1. A study of the separating property in Reed-Solomon codes by bounding the minimum distance
- Author
-
Marcel Fernandez, Jorge J. Urroz, Universitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. ISG - Grup de Seguretat de la Informació, and Universitat Politècnica de Catalunya. TN - Grup de Recerca en Teoria de Nombres
- Subjects
FOS: Computer and information sciences ,Mathematics - Number Theory ,Reed-Solomon codes ,Computer Science - Information Theory ,Information Theory (cs.IT) ,Applied Mathematics ,Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] ,Codificació, Teoria de la ,Separating codes ,94 Information And Communication, Circuits::94C Circuits, networks [Classificació AMS] ,IPP codes ,Computer Science Applications ,11H71, 68P30 ,FOS: Mathematics ,Coding theory ,Number Theory (math.NT) - Abstract
The version of record is available online at: http://dx.doi.org/10.1007/s10623-021-00988-z According to their strength, the tracing properties of a code can be categorized as frameproof, separating, IPP and TA. It is known that, if the minimum distance of the code is larger than a certain threshold then the TA property implies the rest. Silverberg et al. ask if there is some kind of tracing capability left when the minimum distance falls below the threshold. Under different assumptions, several papers have given a negative answer to the question. In this paper, further progress is made. We establish values of the minimum distance for which Reed-Solomon codes do not posses the separating property. This work has been supported by the Spanish Government Grant TCO-RISEBLOCK (PID2019-110224RB-I00) MINECO .
- Published
- 2022