15 results on '"Paolo Pilleri"'
Search Results
2. Regolith of the Crater Floor Units, Jezero Crater, Mars:Textures, Composition, and Implications for Provenance
- Author
-
Alicia Vaughan, Michelle E. Minitti, Emily L. Cardarelli, Jeffrey R. Johnson, Linda C. Kah, Paolo Pilleri, Melissa S. Rice, Mark Sephton, Briony H. N. Horgan, Roger C. Wiens, R. Aileen Yingst, Maria‐Paz Zorzano Mier, Ryan Anderson, James F. Bell, Adrian J. Brown, Edward A. Cloutis, Agnes Cousin, Kenneth E. Herkenhoff, Elisabeth M. Hausrath, Alexander G. Hayes, Kjartan Kinch, Marco Merusi, Chase C. Million, Robert Sullivan, Sandra M. Siljeström, and Michael St. Clair
- Subjects
BAGNOLD DUNES CAMPAIGN ,SPECTROSCOPY ,MINERALOGY ,MERIDIANI-PLANUM ,OPPORTUNITY ROVER ,DUST ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,SAND ,OLIVINE ,Earth and Planetary Sciences (miscellaneous) ,GALE CRATER ,SYSTEM - Abstract
A multi-instrument study of the regolith of Jezero crater floor units by the Perseverance rover has identified three types of regolith: fine-grained, coarse-grained, and mixed-type. Mastcam-Z, Wide Angle Topographic Sensor for Operations and eNgineering, and SuperCam Remote Micro Imager were used to characterize the regolith texture, particle size, and roundedness where possible. Mastcam-Z multispectral and SuperCam laser-induced breakdown spectroscopy data were used to constrain the composition of the regolith types. Fine-grained regolith is found surrounding bedrock and boulders, comprising bedforms, and accumulating on top of rocks in erosional depressions. Spectral and chemical data show it is compositionally consistent with pyroxene and a ferric-oxide phase. Coarse-grained regolith consists of 1-2 mm well-sorted gray grains that are found concentrated around the base of boulders and bedrock, and armoring bedforms. Its chemistry and spectra indicate it is olivine-bearing, and its spatial distribution and roundedness indicate it has been transported, likely by saltation-induced creep. Coarse grains share similarities with the olivine grains observed in the S & eacute;& iacute;tah formation bedrock, making that unit a possible source for these grains. Mixed-type regolith contains fine-and coarse-grained regolith components and larger rock fragments. The rock fragments are texturally and spectrally similar to bedrock within the M & aacute;az and S & eacute;& iacute;tah formations, indicating origins by erosion from those units, although they could also be a lag deposit from erosion of an overlying unit. The fine and coarse-grained types are compared to their counterparts at other landing sites to inform global, regional, and local inputs to regolith formation within Jezero crater. The regolith characterization presented here informs the regolith sampling efforts underway by Perseverance.Plain Language Summary We used multiple instruments on the Perseverance rover to describe three populations of loose sediments found on the floor of Jezero crater by their grain sizes and chemical compositions. The smallest population has grains that are small sand-sized (80-530 mu m) and a mixture of minerals commonly found on Mars, including pyroxene that is present in local rocks and airborne dust found globally. These grains are the easiest to move by wind, so could have distal regional sources as well. Larger gray grains that are 1-2 mm in size and rounded contain olivine. These grains move along the surface, pushed by the impacts of smaller grains that are lifted by the wind. Their size and composition are very similar to olivine grains found in nearby in-place rocks, indicating that they may have a more local source. Finally, there are larger pieces of rocks that have broken down from the erosion of local in-place rocks over time and mix with the other types of grains. Loose sediments within the Jezero crater described here can be compared to loose sediments studied at other landing sites on Mars to help understand how Jezero sediments are formed and transported.
- Published
- 2023
- Full Text
- View/download PDF
3. Measurements of sound propagation in Mars' lower atmosphere
- Author
-
Baptiste Chide, Xavier Jacob, Andi Petculescu, Ralph D. Lorenz, Sylvestre Maurice, Fabian Seel, Susanne Schröder, Roger C. Wiens, Martin Gillier, Naomi Murdoch, Nina L. Lanza, Tanguy Bertrand, Timothy G. Leighton, Phillip Joseph, Paolo Pilleri, David Mimoun, Alexander Stott, Manuel de la Torre Juarez, Ricardo Hueso, Asier Munguira, Agustin Sánchez-Lavega, German Martinez, Carène Larmat, Jérémie Lasue, Claire Newman, Jorge Pla-Garcia, Pernelle Bernardi, Ari-Matti Harri, Maria Genzer, and Alain Lepinette
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Published
- 2023
- Full Text
- View/download PDF
4. Reflectance of Jezero crater floor: 1. Data processing and calibration of the Infrared Spectrometer (IRS) on SuperCam
- Author
-
Clement Royer, Thierry Fouchet, Lucia Mandon, Franck Montmessin, Francois Poulet, Olivier Forni, Jeffrey R. Johnson, Carey Legett, Stephane Le Mouelic, Olivier Gasnault, Pierre Beck, Cathy Quantin-Nataf, Erwin Dehouck, Ann M. Ollila, Cédric Pilorget, Pernelle Bernardi, Jean-Michel Reess, Paolo Pilleri, Adrian Jon Brown, Raymond T Newell, Edward Cloutis, Sylvestre Maurice, and Roger C. Wiens
- Published
- 2022
- Full Text
- View/download PDF
5. Infrared Reflectance of Jezero geological units from Supercam/Mars2020 Observations
- Author
-
Cathy Quantin-Nataf, Lucia Mandon, Clement Royer, Pierre Beck, Frank Montmessin, Olivier Forni, Stephane Le Mouelic, François Poulet, Jeffrey Johnson, Thierry Fouchet, Erwin Dehouck, Adrian Brown, Jesse Tarnas, Paolo Pilleri, Olivier Gasnault, Nicolas Mangold, Sylvestre Maurice, and Roger Wiens
- Abstract
On February 18, 2021, NASA’s Mars 2020 Perseverance rover landed successfully in Jezero crater. Several geological and compositional units were previously identified from orbital data analysis : a dark pyroxene-bearing floor unit; an olivine-bearing unit exposed in erosional windows and partially altered into phyllosilicates and carbonates ; a deltaic complex and its possible erosional remnants and a marginal carbonate-bearing unit. As of Sol 300 (December 2021), the rover has visited two geological units in situ: the dark pyroxene-bearing floor unit and the olivine-bearing floor unit. Others investigations of geological units of interest have been carried out using long distance (up to several kilometers) observations.The SuperCam instrument contains a suite of techniques including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3-2.6 microns (IR) wavelength ranges, and a color camera (RMI- Remote Micro-Imager) providing high resolution context images. Since the landing, SuperCam has acquired thousands of VISIR spectra of nearby rocks (including both natural and abraded surfaces), as well as hundreds of spectra of distant targets (from 10s of m to 20 km). The VISIR field of view of each individual spectrum ranges from a few mm for the rock of the workspace to 20 m to 20 km. The aim of this contribution is to summarize the main results of VISIR spectra up to Sol 300.The two geological units investigated in situ have distinct spectra. The crater floor rough unit (Cf-fr) has a pervasive 1.9 µm absorption indicative of hydration. Additional absorption at 2.28 µm indicate the presence of iron-rich phyllosilicates. Correlations between 1.9 µm and 2.4 µm absorption bands or between 2.1 µm and 2.4 µm bands suggest the presence of both poly and monohydrated sulfates. Spectra similar to oxy-hydroxides have also been observed in some rocks. Unmixing methods such as factor analyses highlight a high calcium pyroxene component. To sum up, the Cf-fr is an altered pyroxene rich unit. The second unit investigated in situ is a region called Seitah, which is dominantly olivine-rich from orbital analyses. Supercam VISIR data confirm the strong signature of olivine of the unit and display a complex suite of absorptions in the 2.3 µm - 2.4 µm region suggesting the presence of iron and magnesium phyllosilicates and/or carbonates. The alteration signature seems to be associated with olivine grains. Distant observations were acquired on the western delta front, several remote mesas and hills, on Jezero floor unit (the unit on which Perseverance landed on and investigated in situ), on Seitah before being visited by the rover, and on even more distant targets such as the crater rim or the marginal carbonate-bearing unit. The observed spectral signatures form different clusters depending on the type of target, highlighting the spectral diversity of Jezero geological units. Remarkably, the long distance observations of Seitah region are in perfect agreement with the in situ measurements confirming the relevance of long distance observations to assess the geological/mineralogical context of Perseverance’s future traverses.
- Published
- 2022
- Full Text
- View/download PDF
6. A DELTA-LAKE SYSTEM AT JEZERO CRATER (MARS) FROM LONG DISTANCE OBSERVATIONS
- Author
-
Sanjeev Gupta, Nicolas Mangold, Bell, Jim F., Olivier Gasnault, Tarnas, J. D., Sholes, S., Briony Horgan, Cathy Quantin-Nataf, Brown, A., Stéphane Le Mouélic, Roberta Yingst, Olivier Beyssac, Bosak, T., Fred Calef, Gwénaël CARAVACA, Ehlmann, B., Kenneth Farley, Grotzinger, John P., Hickman-Lewis, K., Holm-Alwmark, S., Kah, Linda C., Kanine, M., Martinez-Frias, J., Mclennan, Scott M., Sylvestre Maurice, Nuñez, J., Ollila, A. M., Gerhard Paar, Paolo Pilleri, Rice, J., Rice, M., Simon, J., Shuster, D., Katie Stack‐morgan, Vivian Sun, Treiman, Allan H., Weiss, B., Wiens, Roger C., Williams, A., Williams, N., Williford, Kenneth H., Department of Earth Science and Engineering [Imperial College London], Imperial College London, Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Arizona State University [Tempe] (ASU), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Purdue University [West Lafayette], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Planetary Science Institute [Tucson] (PSI), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), California Institute of Technology (CALTECH), The Natural History Museum [London] (NHM), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Lund University [Lund], Natural History Museum of Denmark, The University of Tennessee [Knoxville], Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), JHUAPL, Los Alamos National Laboratory (LANL), Joanneum Research, College of Engineering and Science [Louisiana], Louisiana Tech University, Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Lunar and Planetary Institute [Houston] (LPI), Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), and Lunar and Planetary Institute
- Subjects
Jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars 2020 ,Mars ,sedimentolgoy ,stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; Orbital and rover observations of relictgeomorphic features and stratigraphic architectures indicate Mars once had a warmer, wetter climate. Constraining the character, relative timing and persistence of ancient aqueous activity on Mars is possible through detailed interrogation of the stratal geometry of aqueously deposited sedimentary bodies. Such analyses inform interpretations of Martian climate evolution, potential habitability, and search strategies for rocks that might contain potential biosignatures. A prominent sedimentary fan deposit at the westernmargin of Jezero crater has been inferred to be a river delta that built into an ancient lake basin during the Late Noachian-Early Hesperian epochs on Mars (~3.6-3.8 Ga) [1, 2, 3]. The Perseverance rover landed on 18 February 2021 ~2.2 km from the western fan. During the early phase of mission investigations, highresolution images obtained from the Mastcam-Z camera and from the Remote Micro-Imager of the SuperCaminstrument provided the first ground-based observations of the western fan and an associated remnant outcrop, named Kodiak. Here, we report its sedimentology, which provide new constraints on the nature of the fan deposits, and their paleoenvironmental implications (4).
- Published
- 2022
7. Martian Wind and turbulence heard by the SuperCam microphone on the perseverance rover
- Author
-
Alexander Stott, Naomi Murdoch, Martin Gillier, Don Banfield, Tanguy Bertrand, Baptiste Chide, Manuel De la Torre Juarez, Ricardo Hueso, Ralph Lorenz, German Martinez, Asier Munguira, Luis Mora Sotomayor, Sara Navarro, Claire Newman, Paolo Pilleri, Jorge Pla-Garcia, Nicolas Randazzo, Jose Antonio Rodriguez Manfredi, Agustin Sanchez-Lavega, Michael Smith, Daniel Viudez Moreiras, Nathan Williams, Sylvestre Maurice, Roger Wiens, and David Mimoun
- Subjects
Acoustics and Ultrasonics ,Arts and Humanities (miscellaneous) - Abstract
On top of listening to laser shots, rover sounds and the Ingenuity rotorcraft, SuperCam’s Mars microphone has recorded over 7 hours of ambient background noise on Mars. These background recordings contain signal due to the Martian wind. Through a comparison to the meteorological data recorded by the MEDA (Mars Environmental Dynamics Analyzer), we can determine the relationships between the microphone data, the wind and the atmospheric stability. Based on these relationships, we have determined a way to estimate the wind speed using the microphone through Gaussian process regression, a machine learning technique. Owing to the sampling rate of 25 000 samples per second, the microphone data can be used to examine Mars’ atmospheric dynamics at high frequencies, as yet unexplored on Mars. We will demonstrate how the wind speed estimates from the microphone provide an assessment of turbulence at fine scales, shedding light on the dissipative regime on Mars. One particularly interesting signal recorded by the microphone was a dust devil, which had fast varying winds within the walls of its vortex and signal from dust particles hitting the rover. Combining the microphone data with information from the MEDA sensors and navigation camera (Navcam) images enabled a full parameterization of this event.
- Published
- 2023
- Full Text
- View/download PDF
8. First Sounds from Mars
- Author
-
sylvestre Maurice, Baptiste Chide, Naomi Murdoch, Ralph Lorenz, David Mimoun, Roger Wiens, Alexander Stott, Xavier Jacob, Tanguy Bertrand, Franck Montmessin, Nina Lanza, Cesar Alvarez Llamas, S. M. Angel, M. Aung, J. Balaram, Olivier Beyssac, Agnès Cousin, Greg Delory, Olivier Forni, Thierry Fouchet, Olivier Gasnault, Havard Grip, Mike hecht, Jeff Hoffman, Javier Laserna, Jérémie Lasue, Justin Maki, John McClean, Pierre-Yves Meslin, Stéphane Le Mouélic, Asier Munguira, Claire Newman, Jose Rodriguez-Manfredi, Javier Moros, Paolo Pilleri, Susanne Schroeder, Manuel de la Torre, Ann Ollila, Thoedore Tzanetos, Ken Farley, Kathryn Stack, and Ken Williford
- Abstract
The authors have requested that this preprint be removed from Research Square.
- Published
- 2021
- Full Text
- View/download PDF
9. Understanding the Chemistry of the Rocks at Jezero crater, Mars, through the Combined Use of SuperCam Spectroscopic and Optical Techniques
- Author
-
Juan Manuel Madariaga, Roger Wiens, Gorka Arana, Violaine Sautter, Karim Benzerara, Arya Udry, Olivier Beyssac, Lucia Mandon, Olivier Gasnault, Jeffrey Johnson, Ann Ollila, Kepa Castro, Agnes Cousin, Sylvestre Maurice, Samuel Clegg, Ryan Anderson, Tanja Bosak, Pierre Beck, Thierry Fouchet, Svetlana Shkolyar, Edward Cloutis, Cathy Quantin-Nataf, Imanol Torre Fernandez, Clément Royer, Chip Legett, and Paolo Pilleri
- Published
- 2021
- Full Text
- View/download PDF
10. Comparing SuperCam first shots at Jezero with ChemCam eolian dust analysis at Gale
- Author
-
Jeremie Lasue, Pierre-Yves Meslin, Agnes Cousin, Olivier Forni, Ryan Anderson, Erwin Dehouck, Jens Frydenvang, Olivier Gasnault, William Rapin, Paolo Pilleri, Sam Clegg, Roger Wiens, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
Context:On February 18th 2021, the NASA Perseverance rover landed at Jezero crater, Mars, a 50 km Noachian-aged open-basin lake system located on the western side of the Isidis impact structure. The bottom of the crater indicates the presence of a fluvial delta with associated inlet and outlet valleys and infrared observations from orbit have detected the presence of carbonate, mafic and hydrated minerals [1] Since its arrival at the Octavia E. Butler landing site, the rover explored about 100 meters around it initial landing position and analyzed the local bedrocks surrounding it.Located on the top of the mast of the Perseverance rover is SuperCam, a multipurpose remote sensing instrument able to acquire high resolution color images, infrared, laser-induced breakdown spectroscopy (LIBS) and Raman spectra, and including also a microphone [2, 3]. The LIBS technique is similar to the one used by ChemCam onboard the Curiosity rover, which has been exploring Gale crater since 2012: a powerful laser pulsed at 1064 nm ablates targets at a distance, inducing a plasma spark, the light of which is analyzed by spectroscopy to determine its elemental composition (e.g. [4]). During such an analysis, spectra obtained from the first several laser shots at each location are contaminated by dust deposited on the surface of the rock targets and these spectra are usually removed from further analysis [5]. These spectra present a very homogeneous composition that is different from those of the underlying targets, and are interpreted to represent the analysis of eolian dust deposited over time on the surface of Mars [6].In this study, we compare the spectral results obtained with the SuperCam first shots on the targets analyzed at the Octavia E. Butler landing site with the average first shot spectra obtained by ChemCam on the rock targets at Gale Crater to confirm whether the signal corresponds to a global microns-thick eolian dust cover of Mars.Method: We have used all the LIBS first shot spectra acquired since the landing of Perseverance. This corresponds to ~106 different spectra processed by denoising, background removal, wavelength calibration, and correction for instrument response. The average spectrum obtained from these data can then be appropriately compared with the average first shot spectrum obtained by ChemCam at Gale crater, which was built over 1500 sols (~ 8500 spectra). There is a 2 orders of magnitude difference between the number of first shots acquired by SuperCam and ChemCam at this time, so we can expect the SuperCam results to be less representative than the ChemCam ones. Results: The comparison of the LIBS spectra (Figure 1.) indicate strong similarities in major element compositions The only disparity comes from apparent elevated Mg and Ca lines in the SuperCam signal, which are possibly due to a local contribution. The minor elements, such as H, Li, Mn, Cr, also present peaks with intensities similar to the ones detected on the ChemCam spectrum, indicating a similar level of hydration and minor elements contents of the dust fraction at Jezero and at Gale. While the rocks analyzed by SuperCam at Jezero crater appear visually to be less covered by dust than the ones seen at Gale crater, our analysis indicates that the rocks studied at Jezero remain covered by a thin layer of homogeneous material similar in composition to the eolian deposited dust. This result is consistent with a global mixing of the eolian dust cover on Mars at the micron scale, or possibly a single origin for the eolian dust on Mars as described in previous studies (e.g. [7, 8]).Conclusion: The average of the first LIBS shot spectra acquired by SuperCam at Jezero crater compare very well with the average spectrum of ChemCam’s first shots at Gale crater. The intensity of the emission lines in the two spectra are very similar indicating the probable global mixing of the dust deposited all over the surface of Mars. Figure 1: Comparison of average first shots LIBS spectra of ChemCam at Gale Crater ([6] in red) and average first shots LIBS spectra of SuperCam at Jezero Crater (in blue). A) UV range, B) blue-violet range, C) green range D) orange range E) red range.Acknowledgements: The Perseverance rover and the SuperCam instrument were funded by NASA, CNES and LANL.References: [1] Stack, K. M., et al. (2020) Space Science Reviews, 216(8), 1-47. [2] Maurice, S., et al. (2021) Space Science Reviews, 217(3), 1-108. [3] Wiens, R. C., et al. (2021) Space Science Reviews, 217(1), 1-87. [4] Maurice, S., et al. (2016) Journal of Analytical Atomic Spectrometry, 31(4), 863-889. [5] Clegg, S. M., et al. (2017) Spectrochimica Acta Part B: Atomic Spectroscopy, 129, 64-85. [6] Lasue, J., et al. (2018) Geophysical Research Letters, 45(20), 10-968. [7] Berger, J. A., et al. (2016). Geophysical Research Letters, 43(1), 67-75. [8] Ojha, L., et al. (2018) Nature communications, 9(1), 1-7.
- Published
- 2021
- Full Text
- View/download PDF
11. Comparison of Orbital and in situ NIR-spectra in Jezreo Crater: insight from the first Supercam Infrared Spectrometer data
- Author
-
Cathy Quantin-Nataf, Lucia Mandon, Clement Royer, Jesse Tarnas, Pierre Beck, Frank Montmessin, Olivier Forni, Stephane Le Mouelic, Thierry Fouchet, Olivier Gasnault, Erwin Dehouck, Francois Poulet, Jeffey Johnson, Adrian Brown, Paolo Pilleri, Briony Horgan, Bethany Ehlmann, Nicolas Mangold, Roger Wiens, and Sylvestre Maurice
- Published
- 2021
- Full Text
- View/download PDF
12. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Francois Poulet, Nina Lanza, John Michel, Kerry Boyd, Valerie Mousset, Fernando Rull, Anupam K. Misra, Horton E. Newsom, Magdalena Dale, Richard Leveille, Sylvain Bernard, Karim Benzerara, Logan Ott, Timothy H. McConnochie, M. George Duran, Jonathan Deming, C. Glen Peterson, Jorden Celis, Juan Manuel Madariaga, Anthony Nelson, Elizabeth C. Auden, Violaine Sautter, Paolo Pilleri, Naomi Murdoch, Susanne Schröder, Joseph H. Sarrao, Miles Egan, Bruno Dubois, Ann Ollila, Roberta A. Klisiewicz, M. Deleuze, K. McCabe, Ryan B. Anderson, Kevin Clark, Noureddine Melikechi, Jens Frydenvang, Matthew R. Dirmyer, A. Regan, Pierre Beck, Olivier Forni, A. Reyes-Newell, David Mimoun, Lauren DeFlores, Stéphane Le Mouélic, Nicolas Mangold, Eric Lorigny, Denine Gasway, John P. Grotzinger, M. Caffrey, Shiv K. Sharma, J. Javier Laserna, Olivier Gasnault, Steven P. Love, Eric Lewin, Sophie Jacquinod, Jeffrey R. Johnson, Dorothea Delapp, Soren N. Madsen, James Lake, Kepa Castro, Joan Ervin, Olivier Beyssac, C. Donny, Yann Parot, J. P. Martinez, Pierre-Yves Meslin, Gabriel Pont, Jean-Michel Reess, L. Parès, P. Bernardi, D. Venhaus, Guillermo Lopez-Reyes, Benjamin Quertier, Gorka Arana, Morten Madsen, Ivair Gontijo, Ralph D. Lorenz, Philip J. Romano, Ian A. Trettel, S. Michael Angel, Gilles Montagnac, Joseph Becker, Vishnu Sridhar, Rafal Pawluczyk, Jérémie Lasue, P. Cais, William Rapin, Jose Antonio Manrique, Xavier Jacob, Clement Royer, Jacob Valdez, I. Torre-Fdez, Amaury Fau, Peter Willis, Louis Borges, Cheryl Provost, Elizabeth C. Cordoba, M. L. Underwood, Justin McGlown, Daniel Seitz, S. A. Storms, Briana Lucero, Heather Quinn, Thierry Fouchet, Raymond Newell, Cécile Fabre, B. Chide, Y. André, Jeffrey Carlson, Roger C. Wiens, Scott M. McLennan, Woodward W. Fischer, Benigno Sandoval, S. Robinson, Patrick Pinet, Samuel M. Clegg, Agnes Cousin, Sylvestre Maurice, Edward A. Cloutis, Gilles Dromart, Franck Montmessin, C. Legett, Andres Valdez, Bruno Bousquet, Reuben Fresquez, Terra Shepherd, Zachary R. Ousnamer, Pablo Sobron, M. Toplis, Marcel J. Schoppers, Jesús Martínez-Frías, D. T. Beckman, Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Hawai‘i [Mānoa] (UHM), Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), Centre National d'Études Spatiales [Toulouse] (CNES), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Universidad de Valladolid [Valladolid] (UVa), Universidad de Málaga [Málaga] = University of Málaga [Málaga], McGill University = Université McGill [Montréal, Canada], Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), FiberTech Optica (FTO), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars ,01 natural sciences ,7. Clean energy ,Article ,law.invention ,Telescope ,symbols.namesake ,Jezero crater ,Optics ,ChemCam instrument ,law ,Microphone on Mars ,0103 physical sciences ,SuperCam ,planetary exploration ,luminescence ,Traitement du signal et de l'image ,Perseverance rover ,Spectroscopy ,010303 astronomy & astrophysics ,Infrared spectroscopy ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,laboratory curiosity rover ,remote Raman system ,LIBS ,Spectrometer ,business.industry ,Detector ,Astronomy and Astrophysics ,Mars Exploration Program ,Gale crater ,Laser ,induced breakdown spectroscopy ,Wavelength ,in-situ ,mission ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Raman spectroscopy ,symbols ,business - Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm − 1 Raman shift relative to the 532 nm green laser beam) with 12 cm − 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well., Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-R
- Published
- 2021
- Full Text
- View/download PDF
13. First atmospheric results produced by the SuperCam instrument on Mars2020
- Author
-
Franck Montmessin, Timothy McConnochie, Thierry Fouchet, Olivier Forni, Paolo Pilleri, Clément Royer, Elise Knutsen, Tanguy Bertrand, Olivier Gasnault, Jeremie Lasue, Carey Legett, Mark Lemmon, Raymond Newell, Dawn Venhaus, Sylvestre Maurice, Roger Wiens, and Fouchet, Thierry
- Subjects
[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
The SuperCam instrument [1,2] onboard Mars2020 disposes of a variety of active and passive techniques, including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3 to 2.6 microns (IR, [3,4]) wavelength ranges. Since the landing on Mars of Perseverance in February 2021, Supercam has acquired numerous observations of its near and distant environment, exploring the geological and mineralogical context of Jezero crater. In addition, several measurements were devoted to probing the atmosphere surrounding the Perseverance rover. The technique of using sky spectra in passive mode, known as "passive sky", has already been demonstrated with ChemCam on the Mars Science Laboratory (MSL) rover [4]. SuperCam provides a superset of the ChemCam capabilities used in [4], and in particular adds a near-infrared component that includes absorption and scattering characteristics of key gases and aerosols/clouds. "Passive sky" measurements have typically been performed every other week to allow a consistent monitoring of the seasonal evolution of the main quantities (CO2, O2, H2O, CO, aerosols/clouds). Particular attention was given to joint measurements of O2 and CO, as they appear as key components of the Martian chemical cycle and have never been measured together at the same time on the surface of Mars. As the 2 m wavelength region is used for the first time at the surface of Mars, it enables the detection of CO (around 2.35 m). CO possesses a small absorption that has made it difficult to identify in SuperCam spectra so far. An overview of SuperCam's progress to date in its attempt to characterize the Martian atmosphere at Jezero will be presented. References : [1] Wiens, R.C., et al. , 2021. Space Sci Rev 217, 4, [2] Maurice, S., et al., 2021. Space Sci Rev 217, 47, [3] Royer, C., et al.., 2020. Review of Scientific Instruments 91, 063105, [4] Fouchet, T., et al., 2021, Icarus, submitted. [5] McConnochie T. H et al., 2018. Icarus 307, 294
- Published
- 2021
14. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy
- Author
-
Ryan B. Anderson, Olivier Forni, Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, Jens Frydenvang, Travis S.J. Gabriel, Ann Ollila, Susanne Schröder, Olivier Beyssac, Erin Gibbons, David S. Vogt, Elise Clavé, Jose-Antonio Manrique, Carey Legett, Paolo Pilleri, Raymond T. Newell, Joseph Sarrao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvain Bernard, Bruno Bousquet, Adrian J. Brown, César Alvarez-Llamas, Baptiste Chide, Edward Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea M. Delapp, Ari Essunfeld, Cecile Fabre, Thierry Fouchet, Cristina Garcia-Florentino, Laura García-Gómez, Patrick Gasda, Olivier Gasnault, Elisabeth M. Hausrath, Nina L. Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Anthony E. Nelson, Horton Newsom, Adriana L. Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I. Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott M. McLennan, Richard V. Morris, Bethany Ehlmann, US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), McGill University = Université McGill [Montréal, Canada], Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Plancius Research LLC, Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of Manitoba [Winnipeg], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Nevada [Las Vegas] (WGU Nevada), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), The University of New Mexico [Albuquerque], University of Hawai‘i [Mānoa] (UHM), NASA Johnson Space Center (JSC), NASA, Search for Extraterrestrial Intelligence Institute (SETI), State University of New York at Stony Brook, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Division of Geological and Planetary Sciences [Pasadena], and California Institute of Technology (CALTECH)
- Subjects
LIBS ,Mars ,Multivariate regression ,Laser induced breakdown spectroscopy ,Regression ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry ,[SDU]Sciences of the Universe [physics] ,Calibration ,Chemometrics ,Laser induced breakdown spectroscopy LIBS Mars Multivariate regression Regression Chemometrics Calibration ,Instrumentation ,Spectroscopy - Abstract
International audience; The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions and spectra are normalized to minimize signal fluctuations and effects of target distance. In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositions of diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well-characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g., silicates, sulfates, carbonates, oxides), more unusual compositions (e.g., Mn ore and sodalite), and replicates of the sintered SuperCam calibration targets (SCCTs) onboard the rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five "folds" with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining four folds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3 m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
- Published
- 2022
- Full Text
- View/download PDF
15. SuperCam on the Perseverance Rover for Exploration of Jezero Crater: Remote LIBS, VISIR, Raman, and Time-Resolved Luminescence Spectroscopies Plus Micro-Imaging and Acoustics
- Author
-
Roger Wiens, Sylestre Maurice, Olivier Gasnault, Anderson, R. B., Olivier Beyssac, Lydie Bonal, Samuel Clegg, Lauren Deflores, Gilles Dromart, Fischer, W. W., Olivier Forni, Grotzinger, John P., Johnson, Jeffrey R., Jesus Martinez-Frias, Nicolas Mangold, Mclennan, S. M., Franck Montmessin, Fernando Rull, Sharma, S. K., Cousin, A., Paolo Pilleri, Sautter, V., Eric Lewin, Cloutis, Edward A., François Poulet, Sylvain Bernard, Mcconnochie, Timothy H., Nina Lanza, Horton Newsom, Ann Ollila, Rich Leveille, Stéphane Le Mouélic, Jérémie Lasue, Noureddine Melikechi, Pierre-Yves Meslin, Olivier Grasset, Angel, Stanley M., Thierry Fouchet, Beck, P., Bruno Bousquet, Fabre, C., Patrick Pinet, Karim Benzerara, Gilles Montagnac, Arana, G., Castro, K., Laserna, J., Madariaga, J. M., Manrique, J. A., Lopez, G., Lorenz, Ralph D., David Mimoun, Acosta-Maeda, T., Alvarez, C., Dehouck, E., Delory, G., Alain Doressoundiram, Francis, R., Frydenvang, J., Gabriel, T., Jacob, X., Madsen, M. B., Moros, J., Murdoch, N., Newell, R., Porter, J., Quantin-Nataf, C., William Rapin, Schroeder, S., Sobron, P., Toplis, M., Brown, A. J., Veneranda, M., Chide, B., Legett, C., Royer, C., Stott, A., Vogt, D., Robinson, S., Delapp, D., Clavé, E., Connell, S., Essunfeld, A., Gallegos, Z., Garcia-Florentino, C., Gibbons, E., Huidobro, J., Kelly, E., Kalucha, H., Ruiz, P., Torre-Fdez, I., Shkolyar, S., and Team Supercam
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.