (physics.ins-det) ,Monte Carlo [numerical calculations] ,Nuclear power ,threshold [energy] ,sensitivity ,Neutrino Detectors and Telescopes (experiments) ,GEANT ,Neutrino ,business ,Energy (signal processing) - Abstract
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz in the default fiducial volume, above an energy threshold of 0.7 MeV., 35 pages, 12 figures
- Published
- 2021
- Full Text
- View/download PDF
24. A novel DCM-based NIR fluorescent probe for detecting ozone and its bioimaging in live cells
- Author
-
Chen Ling, Ruhui Li, Jinyang Zhang, Shihao Wang, Peng Wang, Tianguang Liu, Lili Xia, Shuaiwen Li, and Mengyuan Cui
- Subjects
Detection limit ,Ozone ,Chemistry ,High selectivity ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fluorescence ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,chemistry.chemical_compound ,Limit of Detection ,Biophysics ,Humans ,Linear correlation ,0210 nano-technology ,Instrumentation ,Spectroscopy ,Fluorescent Dyes ,HeLa Cells - Abstract
Nowadays, ozone has been widely applied in industry and medical therapies. However, excessive exposure to ozone can lead to lung dysfunction and many respiratory symptoms. As a member of reactive oxygen species (ROS), ozone was also involved in various physiology and pathology process. Given the fact of this, the effective detection of ozone in the atmosphere and biological system is of vital significance. Herein, we reported a novel dicyanomethylene-4H-pyran (DCM)-based fluorescent probe DCM-O3 with butenyl being the recognition moiety for monitoring ozone. The probe displayed high selectivity towards ozone, and its response towards ozone could be completed within 5 min under the optimal condition. Besides, a good linear correlation was obtained between the ozone concentrations (0–50 μM) and the corresponding fluorescent intensity at 560 nm, and the limit of detection (LOD) was calculated to be 6.2 × 10−7 M. Moreover, the probe DCM-O3 showed low cytotoxicity and was successfully applied to detect ozone in live cells. Given all the merits, the probe DCM-O3 could function as a robust tool for researchers to investigate ozone-related diseases in the complex biological environment.
- Published
- 2020
25. The occurrence of Pea enation mosaic virus 1 and Pea enation mosaic virus 2 from disease-affected pea fields in China
- Author
-
Chen Xiaojiao, Ruhui Li, Fan Li, Kehua Li, Heng Ming Luo, Liu Qinhai, Guanlin Tan, and Shu Han
- Subjects
food.ingredient ,Enation ,biology ,Mosaic virus ,food and beverages ,Plant Science ,Luteoviridae ,Bean yellow mosaic virus ,Pea enation mosaic virus ,biology.organism_classification ,Enamovirus ,Umbravirus ,Horticulture ,Tombusviridae ,food ,Agronomy and Crop Science - Abstract
Pea (Pisum sativum L.) is an economically important legume crop that is commonly used as dry beans, fresh peas, pods and shoots (Guo et al. 2009). Pea enation mosaic is an important virus disease of pea caused by two viruses in an obligate symbiosis, pea enation mosaic virus 1 (PEMV-1, Enamovirus, Luteoviridae) and pea enation mosaic virus 2 (PEMV-2, Umbravirus, Tombusviridae) (Hema et al. 2014). In November 2019, foliar yellow mosaic and vein enations symptoms were observed from pea plants in five fields of Honghe autonomous prefecture, Yunnan province, China. Incidence of symptomatic plants ranged from 20 to 40% and was distributed in both small and large fields. Leaves with typical virus-like symptoms were collected from five symptomatic pea plants in two fields and used for total RNA extraction. The five extracts of equimolar quantities were pooled into a sample and subjected to High Throughput Sequencing (HTS) by Illumina HiSeq system. Analyses of raw RNA reads were performed using CLC Genomics Workbench 12 (Qiagen). A total of 60,009,746 RNA reads were obtained from the sample, and de novo assembly of the reads using the CLC Genomics generated 88,105 contigs. BLASTN searches revealed the presence of contigs with high similarities to PEMV-1, PEMV-2, Pea seed-borne mosaic virus, and Bean yellow mosaic virus. To confirm the presence of PEMV-1 and PEMV-2 in the samples, two virus-specific primer pairs were designed based on the contig sequences obtained by HTS in this study. Primer pairs PEMV-1F/PEMV-1R (5'-ATGCCGACTAGATCGAAATC-3'/5'-TCAGAGGGAGGCATTCATTA-3') that flank the cp gene of PEMV-1 and PEMV-2F/PEMV-2R (5'-ATGACGATAATCATTAATG-3'/5'-TCACCCGTAGTGAGAGGCA-3') that target the ORF3 region of PEMV-2 were used to amplify the two viruses in RT-PCR. DNA fragments of the expected sizes (PEMV-1, 570 bp; PEMV-2, 693 bp) were amplified from all five samples. The RT-PCR products were cloned and sequenced. Sequence analysis showed that the 570-bp amplicon (MT481989) shared the highest nucleotide sequence identity of 98.95% with PEMV-1 (Z48507), while the 693-bp fragment (MT481990) had the highest nucleotide sequence identity of 97.4% with PEMV-2 isolate JKI (MK948534). One gram of the symptomatic leaves from each of the five plants was homogenized with 5 mL of 0.01 M phosphate-buffered saline (PBS buffer), pH 7.0. Each of the resulted saps was used to inoculate onto five healthy pea seedlings. A total of 25 healthy pea seedlings were inoculated, and 16 inoculated plants developed yellowing and mottling at 10 days post inoculation (dpi); no symptoms were observed on control plants inoculated only with PBS buffer. The formation of the typical enation was observed along the veins of lower side of the symptomatic leaves of the inoculated plants at 30 dpi. PEMV-1 and PEMV-2 infection were confirmed by RT-PCR assays using the specific primer pairs described above. Although the presence of the pea enation mosaic virus complex was suspected in China based on symptomatology (Brunt et al. 1997), to our knowledge, this is the first molecular confirmation of PEMV-1 and PEMV-2 occurrence in China. The co-infection of PEMV-1 and PEMV-2 usually cause severe yield losses; therefore, integration of detection and control measures is important in pea production regions where the two viruses occurred.
- Published
- 2020
26. Complete genome sequence of a novel citrus virus with characteristics of members of the family Tymoviridae
- Author
-
Liu, Yang, Song, Zhang, Shiqiang, Mei, Qiyan, Liu, Yan, Zhou, Ruhui, Li, and Mengji, Cao
- Subjects
Citrus ,Open Reading Frames ,Viral Proteins ,Whole Genome Sequencing ,RNA, Viral ,Amino Acid Sequence ,Genome, Viral ,Phylogeny ,Tymoviridae ,Plant Diseases - Abstract
A novel positive-stranded RNA virus provisionally named "citrus virus C" (CVC) was discovered in citrus trees displaying mottling symptoms. Its genome comprises 7,215 nucleotides (nt), excluding the 3' poly(A) tail, and contains two open reading frames (ORFs) that encode a replication-associated polyprotein (RP) and a putative coat protein (CP). The CVC genome contains a 16-nt 'marafibox', which is highly conserved in most viruses belonging to the genus Marafivirus of the same family. Sequence analysis suggested that the virus is most closely related to grapevine Red Globe virus (GRGV), which is yet to be officially classified in the family Tymoviridae. The sequence identities between CVC and GRGV in the whole genome (50.7%, nt) and CP (49.4% for amino acid, and 53.9% for nt) are lower than the thresholds (80% in the genome and 90% in the CP) for species demarcation in the family. Therefore, it is legitimate to propose that CVC is a member of new species in the family Tymoviridae.
- Published
- 2020
27. Virome of Camellia japonica: Discovery of and Molecular Characterization of New Viruses of Different Taxa in Camellias
- Author
-
Song Zhang, Liu Yang, Lisha Ma, Xin Tian, Ruhui Li, Changyong Zhou, and Mengji Cao
- Subjects
Microbiology (medical) ,food.ingredient ,Marafivirus ,lcsh:QR1-502 ,Emaravirus ,Genome ,Microbiology ,lcsh:Microbiology ,03 medical and health sciences ,food ,Human virome ,030304 developmental biology ,Idaeovirus ,Genetics ,virome ,0303 health sciences ,biology ,Phylogenetic tree ,030306 microbiology ,phylogenetic analysis ,food and beverages ,biology.organism_classification ,RT-PCR detection ,Badnavirus ,new viruses ,Camellia japonica ,next-generation sequencing - Abstract
Many species of the genus Camellia are native to China, and several species such as C. japonica have been cultivated as garden plants for over 1,000 years. Virus-like symptoms have been recorded for years. In this study, C. japonica plants with various leaf symptoms were observed in Jiangxi and Chongqing provinces. The species composition of potential viruses in the symptomatic plants was analyzed by next-generation sequencing of six libraries prepared from total RNAs of specimens from 10 trees. Five new viruses were discovered, and their genome sequences were determined. These viruses were tentatively named Camellia chlorotic ringspot viruses (CaCRSVs), Camellia yellow ringspot virus (CaYRSV), Camellia-associated badnavirus (CaBaV), and Camellia-associated marafivirus (CaMaV) based on comprehensive analyses. Among these viruses, CaYRSV, CaBaV, and CaMaV share similar genome organizations and clear sequence homology with known viruses in databases and could potentially be classified as new species of the genera Badnavirus, Idaeovirus, and Marafivirus, respectively. CaCRSVs comprise two distinct viruses, and each likely contains five genomic RNA segments that were found to be distantly related to viral RNAs of members in the genus Emaravirus (family Fimoviridae). The RNAs of CaCRSVs show conserved terminal sequences that differ markedly from those of emaraviral RNAs. These data, together with the phylogenetic analysis, suggest that the evolutionary status of CaCRSVs may represent a novel genus in the family Fimoviridae. In addition, two known viruses (geminivirus and blunervirus) and a mass of betaflexiviruses existing as heterogeneous mixtures were detected, and their roles in symptom formation were studied. Collectively, the information of the viral species and detection protocols that were developed can serve as a basis for better management of these viruses. Distinguishing the virus-related symptoms from genetic characteristics of C. japonica is also significant for breeding efforts.
- Published
- 2020
- Full Text
- View/download PDF
28. Virome of
- Author
-
Song, Zhang, Liu, Yang, Lisha, Ma, Xin, Tian, Ruhui, Li, Changyong, Zhou, and Mengji, Cao
- Subjects
RT-PCR detection ,virome ,new viruses ,phylogenetic analysis ,food and beverages ,next-generation sequencing ,Microbiology ,Camellia japonica ,Original Research - Abstract
Many species of the genus Camellia are native to China, and several species such as C. japonica have been cultivated as garden plants for over 1,000 years. Virus-like symptoms have been recorded for years. In this study, C. japonica plants with various leaf symptoms were observed in Jiangxi and Chongqing provinces. The species composition of potential viruses in the symptomatic plants was analyzed by next-generation sequencing of six libraries prepared from total RNAs of specimens from 10 trees. Five new viruses were discovered, and their genome sequences were determined. These viruses were tentatively named Camellia chlorotic ringspot viruses (CaCRSVs), Camellia yellow ringspot virus (CaYRSV), Camellia-associated badnavirus (CaBaV), and Camellia-associated marafivirus (CaMaV) based on comprehensive analyses. Among these viruses, CaYRSV, CaBaV, and CaMaV share similar genome organizations and clear sequence homology with known viruses in databases and could potentially be classified as new species of the genera Badnavirus, Idaeovirus, and Marafivirus, respectively. CaCRSVs comprise two distinct viruses, and each likely contains five genomic RNA segments that were found to be distantly related to viral RNAs of members in the genus Emaravirus (family Fimoviridae). The RNAs of CaCRSVs show conserved terminal sequences that differ markedly from those of emaraviral RNAs. These data, together with the phylogenetic analysis, suggest that the evolutionary status of CaCRSVs may represent a novel genus in the family Fimoviridae. In addition, two known viruses (geminivirus and blunervirus) and a mass of betaflexiviruses existing as heterogeneous mixtures were detected, and their roles in symptom formation were studied. Collectively, the information of the viral species and detection protocols that were developed can serve as a basis for better management of these viruses. Distinguishing the virus-related symptoms from genetic characteristics of C. japonica is also significant for breeding efforts.
- Published
- 2020
29. Development of a sensitive and reliable reverse transcription droplet digital PCR assay for the detection of citrus yellow vein clearing virus
- Author
-
Mengji Cao, Lei Chen, Yanhui Zhang, Changyong Zhou, Xue Li, Yan Zhou, Yingjie Liu, Wanxia Shen, Qin Wang, Yingli Wang, and Ruhui Li
- Subjects
China ,Citrus ,0303 health sciences ,Reverse Transcriptase Polymerase Chain Reaction ,030306 microbiology ,General Medicine ,Biology ,Sensitivity and Specificity ,Quantitative correlation ,Virology ,Reverse transcriptase ,03 medical and health sciences ,Citrus yellow vein clearing virus ,Flexiviridae ,Digital polymerase chain reaction ,Pathogen ,Plant Diseases ,030304 developmental biology - Abstract
In 2009, a new viral disease of citrus caused by citrus yellow vein clearing virus (CYVCV) was first discovered in China. CYVCV is considered to be the most serious pathogen affecting lemon production. In this study, a sensitive and reliable reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay was developed to detect and quantify CYVCV without references. The specificity of the assay was demonstrated by its failure to amplify other relevant citrus viruses. The quantitative linearity, sensitivity and accuracy of RT-ddPCR for detecting CYVCV were compared to those of real-time RT-PCR. The results showed that both methods had a high degree of linearity (R2 = 0.9776) and quantitative correlation. Furthermore, RT-ddPCR was found to be 100 times more sensitive than real-time RT-PCR, and it can therefore be used to detect CYVCV in individual arthropods. In summary, the results demonstrated that the RT-ddPCR assay is a promising approach for quantitative detection of CYVCV with high precision and accuracy.
- Published
- 2018
- Full Text
- View/download PDF
30. Molecular characterization and detection of a new closterovirus identified from blackcurrant by high-throughput sequencing
- Author
-
Luping Zheng, Liping Wu, Ruhui Li, Joseph Postman, and Huawei Liu
- Subjects
0301 basic medicine ,Closterovirus ,viruses ,030106 microbiology ,Genome, Viral ,Biology ,Genome ,DNA sequencing ,03 medical and health sciences ,Ribes ,Virology ,Genetics ,HSP70 Heat-Shock Proteins ,ORFS ,Molecular Biology ,Peptide sequence ,Phylogeny ,Contig ,Nucleic acid sequence ,Molecular Sequence Annotation ,General Medicine ,biology.organism_classification ,Open reading frame ,030104 developmental biology - Abstract
Two large contigs with high sequence similarities to several closteroviruses were identified by high-throughput sequencing from a blackcurrant plant. The complete genome of this new virus was determined to be 17,320 nucleotides. Its genome contains ten open reading frames (ORF) that include, in the 5'-3' direction, a large ORF encoding a putative viral polyprotein (ORF 1a) and nine ORFs that encode RNA-dependent RNA polymerase (RdRp, ORF 1b), p6 (ORF 2), heat shock protein 70-like protein (Hsp70h, ORF 3), Hsp-90-like protein (p61, ORF 4), CP minor (ORF 5), CP (ORF 6), p17 (ORF 7), p11 (ORF 8), and p26 (ORF 9), respectively. BCCV-1 shares nucleotide sequence identities of 43-45% with other 9 closteroviruses at genome sequences. The amino acid sequence identities between BCCV-1 and the closteroviruses were 49-55% (RdRp), 37-41% (Hsp70h), 19-33% (p61), 26-38% (CPm), and 19-28% (CP), respectively. Phylogenetic analysis of Hsp70h sequences placed the new virus with members of genus Closterovirus in the same group. The results indicate that this new virus, which is provisionally named as Blackcurrant closterovirus 1, should represent a new species of the genus Closterovirus. A RT-PCR was developed and used to detect BCCV-1 in more germplasm accessions of Ribes spp.
- Published
- 2018
- Full Text
- View/download PDF
31. Simultaneous detection and differentiation of three Potyviridae viruses in sweet potato by a multiplex TaqMan real time RT-PCR assay
- Author
-
Ruhui Li, Fan Li, Lingling Pu, J. A. Abad, and Pingxiu Lan
- Subjects
0106 biological sciences ,0301 basic medicine ,China ,Sweet potato latent virus ,Potyvirus ,Biology ,Real-Time Polymerase Chain Reaction ,Sensitivity and Specificity ,01 natural sciences ,Virus ,03 medical and health sciences ,Virology ,TaqMan ,Multiplex ,Ipomoea batatas ,DNA Primers ,Plant Diseases ,Potyviridae ,Sweet potato mild mottle virus ,food and beverages ,biology.organism_classification ,Molecular biology ,030104 developmental biology ,Real-time polymerase chain reaction ,Primer (molecular biology) ,Multiplex Polymerase Chain Reaction ,010606 plant biology & botany - Abstract
A multiplex TaqMan real time RT-PCR was developed for detection and differentiation of Sweet potato virus G , Sweet potato latent virus and Sweet potato mild mottle virus in one tube. Amplification and detection of a fluorogenic cytochrome oxidase gene was included as an internal control. The assay was compared with a multiplex RT-PCR developed in the initial study for the detection and differentiation of the three viruses and host 18S rRNA. Primers and/or probes of the two assays were designed from conserved regions of each virus. The two assays were optimized for primers/probes and primer concentrations and thermal cycling conditions. Sensitivity and specificity of the assays were compared each other and with other assay. Both assays were evaluated by 74 field samples original from five different provinces of China. Results showed that the TaqMan real time RT-PCR offered rapid, sensitive, effective and reliable for the simultaneous detection and differentiation of the three viruses in sweet potato plants. The assay will be useful to quarantine and certification programs and virus surveys when large numbers of samples are tested.
- Published
- 2018
- Full Text
- View/download PDF
32. Molecular characterization of a novel rhabdovirus infecting blackcurrant identified by high-throughput sequencing
- Author
-
Joseph Postman, Liping Wu, T. Yang, Huawei Liu, and Ruhui Li
- Subjects
0106 biological sciences ,0301 basic medicine ,food.ingredient ,Nucleorhabdovirus ,viruses ,Genome, Viral ,Biology ,01 natural sciences ,Genome ,DNA sequencing ,Open Reading Frames ,03 medical and health sciences ,Ribes ,food ,Rhabdoviridae Infections ,Virology ,Phylogeny ,Plant Diseases ,Genomic organization ,Sequence (medicine) ,Genetics ,Whole genome sequencing ,Contig ,Nucleic acid sequence ,High-Throughput Nucleotide Sequencing ,food and beverages ,General Medicine ,030104 developmental biology ,RNA, Viral ,Rhabdoviridae ,010606 plant biology & botany - Abstract
A large contig with sequence similarities to several nucleorhabdoviruses was identified by high-throughput sequencing analysis from a black currant (Ribes nigrum L.) cultivar. The complete genome sequence of this new nucleorhabdovirus is 14,432 nucleotides long. Its genomic organization is very similar to those of unsegmented plant rhabdoviruses, containing six open reading frames in the order 3'-N-P-P3-M-G-L-5. The virus, which is provisionally named "black currant-associated rhabdovirus", is 41-52% identical in its genome nucleotide sequence to other nucleorhabdoviruses and may represent a new species in the genus Nucleorhabdovirus.
- Published
- 2018
- Full Text
- View/download PDF
33. Complete genome sequence of Paris mosaic necrosis virus, a distinct member of the genus Potyvirus
- Author
-
Yalin Zhou, Pingxiu Lan, Ruhui Li, Fan Li, Jurun Zhao, Y. Y. Li, Qinchan Liao, and Dingcai Shen
- Subjects
0106 biological sciences ,0301 basic medicine ,viruses ,Potyvirus ,Genome, Viral ,Biology ,01 natural sciences ,Genome ,Virus ,Open Reading Frames ,03 medical and health sciences ,Genome Size ,Virology ,Amino Acid Sequence ,Peptide sequence ,Phylogeny ,Plant Diseases ,Polyproteins ,Whole genome sequencing ,Genetics ,Sequence Homology, Amino Acid ,Phylogenetic tree ,High-Throughput Nucleotide Sequencing ,RNA ,General Medicine ,biology.organism_classification ,Open reading frame ,030104 developmental biology ,RNA, Viral ,Melanthiaceae ,010606 plant biology & botany - Abstract
The complete genomic sequence of a novel potyvirus was determined from Paris polyphylla var. yunnanensis. Its genomic RNA consists of 9,660 nucleotides (nt) excluding the 3'-terminal poly (A) tail, containing the typical open reading frame (ORF) of potyviruses and encoding a putative large polyprotein of 3030 amino acids. The virus shares 53.9-70.1% nt sequence identity and 43.9-73.2% amino acid sequence identity with other viruses classified within the genus Potyvirus. Proteolytic cleavage sites and conserved motifs of the potyviruses were identified in the polyprotein and within individual proteins. Phylogenetic analysis indicated that the virus is most closely related to members of the BCMV subgroup. The results suggest that the virus should be classified as a novel species within the genus Potyvirus, which we tentatively name "Paris mosaic necrosis virus".
- Published
- 2017
- Full Text
- View/download PDF
34. Molecular characterization of a novel luteovirus infecting apple by next-generation sequencing
- Author
-
Xin Tian, Yun-Qi Yu, Changyong Zhou, Ruhui Li, Mengji Cao, Fang Ren, Song Zhang, Pan Shen, and Ping Li
- Subjects
0301 basic medicine ,Luteovirus ,Gene Expression ,Genome, Viral ,Genome ,DNA sequencing ,Open Reading Frames ,Viral Proteins ,03 medical and health sciences ,Genome Size ,Virology ,Amino Acid Sequence ,ORFS ,Genome size ,Peptide sequence ,Phylogeny ,Plant Diseases ,Whole genome sequencing ,Sequence Homology, Amino Acid ,biology ,High-Throughput Nucleotide Sequencing ,RNA virus ,General Medicine ,RNA-Dependent RNA Polymerase ,biology.organism_classification ,030104 developmental biology ,Malus ,RNA, Viral - Abstract
A new single-stranded positive-sense RNA virus, which shares the highest nucleotide (nt) sequence identity of 53.4% with the genome sequence of cherry-associated luteovirus South Korean isolate (ChALV-SK, genus Luteovirus), was discovered in this work. It is provisionally named apple-associated luteovirus (AaLV). The complete genome sequence of AaLV comprises 5,890 nt and contains eight open reading frames (ORFs), in a very similar arrangement that is typical of members of the genus Luteovirus. When compared with other members of the family Luteoviridae, ORF1 of AaLV was found to encompass another ORF, ORF1a, which encodes a putative 32.9-kDa protein. The ORF1-ORF2 region (RNA-dependent RNA polymerase, RdRP) showed the greatest amino acid (aa) sequence identity (59.7%) to that of cherry-associated luteovirus Czech Republic isolate (ChALV-CZ, genus Luteovirus). The results of genome sequence comparisons and phylogenetic analysis, suggest that AaLV should be a member of a novel species in the genus Luteovirus. To our knowledge, it is the sixth member of the genus Luteovirus reported to naturally infect rosaceous plants.
- Published
- 2017
- Full Text
- View/download PDF
35. Molecular characterization and phylogenetic analysis of Citrus viroid VI variants from citrus in China
- Author
-
Ruhui Li, Zhongan Li, Mengji Cao, Qiong Wu, Fangyun Yang, Changyong Zhou, and Xuefeng Wang
- Subjects
0106 biological sciences ,0301 basic medicine ,Genetic diversity ,biology ,Phylogenetic tree ,Viroid ,food and beverages ,Sequence alignment ,Plant Science ,Horticulture ,biology.organism_classification ,01 natural sciences ,03 medical and health sciences ,030104 developmental biology ,Hop stunt viroid ,Complementary DNA ,Botany ,Clade ,Agronomy and Crop Science ,010606 plant biology & botany ,Reference genome - Abstract
Citrus viroid VI (CVd-VI) is a viroid originally found from citrus and persimmon in Japan. We report here the identification and molecular characterization of CVd-VI from four growth regions of China. A total of 90 cDNA clones from nine citrus cultivars were sequenced. The sequence homologies of the Chinese CVd-VI and the reference sequence (NC_004359) vary from 94.2% to 97%. The sequence homologies among the Chinese isolates were up to 95.2%. Phylogenetic analysis of the 23 CVd-VI variants from China and Japan showed that they were grouped into two clades, one with 20 citrus variants and another with three persimmon variants, regardless of the geographic origins. Therefore, as with Hop stunt viroid, CVd-VI could also be divided into two types, citrus and persimmon types. Sequence alignment showed that most nucleotide changes between the two clades occurred in the P, V and TL domains, and analysis indicated that these mutations influenced the predicted secondary structures under minimum energy.
- Published
- 2017
- Full Text
- View/download PDF
36. First identification and molecular characterization of a new badnavirus infecting camellia
- Author
-
Luping Zheng, Liping Wu, Huawei Liu, Phil Normandy, Mengji Cao, and Ruhui Li
- Subjects
0303 health sciences ,Phylogenetic tree ,030306 microbiology ,viruses ,Nucleic acid sequence ,Camellia ,General Medicine ,Genome, Viral ,Biology ,Genome ,Virology ,Virus ,Badnavirus ,03 medical and health sciences ,Open Reading Frames ,Viral Proteins ,Phylogenetics ,ORFS ,Phylogeny ,030304 developmental biology ,Genomic organization ,Plant Diseases - Abstract
A new badnavirus was identified in an ornamental camellia tree with yellow mottle symptom. The complete circular double-stranded DNA genome of this virus was found to consist of 8,203 bp. Its genome organization is typical of badnaviruses, containing three open reading frames (ORFs). ORFs 1 and 2 encode putative proteins with unknown functions. ORF3 encodes a large polyprotein that contains almost all of the conserved domains of badnaviruses. The virus shares 55-62% nucleotide sequence identities with other badnaviruses in the RT+RNase H region. Phylogenetic analyses placed it in group I of the genus Badnavirus. Therefore, this virus, which is tentatively named "camellia Lemon Glow virus", should represent a new species of the genus Badnavirus. This virus was found to be present in approximately a quarter of camellia trees tested.
- Published
- 2019
37. Discovery of Four Novel Viruses Associated with Flower Yellowing Disease of Green Sichuan Pepper (Zanthoxylum armatum) by Virome Analysis
- Author
-
Mengji Cao, Song Zhang, Min Li, Dong Peng, Li Shanrong, Ruhui Li, Yingjie Liu, Kuang Mi, and Yan Zhou
- Subjects
0106 biological sciences ,0301 basic medicine ,RNA viruses ,food.ingredient ,Nucleorhabdovirus ,Population ,RT-PCR ,lcsh:QR1-502 ,nucleorhabdovirus ,Luteoviridae ,01 natural sciences ,Enamovirus ,lcsh:Microbiology ,03 medical and health sciences ,food ,Virology ,Secoviridae ,Human virome ,idaeovirus ,small RNA ,education ,Idaeovirus ,Genetics ,education.field_of_study ,biology ,enamovirus ,food and beverages ,high-throughput sequencing ,biology.organism_classification ,nepovirus ,030104 developmental biology ,Infectious Diseases ,Nepovirus ,RNA silencing ,transcriptome ,010606 plant biology & botany - Abstract
An emerging virus-like flower yellowing disease (FYD) of green Sichuan pepper (Zanthoxylum armatum v. novemfolius) has been recently reported. Four new RNA viruses were discovered in the FYD-affected plant by the virome analysis using high-throughput sequencing of transcriptome and small RNAs. The complete genomes were determined, and based on the sequence and phylogenetic analysis, they are considered to be new members of the genera Nepovirus (Secoviridae), Idaeovirus (unassigned), Enamovirus (Luteoviridae), and Nucleorhabdovirus (Rhabdoviridae), respectively. Therefore, the tentative names corresponding to these viruses are green Sichuan pepper-nepovirus (GSPNeV), -idaeovirus (GSPIV), -enamovirus (GSPEV), and -nucleorhabdovirus (GSPNuV). The viral population analysis showed that GSPNeV and GSPIV were dominant in the virome. The small RNA profiles of these viruses are in accordance with the typical virus-plant interaction model for Arabidopsis thaliana. Rapid and sensitive RT-PCR assays were developed for viral detection, and used to access the geographical distributions. The results revealed a correlation between GSPNeV and the FYD. The viruses pose potential threats to the normal production of green Sichuan pepper in the affected areas due to their natural transmission and wide spread in fields. Collectively, our results provide useful information regarding taxonomy, transmission and pathogenicity of the viruses as well as management of the FYD.
- Published
- 2019
38. Alleviation of trigeminal neuropathic pain by electroacupuncture: the role of hyperpolarization-activated cyclic nucleotide-gated channel protein expression in the Gasserian ganglion
- Author
-
Jason T Doheny, Liuyue Yang, Ruhui Li, Jinsheng Yang, Jianren Mao, Lucy Chen, Zerong You, Weihua Ding, and Shiqian Shen
- Subjects
Male ,Electroacupuncture ,medicine.medical_treatment ,Pharmacology ,Protein expression ,Rats, Sprague-Dawley ,Acupuncture ,medicine ,Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels ,Animals ,Humans ,Potential mechanism ,business.industry ,Cyclic-Nucleotide Gated Channel ,General Medicine ,Hyperpolarization (biology) ,Trigeminal Neuralgia ,Ganglion ,Rats ,medicine.anatomical_structure ,Complementary and alternative medicine ,Trigeminal Ganglion ,Neuropathic pain ,Neurology (clinical) ,business ,psychological phenomena and processes - Abstract
Introduction: The aim of this study was to examine the effect of electroacupuncture (EA) on trigeminal neuropathic pain in rats and explore the potential mechanism underlying the putative therapeutic effect of EA. Methods: Trigeminal neuropathic pain behavior was induced in rats by unilateral chronic constriction injury of the distal infraorbital nerve (dIoN-CCI). EA was administered at ST2 ( Sibai) and Jiachengjiang. A total of 60 Sprague Dawley rats were divided into the following four groups ( n = 15 per group) to examine the behavioral outcomes after surgery and/or EA treatment: sham (no ligation); dIoN-CCI (received isoflurane only, without EA treatment); dIoN-CCI+EA-7d (received EA treatment for 7 days); and dIoN-CCI+EA-14d (received EA treatment for 14 days). Both evoked and spontaneous nociceptive behaviors were measured. Of these, 12 rats ( n = 4 from sham, dIoN-CCI, and dIoN-CCI+EA-14d groups, respectively) were used to analyze protein expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel in the Gasserian ganglion (GG) by immunohistochemistry. Results: dIoN-CCI rats exhibited mechanical allodynia and increased face-grooming activity that lasted at least 35 days. EA treatment reduced mechanical allodynia and face-grooming in dIoN-CCI rats. Overall, 14 days of EA treatment produced a prolonged anti-nociceptive effect as compared to 7-day EA treatment. The counts of HCN1 and HCN2 immunopositive puncta were increased in the ipsilateral GG in dIoN-CCI rats and were reduced by 14 days of EA treatment. Discussion: EA treatment relieved trigeminal neuropathic pain in dIoN-CCI rats, and this effect was dependent on the duration of EA treatment. The downregulation of HCN expression may contribute to the anti-nociceptive effect of EA in this rat model of trigeminal neuropathic pain.
- Published
- 2019
39. Molecular characterization of a new badnavirus infecting green Sichuan pepper (Zanthoxylum schinifolium)
- Author
-
Min Xu, Jiaxing Wu, Dong Peng, Ruhui Li, Mengji Cao, Yan Zhou, Zhiyou Xuan, and Song Zhang
- Subjects
Zanthoxylum ,Sequence analysis ,viruses ,Sequence Homology ,Genome, Viral ,Biology ,Genome ,Virus ,03 medical and health sciences ,Open Reading Frames ,Virology ,Pepper ,Badnavirus ,030304 developmental biology ,Plant Diseases ,0303 health sciences ,Phylogenetic tree ,030306 microbiology ,Nucleic acid sequence ,General Medicine ,DNA ,Sequence Analysis, DNA ,Phylogeography ,DNA, Viral ,DNA, Circular ,Zanthoxylum schinifolium - Abstract
A new virus with a circular double-stranded DNA genome was discovered in green Sichuan pepper with vein clearing symptoms. Its complete genome of 8,014 bp contains three open reading frames (ORF) on the plus strand, which is typical of members of the genus Badnavirus in the family Caulimoviridae. Sequence comparisons revealed that the new virus has the highest nucleotide sequence identity with grapevine vein-clearing virus (GVCV). In particular, the identity of the two viruses in the ORF3 RT-RNase H region is 71.9%, which is below the species demarcation cutoff of 80% for badnaviruses. Phylogenetic analysis also placed the new virus with GVCV in a cluster. The virus was tentatively named “green Sichuan pepper vein clearing-associated virus” (GSPVCaV). The geographical distribution and genetic diversity of GSPVCaV were studied. Another isolate was found to be highly divergent.
- Published
- 2019
40. Comparison of Diagnostic Techniques for Detecting Tomato Infectious Chlorosis Virus
- Author
-
J. E. Duffus, H.-Y. Liu, G. C. Wisler, and Ruhui Li
- Subjects
Antiserum ,biology ,medicine.diagnostic_test ,fungi ,food and beverages ,Dot blot ,Plant Science ,biology.organism_classification ,Virology ,Virus ,law.invention ,Western blot ,law ,medicine ,Closterovirus ,Closteroviridae ,Agronomy and Crop Science ,Solanaceae ,Polymerase chain reaction - Abstract
A polyclonal antiserum prepared against purified virions of tomato infectious chlorosis virus (TICV) was used to evaluate serological tests for its detection, to determine its distribution in infected plants, to study relationships among isolates of this virus, and to detect it in field samples. A cRNA probe representing TICV RNA 1 and RNA 2 was used in dot blot hybridization tests. A reverse transcriptase-polymerase chain reaction (RT-PCR) assay was also developed for detection of TICV isolates. The comparative study of these four techniques indicated that RT-PCR was 100-fold more sensitive than enzyme-linked immunosorbent assay (ELISA), Western blot, and dot blot hybridization assays for TICV detection. TICV was detected in leaf, stem, flower, and root tissues of the infected tomato plants. However, the virus was not uniformly distributed throughout the infected tomato plants, and the highest viral concentration was observed in fully developed young tomato leaves at the onset of yellowing symptoms. The virus was detected by indirect ELISA, Western blot, dot blot hybridization, and RT-PCR assays in laboratory-infected tomato, tomatillo, potato, and Nicotiana clevelandii and in naturally infected tomato, petunia, and Ranunculus sp. plants obtained from commercial sources. These tests indicate that there are apparently no detectable serological or nucleic acid differences among four TICV isolates obtained from Orange and Yolo Counties of California or from North Carolina or Italy.
- Published
- 2019
41. Characterization of three new viruses of the family Betaflexiviridae associated with camellia ringspot disease
- Author
-
Mengji Cao, Liping Wu, Ruhui Li, Huawei Liu, and Luping Zheng
- Subjects
Cancer Research ,food.ingredient ,Genome, Viral ,Biology ,Genome ,03 medical and health sciences ,food ,Virology ,Phylogeny ,030304 developmental biology ,Variegation ,Genomic organization ,Hybrid ,Plant Diseases ,Whole genome sequencing ,Genetics ,0303 health sciences ,Capillovirus ,Phylogenetic tree ,Whole Genome Sequencing ,030306 microbiology ,Virion ,food and beverages ,Camellia ,Genomics ,Infectious Diseases ,Phenotype ,Seeds ,Flexiviridae - Abstract
Foliar chlorotic and necrotic ringspots of different sizes were observed in many ornamental camellia (Camellia spp.) species and cultivars with or without variegation symptoms. In this study, flexuous, filamentous virions of approximately 680–780 nm long were observed by electron microscopy in sap of camellia trees with chlorotic ringspots. Five large viral contigs were identified by high-throughput sequencing technology, and complete genome sequences of them were determined. Sequence analyses show that these five isolates represent three novel viruses, two in the genus Prunevirus, one in the genus Capillovirus. The genome organization of the two camellia pruneviruses resembles that of pruneviruses but does not contain the nucleic acid-binding protein (NABP) at the 3′-terminal region. They share 66.5–66.8% with each other and 51.9–58.6% with the known pruneviruses at the genome sequence level. The genome of the camellia capillovirus contains an additional NABP at the 3′-terminus when compared to those of Capillovirus. The genomes of the two capillovirus variants are 72.7% identical to each other and 42.1–48.4% to the known capilloviruses. Phylogenetic analyses support these viruses are new members of either Prunevirus or Capillovirus. The two pruneviruses are tentatively named as camellia ringspot associated virus 1 (CRSaV-1) and CRSaV-2, and the capillovirus is named as CRSaV-3. Infections of these viruses were common in camellia species, cultivars and hybrids. The viruses were also detected in seedlings from seeds collected from two camellia trees, indicating that they are seed transmissible.
- Published
- 2019
42. First Report of a Begomovirus Infecting Sweetpotato in Kenya
- Author
-
Christopher A. Clark, Rodrigo A. Valverde, Mary Hoy, Suzanne S. Hurtt, Ruhui Li, Don R. LaBonte, and Douglas W. Miano
- Subjects
Germplasm ,Chlorosis ,biology ,fungi ,Begomovirus ,food and beverages ,Plant Science ,Sweet potato feathery mottle virus ,biology.organism_classification ,Ipomoea ,Horticulture ,Plant virus ,GenBank ,Botany ,Leaf curl ,Agronomy and Crop Science - Abstract
Previous surveys for viruses in sweetpotatoes (Ipomoea batatas) in Africa did not assay for the presence of begomoviruses such as Sweet potato leaf curl virus (SPLCV), which have been found recently in the Americas and Asia. Symptomatic sweetpotato plants, including some with leaf curling symptoms similar to those observed in SPLCV-infected sweet-potato plants (2), were collected from a germplasm collection plot at Kakamega Research Station in Western Kenya during February 2005. Whiteflies, the vectors for begomoviruses, were observed in the same plots. Ipomoea setosa plants graft-inoculated with scions from the symptomatic sweetpotato developed leaf curl, leaf roll, interveinal chlorosis, and stunting symptoms similar to those caused by infection with SPLCV alone or in combination with Sweet potato feathery mottle virus. Total DNA was isolated from 10 I. setosa plants using the GenElute Plant Genomic DNA Kit (Sigma-Aldrich Inc., St. Louis, MO). Sweetpotato cuttings from 39 clones, selected from the Kenyan germplasm collection for their resistance or susceptibility to sweetpotato virus disease (SPVD), were sent to the Plant Germplasm Quarantine Office of USDA-ARS. The cuttings were planted in a greenhouse. Total DNA was extracted from sweetpotato leaves 1 month later using a cetyltrimethylammoniumbromide (CTAB) extraction method (1). Degenerate primers SPG1/SPG2, developed for PCR detection of begomoviruses (1), amplified a 912-bp DNA fragment from 3 of 10 DNA extracts from I. setosa and 5 of 39 sweetpotato plants held in quarantine. The primers anneal to regions of open reading frame (ORF) AC2 and ORF AC1 that are highly conserved in begomoviruses infecting sweetpotato. SPLCV-specific primers PW285-1/PW285-2 (2) amplified a 512-bp DNA fragment of ORF AC1 from seven samples (two from I. setosa and five from I. batatas). Amplicons from three independent PCR assays of two samples and single PCR assays of four additional samples were cloned into the pGEM-T Easy vector. Clone inserts were sequenced, and compared with sequences deposited in GenBank using the basic local alignment search tool (BLAST). Sequences were closely related to SPLCV (GenBank Accession No. AF104036) with nucleotide sequence identities varying from 93% (GenBank Accession No. DQ361004) to 97% (GenBank Accession No. DQ361005). The presence of the virus poses a challenge to the dissemination of planting materials in the region because begomovirus-infected plants often do not show symptoms. To our knowledge, this is the first report of a begomovirus infecting sweetpotato in Kenya or the East African Region. References: (1) R. Li et al. Plant Dis. 88:1347, 2004. (2) P. Lotrakul et al. Plant Dis. 82:1253, 1998.
- Published
- 2019
43. First Report of Tomato chlorotic spot virus Infecting Tomatoes in Ohio
- Author
-
Fulya Baysal-Gurel, Ruhui Li, Kai-Shu Ling, and Sally A. Miller
- Subjects
biology ,Plant Science ,Tospovirus ,biology.organism_classification ,medicine.disease_cause ,Virus ,Horticulture ,Agronomy ,Plant virus ,Infestation ,Ornamental plant ,medicine ,Transplanting ,Solanum ,Impatiens necrotic spot virus ,Agronomy and Crop Science - Abstract
Virus-like symptoms including deformation, discoloration, and necrotic ringspots on green and red fruits of tomato (Solanum lycopersicum L. cv. Big Dena) were observed in a 400 m2 commercial high tunnel in Wayne Co., Ohio, in July and August 2013. No symptoms were observed on leaves. Incidence of symptomatic fruits was approximately 15%. Tomato seedlings transplanted into the high tunnel were produced in a greenhouse containing ornamental plants. The grower observed high levels of thrips infestation in the tomato seedlings prior to transplanting. A tospovirus was suspected as a possible causal agent. Four symptomatic fruits were tested using immunostrip tests for Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) (Agdia, Inc., Elkhart, IN), a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for Groundnut ringspot virus (GRSV)/Tomato chlorotic spot virus (TCSV) (Agdia, Inc., Elkhart, IN), and DAS-ELISA for TCSV (AC Diagnostics Inc., Fayetteville, AR). All of the symptomatic fruits tested negative with Agdia immunostrips and positive with the Agdia and AC Diagnostics DAS-ELISAs. Total RNA was extracted from one ELISA-positive sample using TRIZOL Reagent (Life Technologies, Carlsbad, CA) and tested in RT-PCR using GRSV- or TCSV-specific primers (2). An expected RT-PCR product was generated using primers derived from TCSV S-RNA (JAP885, 5′-CTCGGTTTTCTGCTTTTC-3′ and JAP886, 5′CGGACAGGCTGGAGAAATCG3′) (~290 bp) but not when using primers specific to GRSV S-RNA (JAP887, 5′-CGTATCTGAGGATGTTGAGT-3′ and JAP888, 5′-GCTAACTCCTTGTTCTTTTG-3′). The 290-bp RT-PCR product was cloned using a TOPO TA cloning kit (Life Technologies, Grand Island, NY), and six clones were sequenced. Sequences from three clones were identical to a consensus sequence of a 292-bp fragment covering part of the TCSV nucleocapsid gene (GenBank Accession No. KJ744213). Sequences of the remaining three clones contained one, two, or three nucleotide mutations. To confirm the presence of TCSV in this sample, two newly designed primers flanking the entire nucleocapsid protein gene (TCSV-F1, 5′-AGTATTATGCATCTATAGATTAGCACA-3′ and TCSV-R1, 5′-ACAAATCATCACATTGCCAGGA-′) were used in RT-PCR to generate an expected 948-bp product. Upon cloning and sequencing, this fragment was shown to contain a full nucleocapsid protein gene of TCSV (GenBank Accession No. KM610235). The fragment contained a sequence identical to the first 292-bp RT-PCR product. BLASTn analysis (National Center for Biotechnology Information database) showed that the large fragment sequence had 98% nucleotide sequence identity to the TCSV Florida isolate (GenBank Accession No. JX244196) and 94% to the TCSV Physalis isolate (GenBank Accession No. JQ034525). Tobacco plants were inoculated mechanically with sap from symptomatic tomato fruits. Necrotic local lesions developed, and the presence of TCSV was confirmed using AC Diagnostics' DAS-ELISA. TCSV has been reported in Brazil (1), Puerto Rico (3), and Florida (2). To our knowledge, this is the first report of TCSV infecting tomatoes in Ohio. Because TCSV is transmitted by thrips and has a broad host range, this emerging virus could pose a significant threat to the U.S. vegetable industry. References: (1) A. Colariccio et al. Fitopatol. Bras. 20:347, 1995. (2) A. Londoño et al. Trop. Plant Pathol. 37:333, 2012. (3) C. G. Webster et al. Plant Health Progress doi:10.1094/PHP-2013-0812-01-BR, 2013.
- Published
- 2019
44. Molecular characterization of a novel luteovirus from peach identified by high-throughput sequencing
- Author
-
Huawei Liu, Ruhui Li, M. Bateman, Z. Liu, and Liping Wu
- Subjects
Prunus persica ,0106 biological sciences ,0301 basic medicine ,Genetics ,Contig ,Luteovirus ,High-Throughput Nucleotide Sequencing ,Genomics ,General Medicine ,Biology ,biology.organism_classification ,01 natural sciences ,Genome ,Virology ,DNA sequencing ,03 medical and health sciences ,Open reading frame ,030104 developmental biology ,Phylogenetics ,RNA, Viral ,Phylogeny ,010606 plant biology & botany ,Sequence (medicine) - Abstract
Contigs with sequence homologies to cherry-associated luteovirus were identified by high-throughput sequencing analysis in two peach accessions. Complete genomic sequences of the two isolates of this virus were determined to be 5,819 and 5,814 nucleotides long, respectively. The genome of the new virus is typical of luteoviruses, containing eight open reading frames in a very similar arrangement. Its genomic sequence is 58-74% identical to those of other members of the genus Luteovirus. These sequences thus belong to a new virus, which we have named "peach-associated luteovirus".
- Published
- 2017
- Full Text
- View/download PDF
45. Correction to: Molecular characterization of a novel citrivirus from citrus using next‑generation sequencing
- Author
-
Zhongan Li, Ruhui Li, Yan Zhou, Song Zhang, Ping Li, Xuefeng Wang, Fangyun Yang, and Mengji Cao
- Subjects
Statement (computer science) ,Virology ,Acknowledgement ,Conflict of interest ,General Medicine ,Biology ,Characterization (mathematics) ,Data science ,DNA sequencing - Abstract
Unfortunately, the Acknowledgement, ethical statement and the Conflict of interest statements were not included in the online publication and updated here in this Erratum.
- Published
- 2018
46. Characterization and detection of a new badnavirus infecting Epiphyllum spp
- Author
-
Fan Li, Ruhui Li, Pingxiu Lan, Weili Rao, Tongyan Tian, and Lingling Pu
- Subjects
Cactaceae ,Sequence Homology ,General Medicine ,Genome, Viral ,Sequence Analysis, DNA ,Biology ,biology.organism_classification ,Virology ,California ,Badnavirus ,Sequence homology ,Viral genetics ,Microscopy, Electron, Transmission ,DNA, Viral ,Gene Order ,Epiphyllum ,Phylogeny ,Plant Diseases - Published
- 2018
47. Molecular characterization of a novel citrivirus from citrus using next-generation sequencing
- Author
-
Zhongan Li, Yan Zhou, Xuefeng Wang, Fangyun Yang, Mengji Cao, Ruhui Li, Ping Li, and Song Zhang
- Subjects
0106 biological sciences ,0301 basic medicine ,Untranslated region ,Citrus ,food.ingredient ,viruses ,Genome, Viral ,Biology ,Citrivirus ,01 natural sciences ,DNA sequencing ,03 medical and health sciences ,Open Reading Frames ,food ,Virology ,ORFS ,Peptide sequence ,Phylogeny ,Sequence (medicine) ,Plant Diseases ,Whole genome sequencing ,Genetics ,Nucleic acid sequence ,High-Throughput Nucleotide Sequencing ,General Medicine ,030104 developmental biology ,RNA, Viral ,Flexiviridae ,010606 plant biology & botany - Abstract
A novel positive-strand RNA virus infecting citrus with the tentative name "citrus leaf blotch virus 2" (CLBV-2), was identified in the present work. The complete genome sequence of CLBV-2 comprises 8,697 nucleotides (nt) excluding a poly(A) tail and three open reading frames (ORFs), showing the highest nucleotide sequence identity with the Actinidia strain (JN983456) of citrus leaf blotch virus (CLBV). The putative movement protein (ORF2), coat protein (ORF3), and 3' untranslated region (UTR) shared high sequence similarity with those of the extant CLBV isolates. In contrast, only low sequence similarity was observed in the 5' UTR and putative replicase polyprotein (ORF1) regions. The distant phylogenetic relationship between CLBV-2 and CLBV was deduced based on whole-genome nucleotide and whole-ORF1 amino acid sequence comparisons. Sequence comparisons suggest that CLBV-2 acquired an ORF2-ORF3-3' UTR region homologous to CLBV by recombination with of an unknown citrivirus. In view of the fact that this genomic recombination event appears to have occurred between members of different species in the genus Citrivirus, we propose that CLBV-2 should be considered a member of a distinct species.
- Published
- 2018
48. Structure and Genome Organization of a Novel Fiji Strain of Sweet Potato Vein Clearing Virus Identified by High-Throughput Sequencing
- Author
-
Huawei Liu, Liping Wu, Ruhui Li, J. A. Abad, and Ronald D. French
- Subjects
0301 basic medicine ,viruses ,fungi ,Nucleic acid sequence ,food and beverages ,Genomics ,Biology ,biology.organism_classification ,Virology ,Genome ,DNA sequencing ,Virus ,03 medical and health sciences ,030104 developmental biology ,Plant virus ,Viruses ,Genetics ,Molecular Biology ,Nicotiana ,Genomic organization - Abstract
The complete genome of a Sweet potato vein clearing virus (SPVCV) isolate infecting a quarantined sweet potato accession from Fiji was determined. Sequence comparisons revealed the highest nucleotide sequence identity of 94.6% with that of the SPVCV type species, an isolate from the Dominican Republic. The virus was mechanically transmitted to Nicotiana bigelovii plants.
- Published
- 2018
- Full Text
- View/download PDF
49. Detection of tobamoviruses by RT-PCR using a novel pair of degenerate primers
- Author
-
Ansheng Zhang, Guanlin Tan, Y. Y. Li, Fan Li, Yong Liu, Pingxiu Lan, and Ruhui Li
- Subjects
0106 biological sciences ,0301 basic medicine ,Pepper mild mottle virus ,China ,viruses ,Cost-Benefit Analysis ,01 natural sciences ,Sensitivity and Specificity ,03 medical and health sciences ,Solanum lycopersicum ,Virology ,Plant virus ,Tobacco mosaic virus ,Tomato mosaic virus ,Cucumber green mottle mosaic virus ,DNA Primers ,Plant Diseases ,biology ,Mosaic virus ,Odontoglossum ringspot virus ,Reverse Transcriptase Polymerase Chain Reaction ,fungi ,Tobamovirus ,food and beverages ,biology.organism_classification ,030104 developmental biology ,Molecular Diagnostic Techniques ,Capsicum ,010606 plant biology & botany - Abstract
A generic RT-PCR assay was developed for the universal detection of viruses of the genus Tobamovirus using a novel pair of degenerate primers designed based on conserved regions on replicase genes of 32 tobamoviruses. The assay detected nine tobamoviruses, including six Solanaceae-infecting subgroup tobamoviruses of Tobacco mosaic virus (TMV), Tomato mosaic virus (ToMV), Tomato mottle mosaic virus (ToMMV), Tobacco mottle green mosaic virus (TMGMV), Pepper mild mottle virus (PMMoV), Paprika mild mottle virus (PaMMV), one Orchidaceae-infecting tobamovirus of Odontoglossum ringspot virus (ORSV) and two Cucurbitaceae-infecting subgroup tobamoviruses of Cucumber green mottle mosaic virus (CGMMV) and Zucchini green mottle mosaic virus (ZGMMV), with high amplification efficiency, specificity and sensitivity. The assay was applied to detect tobamoviruses in pepper and tomato fields. Five tobamoviruses, PMMoV, TMV, ToMV, ToMMV and TMGMV, were detected from the pepper fields in single and mixed infections. Single infections of PMMoV, ToMV and ToMMV and mix-infection of ToMV + PMMoV were detected from the tomato fields. Among these viruses, PMMoV was first detected from tomato worldwide, while ToMMV was first detected from tomato plants in China. This generic assay is simple, cost-effective and has great potential to detect more tobamoviruses in the field.
- Published
- 2018
50. EVALUATION OF DISINFECTANTS TO CONTROL MECHANICAL TRANSMISSION OF TOMATO VIRUSES AND VIROIDS IN GREENHOUSE TOMATOES
- Author
-
Fulya Baysal-Gurel, K. S. Ling, C. J. Kurowski, Sally A. Miller, and Ruhui Li
- Subjects
Horticulture ,Mechanical transmission ,biology ,Protected cultivation ,Greenhouse ,Tomato mosaic virus ,Pepino mosaic virus ,Pathogenicity ,biology.organism_classification ,Exposure duration ,Potato spindle tuber viroid - Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.