209 results on '"Paolo Molaro"'
Search Results
2. Classical novae with CUBES
- Author
-
Luca Izzo, Paolo Molaro, Piercarlo Bonifacio, Gabriele Cescutti, Massimo Della Valle, and Pierluigi Selvelli
- Subjects
novae [Abundances - stars] ,Space and Planetary Science ,V5668 SGR ,LI-7 ,CONSISTENT ,BE-7 ,LITHIUM ,Astronomy and Astrophysics ,ABUNDANCE ,Nuclear reactions ,Nucleosynthesis ,EVOLUTION - Abstract
Among the main science cases that have motivated the proposal of CUBES, a new high-resolution spectrograph for the Very Large Telescope at the European Southern Observatory, there is the study and the characterisation of the nucleosynthesis of beryllium. Classical novae have been proposed since the '70s as one of the main factories of lithium in the Galaxy, but this hypothesis has been demonstrated on empirical basis only recently thanks to the direct identification of lithium in V1369 Cen and through the observations of the resonance transition of Be-7 II, the Li-7 parent, at 313.0 nm in the near-UV range. CUBES is then the ideal instrument to quantify the amount of Be-7 and therefore of Li-7 produced by the different novae types hosted in the different components of the Milky Way and also in its nearby satellite galaxies. As important by-product of high resolution spectroscopic observations obtained with CUBES, there are the study of the properties of nova ejecta abundances, the shocks evolution in novae and their connection with the high-energy emission observed in these transients, from satellites as Fermi and Swift.
- Published
- 2023
- Full Text
- View/download PDF
3. 7Be in the outburst of the ONe nova V6595 Sgr
- Author
-
M. Della Valle, P. Selvelli, Piercarlo Bonifacio, E. Aydi, G. Cescutti, E. J. Harvey, Paolo Molaro, Valentina D'Odorico, Luca Izzo, Margarita Hernanz, Villum Fonden, Ministerio de Ciencia, Innovación y Universidades (España), Molaro, P., Izzo, L., D'Odorico, V., Aydi, E., Bonifacio, P., Cescutti, G., Harvey, E. J., Hernanz, M., Selvelli, P., Della Valle, M., ITA, USA, and ESP
- Subjects
GIANT ,Astrophysics ,nuclear reaction ,Spectral line ,nucleosynthesis abundances ,Neon ,ABSORPTION ,ELEMENTS ,Abundances ,Emission spectrum ,Absorption (electromagnetic radiation) ,Novae ,Physics ,cataclysmic variables ,GAMMA-RAY LINES ,Isotope ,ORIGIN ,nucleosynthesis ,stars individual V6595 Sgr ,Astrophysics - Solar and Stellar Astrophysics ,Stars: individual: V6595 Sgr ,novae cataclysmic variable ,stars abundance ,Nucleosynthesis ,Cataclysmic variable ,V5668 SGR ,LI-7 ,chemistry.chemical_element ,evolution [Galaxy] ,Galaxy evolution ,LITHIUM ,stars abundances ,nucleosynthesis abundance ,nuclear reactions ,Galaxy: evolution ,novae ,abundances ,novae cataclysmic variables ,Stars: abundances ,Resonance ,Astronomy and Astrophysics ,Nova (laser) ,K-line ,EVOLUTION ,abundances [stars] ,individual: V6595 Sgr [stars] ,chemistry ,Space and Planetary Science ,EMISSION - Abstract
We report on the search for the 7Be ii isotope in the outbursts of the classical nova V6595 Sgr by means of high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) observations taken at the European Southern Observatory's Very Large Telescope in 2021 April, about two weeks after its discovery and under difficult circumstances due to the pandemic. Narrow absorption components with velocities at -2620 and-2820 km s-1, superposed on broader and shallow absorption, are observed in the outburst spectra for the 7Be ii λλ313.0583, 313.1228 nm doublet resonance lines, as well as in several other elements such as Ca ii, Fe i, Mg i, Na i, H i and Li i. Using the Ca ii K line as a reference element, we infer N(7Be)/N(H) ≈ 7.4 × 10-6, or ≈ 9.8 × 10-6 when the 7Be decay is taken into account. The 7Be abundance is about half of the value most frequently measured in novae. The possible presence of overionization in the layers where 7Be ii is detected is also discussed. Observations taken at the Telescopio Nazionale Galileo in La Palma 91 days after discovery showed prominent emission lines of oxygen and neon, which allow us to classify the nova as ONe type. Therefore, although 7Be is expected to be higher in CO novae, it is found at comparable levels in both nova types., LI was supported by two grants from VILLUM FONDEN (project number 16599 and 25501). M. H. acknowledges support from grant PID2019-108709GB-100 from MICINN (Spain).
- Published
- 2021
- Full Text
- View/download PDF
4. On the Titian’s self-portrait mentioned by Vasari with technical analysis of an anonymous painting
- Author
-
Paolo Molaro, Danilo Pavone, Claudia Caliri, and Francesco Romano
- Subjects
Archeology ,Painting ,Materials Science (miscellaneous) ,media_common.quotation_subject ,010401 analytical chemistry ,Art history ,Biography ,02 engineering and technology ,Conservation ,Art ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Style (visual arts) ,Portrait ,Chemistry (miscellaneous) ,0210 nano-technology ,General Economics, Econometrics and Finance ,Spectroscopy ,media_common - Abstract
In his biography of Titian Giorgio Vasari reports the existence of a self-portrait made by the painter before 1541 which is now lost. Recently, the sitter of an ancient painting has been noted to show resemblance with Titian’s lineaments. A study by means of Macro X-Ray Fluorescence and UV-IR imaging of this painting has been conducted seeking elements useful to verify whether it could be the lost portrait mentioned by Vasari. The analysis provided consistency in terms of pigments and absence of underlying drawings with Titian’s style, but also revealed extensive restoration which prevents firm attribution. Stringent analogies of the painting with the portrait of Pietro Aretino made by Titian in 1537 are also noted.
- Published
- 2021
- Full Text
- View/download PDF
5. K2-111: an old system with two planets in near-resonance†
- Author
-
Lars A. Buchhave, Valentina D'Odorico, Laura Affer, Dimitar Sasselov, Annelies Mortier, C. Allende Prieto, Christopher A. Watson, Aldo F. M. Fiorenzano, Paolo Molaro, A. Collier Cameron, Nuno C. Santos, Marco Riva, C. Lovis, Nelson J. Nunes, David Charbonneau, Jesus Maldonado, S. G. Sousa, Enric Palle, Giampaolo Piotto, Aldo S. Bonomo, Adriano Ghedina, Cristina Martins, Richard G. West, Andrew Vanderburg, David W. Latham, Giuseppina Micela, Vardan Adibekyan, Francesco Pepe, G. Lo Curto, Ken Rice, Mahmoudreza Oshagh, Avet Harutyunyan, Alexandre Cabral, Andrea Mehner, P. Di Marcantonio, Antonio Manescau, Rafael Rebolo, Matteo Pinamonti, M. R. Zapatero Osorio, François Bouchy, Baptiste Lavie, Denis Mégevand, Luca Malavolta, Stéphane Udry, David F. Phillips, David Ehrenreich, Jorge Lillo-Box, A. Suárez Mascareño, T. G. Wilson, S. C. C. Barros, Rosario Cosentino, Olivier Demangeon, M. Mayor, Xavier Dumusque, Mercedes López-Morales, Walter Boschin, E. Delgado Mena, Emilio Molinari, Serena Benatti, Alessandro Sozzetti, P. Figueira, Raphaëlle D. Haywood, Ennio Poretti, Stefano Cristiani, J. Haldemann, Yann Alibert, J. I. González Hernández, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Science and Technology Facilities Council (STFC), Istituto Nazionale di Astrofisica (INAF), Swiss National Science Foundation (SNSF), Fundação para a Ciência e a Tecnologia (FCT), National Aeronautics and Space Administration (NASA), European Research Council (ERC), Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, University of St Andrews. St Andrews Centre for Exoplanet Science, Cabral, A. [0000-0002-9433-871X], Suárez Mascareño, A. [0000-0002-3814-5323], Molaro, P. [0000-0002-0571-4163], Mena, E. D. [0000-0003-4434-2195], Buchhave, L. A. [0000-0003-1605-5666], Vanderburg, A. [0000-0001-7246-5438], Barros, S. [0000-0003-2434-3625], Haldemann, J. [0000-0003-1231-2389], Cosentino, R. [0000-0003-1784-1431], Sozzetti, A. [0000-0002-7504-365X], Adibekyan, V. [0000-0002-0601-6199], Wilson, T. G. [0000-0001-8749-1962], Cameron, A. [0000-0002-8863-7828], Santos, N. [0000-0003-4422-2919], Ministerio de Ciencia e Innovación (MICINN), Science and Technology Facilities Council (STFC), ST/R000824/1 ST/P000312/1 PTDC/FIS-AST/32113/2017, Istituto Nazionale Astrofisica (INAF) Agenzia Spaziale Italiana (ASI), 2018-16-HH.0, Swiss National Science Foundation (SNSF), 140649 152721 166227 184618, Fundação para a Ciência e a Tecnologia (FCT) through Investigador FCT, IF/00650/2015/CP1273/CT0001 IF/00849/2015/CP1273/CT0003 IF/00028/2014/CP1215/CT0002 IF/01312/2014/CP1215/CT0004 DL 57/2016/CP1364/CT0004, FEDER through COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao, National Aeronautics and Space Administration (NASA), NNX17AB59G NAS5-26555 NNX13AC07G, Research Projects of National Relevance (PRIN), 201278X4FL, MCTES, PTDC/FIS-AST/32113/2017, European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project FOUR ACES), ITA, USA, GBR, DEU, ESP, CHL, DNK, PRT, CHE, Mortier, Annelies [0000-0001-7254-4363], and Apollo - University of Cambridge Repository
- Subjects
planets and satellites: detection ,010504 meteorology & atmospheric sciences ,530 Physics ,stars: individual (K2-111) ,FOS: Physical sciences ,Astrophysics ,Spectroscopic ,01 natural sciences ,spectroscopic [Techniques] ,techniques: photometric ,Planet ,individual [Stars] ,techniques: radial velocities ,0103 physical sciences ,QB Astronomy ,010303 astronomy & astrophysics ,QC ,QB ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,radial velocities [Techniques] ,520 Astronomy ,individual (K2-111) [Stars] ,photometric [Techniques] ,Astronomy and Astrophysics ,3rd-DAS ,Radius ,500 Science ,Planetary system ,620 Engineering ,Orbital period ,Radial velocity ,detection [Planets and satellites] ,Photometry (astronomy) ,QC Physics ,13. Climate action ,Space and Planetary Science ,astro-ph.EP ,Terrestrial planet ,techniques: spectroscopic ,K2-111 ,Planetary mass ,Astrophysics - Earth and Planetary Astrophysics - Abstract
This paper reports on the detailed characterisation of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved ($\log g=4.17$), iron-poor ([Fe/H]$=-0.46$), but alpha-enhanced ([$\alpha$/Fe]$=0.27$), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT shows that the transiting planet, K2-111b, orbits with a period $P_b=5.3518\pm0.0004$ d, and has a planet radius of $1.82^{+0.11}_{-0.09}$ R$_\oplus$ and a mass of $5.29^{+0.76}_{-0.77}$ M$_\oplus$, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111c, with an orbital period of $15.6785\pm 0.0064$ days, orbiting in near-3:1 mean-motion resonance with the transiting planet, and a minimum planet mass of $11.3\pm1.1$ M$_\oplus$. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters., Comment: Accepted for publication in MNRAS on 28 Sept 2020. Paper is 18 pages with an additional 12 pages of supplementary material. Data is available at https://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/MNRAS/499/5004
- Published
- 2020
- Full Text
- View/download PDF
6. A new era of fine structure constant measurements at high redshift
- Author
-
John K. Webb, Luca Pasquini, Paolo Molaro, Chung-Chi Lee, Robert F. Carswell, and Dinko Milaković
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Absorption spectroscopy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Fine-structure constant ,Quasar ,Astrophysics ,Measure (mathematics) ,Redshift ,Wavelength ,Space and Planetary Science ,Calibration ,Absorption (logic) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
New observations of the quasar HE0515$-$4414 have been made using the HARPS spectrograph on the ESO 3.6m telescope, aided by the Laser Frequency Comb (LFC). We present three important advances for $\alpha$ measurements in quasar absorption spectra from these observations. Firstly, the data have been wavelength calibrated using LFC and ThAr methods. The LFC wavelength calibration residuals are six times smaller than when using the standard ThAr calibration. We give a direct comparison between $\alpha$ measurements made using the two methods. Secondly, spectral modelling was performed using Artificial Intelligence (fully automated, all human bias eliminated), including a temperature parameter for each absorption component. Thirdly, in contrast to previous work, additional model parameters were assigned to measure $\alpha$ for each individual absorption component. The increase in statistical uncertainty from the larger number of model parameters is small and the method allows a substantial advantage; outliers that would otherwise contribute a significant systematic, possibly corrupting the entire measurement, are identified and removed, permitting a more robust overall result. The $z_{abs} = 1.15$ absorption system along the HE0515$-$4414 sightline yields 40 new $\alpha$ measurements. We constrain spatial fluctuations in $\alpha$ to be $\Delta\alpha/\alpha \leq 9 \times 10^{-5}$ on scales $\approx 20\;{\rm km\,s}^{-1}$, corresponding to $\approx25\;$kpc if the $z_{abs} = 1.15$ system arises in a $1\;$Mpc cluster. Collectively, the 40 measurements yield $\Delta\alpha/\alpha=-0.27\pm2.41\times10^{-6}$, consistent with no variation., Comment: Published in MNRAS, 500 1 1. 10 pages, 7 figures. Online supplementary material is available upon request
- Published
- 2020
- Full Text
- View/download PDF
7. Lithium and beryllium in the Gaia-Enceladus galaxy
- Author
-
X. Fu, G. Cescutti, Paolo Molaro, Molaro, P, Cescutti, G, amp, and Fu, X
- Subjects
Galaxy halo ,Milky Way ,Metallicity ,FOS: Physical sciences ,primordial nucleosynthesi ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysic ,Galactic halo ,Big Bang nucleosynthesis ,primordial nucleosynthesis ,Astrophysics::Solar and Stellar Astrophysics ,stars abundances ,Astrophysics of Galaxie ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,Physics ,galaxies individual Gaia-Enceladu ,Astrophysics of Galaxies ,Local Group ,Astronomy and Astrophysics ,galaxies individual Gaia-Enceladus ,Galaxy stellar content ,galaxies abundances ,Astrophysics Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies abundance ,Astrophysics::Earth and Planetary Astrophysics ,stars abundance - Abstract
Data from Gaia DR2 and APOGEE surveys revealed a relatively new component in the inner Galactic halo, which is likely the dynamical remnant of a disrupted dwarf galaxy named Gaia-Enceladus that collided with the Milky Way about 10 Gyrs ago. This merging event offers an extraordinary opportunity to study chemical abundances of elements in a dwarf galaxy, since they are generally hampered in external galaxies. Here, we focus on Li and Be in dwarf stars which are out of reach even in Local Group galaxies.Searching in GALAH, Gaia-ESO survey and in literature, we found several existing 7Li abundance determinations of stars belonging to the Gaia-Enceladus galaxy. The 7Li abundances of stars at the low metallicity end overlap with those of the Galactic halo.These are effective extragalactic 7Li measurements, which suggest that the {\it Spite plateau} is universal, as is the cosmological Li problem. We found a Li-rich giant out of 101 stars, which suggests a small percentage similar to that of the Milky Way. We also collect 9Be abundances for a subsample of 25 Gaia-Enceladus stars from literature. Their abundances share the Galactic [Be/H] values at the low metallicity end but grow slower with [Fe/H] and show a reduced dispersion. This suggests that the scatter observed in the Milky Way could reflect the different \beix\ evolution patterns of different stellar components which are mixed-up in the Galactic halo., Comment: 9 pages, 7 figures. Accepted MNRAS
- Published
- 2020
- Full Text
- View/download PDF
8. Detection of $^7$Be II in the Small Magellanic Cloud
- Author
-
Luca Izzo, Paolo Molaro, Gabriele Cescutti, Elias Aydi, Pierluigi Selvelli, Eamonn Harvey, Adriano Agnello, Piercarlo Bonifacio, Massimo Della Valle, Ernesto Guido, Margarita Hernanz, ITA, USA, FRA, ESP, Villum Fonden, European Commission, National Aeronautics and Space Administration (US), Ministerio de Ciencia e Innovación (España), Izzo, L., Molaro, P., Cescutti, G., Aydi, E., Selvelli, P., Harvey, E., Agnello, A., Bonifacio, P., Della Valle, M., Guido, E., and Hernanz, M.
- Subjects
Galaxy Abundances ,Stars Individual ASSASN-19qv ,Galaxy Evolution ,FOS: Physical sciences ,evolution [Galaxy] ,Galaxy Abundance ,individuals: ASSASN-19qv [Stars] ,ASASSN-20ni ,Abundances ,Solar and Stellar Astrophysics (astro-ph.SR) ,Galaxy: evolution ,abundance ,abundances ,stars novae ,nucleosynthesis ,abundances [Galaxy] ,Astronomy and Astrophysics ,Nuclear reaction ,Astrophysics - Astrophysics of Galaxies ,Nuclear reactions ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,nucleosynthesi ,Astrophysics of Galaxies (astro-ph.GA) ,Galaxy: abundances ,novae [Stars] ,Stars: individuals: ASSASN-19qv ,Stars: novae ,Nucleosynthesis - Abstract
We analyse high resolution spectra of two classical novae that exploded in the Small Magellanic Cloud. $^7$Be II resonance transitions are detected in both ASASSN-19qv and ASASSN-20ni novae. This is the first detection outside the Galaxy and confirms that thermo-nuclear runaway reactions, leading to the $^7$Be formation, are effective also in the low metallicity regime, characteristic of the SMC. Derived yields are of N($^7$Be=$^7$Li)/N(H) = (5.3 $\pm$ 0.2) $\times$ 10$^{-6}$ which are a factor 4 lower than the typical values of the Galaxy. Inspection of two historical novae in the Large Magellanic Cloud observed with IUE in 1991 and 1992 showed also the possible presence of $^7$Be and similar yields. For an ejecta of $M_{H,ej} =$ 10$^{-5}$ M$_{\odot}$, the amount of $^7$Li produced is of $M_{^7 Li} = (3.7 \pm 0.6) \times 10^{-10}$ M$_{\odot}$ per nova event. Detailed chemical evolutionary model for the SMC shows that novae could have made an amount of lithium in the SMC corresponding to a fractional abundance of A(Li) $\approx$ 2.6. Therefore, it is argued that a comparison with the abundance of Li in the SMC, as measured by its interstellar medium, could effectively constrain the amount of the initial abundance of primordial Li, which is currently controversial., 13 pages, 17 figures, 4 tables. Accepted for publication in MNRAS
- Published
- 2021
- Full Text
- View/download PDF
9. Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant
- Author
-
Maria-Rosa Zapatero Osorio, S. G. Sousa, Giorgio Pariani, Alejandro Suárez Mascareño, Mário J. P. F. G. Monteiro, Carlos Allende Prieto, Giuseppina Micela, Roberto Cirami, Igor Coretti, Paolo Di Marcantonio, Filippo Maria Zerbi, Edoardo Maria Alberto Redaelli, Nuno C. Santos, Pedro Figueira, Ricardo Génova Santos, Christopher Broeg, Denis Mégevand, Andrea Modigliani, Florian Kerber, Michael T. Murphy, Rafael Rebolo, Manuel Abreu, David Ehrenreich, David Castro Alves, Stefano Cristiani, Marco Landoni, Yann Alibert, Romain Allart, Antonio Cesar de Oliveira, Luca Pasquini, Luca Oggioni, Nelson J. Nunes, T. M. Schmidt, Francesco Pepe, Valentina D'Odorico, M. A. Monteiro, Marco Riva, Matteo Genoni, Matteo Aliverti, E. Mueller, Paolo Molaro, Vardan Adibekyan, Jonay I. González Hernández, Christophe Lovis, Jean-Louis Lizon, Alessandro Sozzetti, Pedro Santos, A. C. O. Leite, C. J. A. P. Martins, Alexandre Cabral, Andrea Mehner, João Coelho, Antonio Manescau, Gaspare Lo Curto, V. Baldini, Giorgio Calderone, Stéphane Udry, G. Cupani, Danuta Sosnowska, Schmidt, T. M. [0000-0002-4833-7273], Molaro, P. [0000-0002-0571-4163], Murphy, M. T. [0000-0002-7040-5498], Cristiani, S. [0000-0002-2115-5234], Pepe, F. A. [0000-0002-9815-773X], Rebolo, R. [0000-0003-3767-7085], Istituto Nazionale di Astrofisica (INAF), Australian Research Council (ARC), Swiss National Science Foundation (SNSF), Fundacao para a Ciencia e a Tecnologia (FCT), and European Research Council (ERC)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,530 Physics ,Physics::Optics ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Spectral line ,law.invention ,spectroscopic [Techniques] ,010309 optics ,Espresso ,Optics ,law ,0103 physical sciences ,Calibration ,spectrographs [Instrumentation] ,observations [Cosmology] ,010303 astronomy & astrophysics ,Spectrograph ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,business.industry ,520 Astronomy ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Fine-structure constant ,500 Science ,620 Engineering ,Astrophysics - Astrophysics of Galaxies ,Wavelength ,Interferometry ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Arc lamp ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Observations of metal absorption systems in the spectra of distant quasars allow to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph Espresso, recently installed at the VLT. In preparation of the fundamental physics related part of the Espresso GTO program, we present a thorough assessment of the Espresso wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, based on the combination of Thorium-Argon arc lamp spectra and a Fabry-P\'erot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24m/s. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of Espresso with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the $10^{-6}$ level can be obtained with Espresso without being limited by wavelength calibration systematics., Comment: 27 pages, accepted for publication in A&A
- Published
- 2021
10. Six transiting planets and a chain of Laplace resonances in TOI-178
- Author
-
A. Leleu, Nathan Hara, Rosanna H. Tilbrook, Matthew J. Hooton, Jack S. Acton, Giuseppina Micela, Heike Rauer, Francisco J. Pozuelos, Xavier Dumusque, Michael R. Goad, T. Bárczy, Andrew Collier Cameron, Francesco Pepe, G. Lo Curto, Rafael Rebolo, Juan Cabrera, Pedro Figueira, M. Buder, Willy Benz, Romain Allart, Oliver Turner, Enric Palle, Alexis M. S. Smith, Ignasi Ribas, F. Ratti, M. Steller, Richard G. West, James McCormac, A. Lecavelier des Etangs, Alexandre C. M. Correia, Daniel Sebastian, S. G. Sousa, Emmanuel Jehin, Mathias Beck, J. Schneider, François Bouchy, Baptiste Lavie, J.-B. Delisle, Liam Raynard, Roberto Ragazzoni, K. Lam, H. Venus, Kate Gudrun Isaak, Roi Alonso, C. Murray, Laetitia Delrez, Martti H. Kristiansen, Mario Damasso, A. Bonfanti, David Ehrenreich, Stéphane Udry, Samuel Gill, Sergio Hoyer, Lionel Garcia, V. Adibekyan, Carina M. Persson, Maximiliano Moyano, Beth A. Henderson, Giampaolo Piotto, Andrés Jordán, Samantha Thompson, Alexis Brandeker, Elsa Ducrot, Daniel Angerhausen, Nuno C. Santos, David Barrado, Xavier Bonfils, Vincent Bourrier, F. Verrecchia, Monika Lendl, Andrea Mehner, C. Broeg, M. R. Zapatero Osorio, Matthew R. Burleigh, D. Futyan, Damien Ségransan, Amaury H. M. J. Triaud, Mahmoudreza Oshagh, C. Allende Prieto, J. Asquier, B. O. Demory, Philippe Robutel, C. Corral Van Damme, Nicola Rando, Malcolm Fridlund, Gisbert Peter, Roland Ottensamer, Alessandro Sozzetti, Paolo Molaro, James S. Jenkins, Melvyn B. Davies, Jorge Lillo-Box, S. Chamberlain, Thomas Beck, P. Di Marcantonio, Carlos Martins, Maximilian N. Günther, Daniel Bayliss, Jacques Laskar, Peter J. Wheatley, P. P. Pedersen, Nicolas Thomas, Nicholas A. Walton, Göran Olofsson, Marko Sestovic, David R. Anderson, Artem Burdanov, Kevin Heng, Manuel Guedel, Jose I. Vines, A. García Muñoz, Edward Gillen, Valérie Van Grootel, T. G. Wilson, Michaël Gillon, Olivier Demangeon, D. Wolter, Demetrio Magrin, G. Polenta, G. Anglada Escudé, Stefano Cristiani, J. Haldemann, László L. Kiss, H. P. Osborn, Valerio Nascimbeni, Aleisha Hogan, Ennio Poretti, Pierre F. L. Maxted, S. C. C. Barros, G. Boué, Sébastien Charnoz, Benjamin F. Cooke, Nicolas Billot, C. Reimers, Don Pollacco, Gaetano Scandariato, Luca Fossati, Douglas R. Alves, J. I. González Hernández, Edward M. Bryant, Anders Erikson, Nelson J. Nunes, Wolfgang Baumjohann, Yann Alibert, A. Suárez Mascareño, Antoine Simon, Gy. M. Szabó, C. Lovis, Magali Deleuil, Andrea Fortier, Isabella Pagano, A. Bekkelien, G. Di Persio, Didier Queloz, Davide Gandolfi, Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, ITA, USA, GBR, FRA, DEU, AUT, BEL, CHL, DNK, NLD, PRT, SWE, CHE, HUN, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Genève (UNIGE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Swiss National Science Foundation, Agence Nationale de la Recherche (France), Science and Technology Facilities Council (UK), Belgian Science Policy Office, Université de Liège, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, Fundação para a Ciência e a Tecnologia (Portugal), Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Alvarez, M. [0000-0002-6786-2620], Carrasco Martínez, J. M. [0000-0002-3029-5853], Science & Technology Facilities Council, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
Brightness ,planets and satellites: detection ,Laplace resonance ,010504 meteorology & atmospheric sciences ,spectroscopic techniques ,planets and satellites: dynamical evolution and stability ,Astrophysics ,01 natural sciences ,Transits ,spectroscopic [Techniques] ,techniques: photometric ,Planet ,QB460 ,QB Astronomy ,010303 astronomy & astrophysics ,planets and satellites dynamical evolution and stability ,QC ,Institut für Optische Sensorsysteme ,QB ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Laplace transform ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,520 Astronomy ,photmetric [Techniques] ,3rd-DAS ,dynamical evolution and stability [Planets and satellites] ,planets and satellites detection ,Astrophysics::Earth and Planetary Astrophysics ,Extrasolare Planeten und Atmosphären ,Techniques: photmetric ,FOS: Physical sciences ,Context (language use) ,SPECULOOS ,Earth radius ,Mean-motion resonance ,0103 physical sciences ,Celestial mechanics ,CHEOPS ,QB600 ,0105 earth and related environmental sciences ,photometric techniques ,TESS ,Scattering ,Leitungsbereich PF ,photometric [Techniques] ,Astronomy and Astrophysics ,celestial mechanics ,620 Engineering ,detection [Planets and satellites] ,QC Physics ,13. Climate action ,Space and Planetary Science ,NGTS ,Planetare Sensorsysteme ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Event (particle physics) ,techniques: spectroscopic ,QB799 ,Planets and satellites: Detection ,Planets and satellites: Dynamical evolution and stability ,Techniques: Photometric ,Techniques: Spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Leleu, A., et al., Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152to 2.87Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02to 0.177times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes., The authors acknowledge support from the Swiss NCCR PlanetS and the Swiss National Science Foundation. Y.A. and M.J.H. acknowledge the support of the Swiss National Fund under grant 200020_172746. A.C.C. and T.W. acknowledge support from STFC consolidated grant number ST/M001296/1. This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. SH acknowledges CNES funding through the grant 837319. Based on data collected under the NGTS project at the ESO La Silla Paranal Observatory. The NGTS facility is operated by the consortium institutes with support from the UK Science and Technology Facilities Council (STFC) project ST/M001962/1. The Belgian participation to CHEOPS has been supported by the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Program, and by the University of Liège through an ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation. V.A. acknowledges the support from FCT through Investigador FCT contract nr. IF/00650/2015/CP1273/CT0001. We acknowledge support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grants ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, PGC2018-098153-B-C33, PGC2018-098153-B-C31, ESP2017-87676-C5-1-R, MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC), as well as the support of the Generalitat de Catalunya/CERCA programme. The MOC activities have been supported by the ESA contract No. 4000124370. S.C.C.B. acknowledges support from FCT through FCT contracts nr. IF/01312/2014/CP1215/CT0004. X.B., S.C., D.G., M.F. and J.L. acknowledge their role as ESA-appointed CHEOPS science team members. ABr was supported by the SNSA. A.C. acknowledges support by CFisUC projects (UIDB/04564/2020 and UIDP/04564/2020), GRAVITY (PTDC/FIS-AST/7002/2020), ENGAGE SKA (POCI-01-0145-FEDER-022217), and PHOBOS (POCI-01-0145-FEDER-029932), funded by COMPETE 2020 and FCT, Portugal. This work was supported by FCT - Fundaçãopara a Ciência e a Tecnologia through national funds and by FEDER through COMPETE2020 - Programa OperacionalCompetitividade e Internacionalização by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 and POCI-01-0145-FEDER- 032113; PTDC/FIS-AST/28953/2017 and POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 and POCI-01-0145-FEDER-028987. O.D.S.D. is supported in the form of work contract (DL 57/2016/CP1364/CT0004) funded by national funds through FCT. B.-O.D. acknowledges support from the Swiss National Science Foundation (PP00P2-190080). M.F. and C.M.P. gratefully acknowledgethe support of the Swedish National Space Agency (DNR 65/19, 174/18). D.G. gratefully acknowledges financial support from the CRT foundation under Grant No. 2018.2323 “Gaseousor rocky? Unveiling the nature of small worlds”. E.G. gratefully acknowledges support from the David and Claudia Harding Foundation in the form of a WintonExoplanet Fellowship. M.G. is an F.R.S.-FNRS Senior Research Associate. J.I.G.H. acknowledges financial support from Spanish Ministry of Science and Innovation (MICINN) under the 2013 Ramón y Cajal programme RYC-2013-14875. J.I.G.H., A.S.M., R.R., and C.A.P. acknowledge financial support from the Spanish MICINN AYA2017-86389-P. A.S.M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) under the 2019 Juan de la Cierva Programme. MNG ackowledges support from the MIT Kavli Institute as a Juan Carlos Torres Fellow. J.H. acknowledges the support of the Swiss National Fund under grant 200020_172746. KGI is the ESA CHEOPS Project Scientist and is responsible for the ESA CHEOPS Guest Observers Programme.She does not participate in, or contribute to, the definition of the Guaranteed Time Programme of the CHEOPS mission through which observations described in this paper have been taken, nor to any aspect of target selection forthe programme. J.S.J. acknowledges support by FONDECYT grant 1201371, and partial support from CONICYT project Basal AFB-170002. A.J. acknowledges support from ANID - Millennium Science Initiative - ICN12_009 and from FONDECYT project 1171208. P.M. acknowledges support from STFC research grant number ST/M001040/1. N.J.N is supported by the contract and exploratory project IF/00852/2015, and projects UID/FIS/04434/2019, PTDC/FIS-OUT/29048/2017, COMPETE2020: POCI-01-0145-FEDER-028987 & FCT: PTDC/FIS-AST/28987/2017. N.J.N is supported by the contract and exploratory project IF/00852/2015, and project PTDC/FIS-OUT/29048/2017. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127). Acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B- C33, as well as the support of the Generalitat de Catalunya/CERCA programme. S.G.S. acknowledges support from FCT through FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This project has been supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants GINOP-2.3.2-15-2016-00003, K-119517, K-125015, and the City of Szombathely under Agreement No. 67.177-21/2016. This research received funding from the MERAC foundation, from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 803193/ BEBOP, and from the Science and Technology Facilites Council (STFC, grant no ST/S00193X/1). V.V.G. is an F.R.S-FNRS Research Associate. J.I.V. acknowledges support of CONICYT-PFCHA/Doctorado Nacional-21191829. M. R. Z. O. acknowledges financial support from projects AYA2016-79425-C3-2-P and PID2019-109522GB-C51 from the Spanish Ministry of Science, Innovation and Universities.
- Published
- 2021
- Full Text
- View/download PDF
11. The atmosphere of HD 209458b seen with ESPRESSO. No detectable planetary absorptions at high resolution
- Author
-
Vardan Adibekyan, M. R. Zapatero Osorio, Yann Alibert, P. Di Marcantonio, François Bouchy, Cristina Martins, N. Casasayas-Barris, Francesco Borsa, Andrea Mehner, Giuseppina Micela, Paolo Molaro, S. Cristiani, Francesco Pepe, Nuno C. Santos, J. Lillo-Box, C. Lovis, Enric Palle, Vincent Bourrier, G. Lo Curto, Gang Chen, Rafael Rebolo, Fei Yan, O. D. S. Demangeon, J. I. González Hernández, V. D Odorico, Stéphane Udry, M. Stangret, S. G. Sousa, Mahmoudreza Oshagh, C. Allende Prieto, B. Lavie, A. Suárez Mascareño, P. Figueira, Alessandro Sozzetti, David Ehrenreich, R. Génova Santos, Romain Allart, Nelson J. Nunes, Hugo M. Tabernero, E. Poretti, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Yan, F. [0000-0001-9585-9034], Sozzetti, A. [0000-0002-7504-365X], Nunes, N. [0000-0002-3837-6914], Santos, N. [0000-0003-4422-2919], National Natural Science Foundation of China (NSFC), Deutsche Forschungsgemeinschaft (DFG), European Research Council (ERC), Fundacao para a Ciencia e a Tecnologia (FCT), Istituto Nazionale di Astrofisica (INAF), Agencia Estatal de Investigación (AEI), Swiss National Science Foundation (SNSF), ITA, ESP, PRT, and CHE
- Subjects
individual: HD 209458b [Planets and satellites] ,Absorption spectroscopy ,Gas giant ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Astronomical spectroscopy ,spectroscopic [Techniques] ,Atmosphere ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,observational [Methods] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Line (formation) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Atmospheric models ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Light curve ,Wavelength ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, NaI, MgI, FeI, FeII, CaI, VI, H$\alpha$, and KI. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported NaI, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models., Comment: 21 pages, 19 figures. Accepted
- Published
- 2021
12. ESPRESSO high-resolution transmission spectroscopy of WASP-76 b
- Author
-
S. Hojjatpanah, L. Genolet, Matteo Genoni, Paolo Molaro, Edoardo Maria Alberto Redaelli, T. Bandy, A. Segovia, Jorge Lillo-Box, Diogo Alves, A. Suárez Mascareño, Olivier Demangeon, Vincent Bourrier, João P. Faria, Julia V. Seidel, F. Tenegi, P. Figueira, Yann Alibert, Danuta Sosnowska, Giorgio Pariani, Matteo Aliverti, Antonino Bianco, M. Moschetti, J. Knudstrup, B. Delabre, M. Amate, Romain Allart, Olaf Iwert, Valentina D'Odorico, Francesco Borsa, Hugo M. Tabernero, J. L. Lizon, M. R. Zapatero Osorio, G. Avila, Paolo Conconi, Vardan Adibekyan, Alexandre Cabral, Ennio Poretti, Mário J. P. F. G. Monteiro, J. L. Rasilla, Andrea Mehner, Antonio Gouveia Oliveira, Filippo Maria Zerbi, Alessandro Sozzetti, François Bouchy, Luca Pasquini, Baptiste Lavie, Marco Landoni, E. Mueller, S. Deiries, Luca Oggioni, Nelson J. Nunes, R. Génova Santos, Claudio Cumani, João Coelho, S. C. C. Barros, Denis Mégevand, J. I. González Hernández, S. Santana-Tschudi, Paolo Santin, M. Affolter, Giuseppina Micela, Alessio Zanutta, G. Lo Curto, A. Fragoso, C. Allende Prieto, Pedro Santos, J. H. C. Martins, Antonio Manescau, Florian Kerber, Willy Benz, Hans Dekker, David Ehrenreich, Paolo Spanò, Rafael Rebolo, Xavier Dumusque, Cristina Martins, Núria Casasayas-Barris, Francesco Pepe, S. G. Sousa, Stefano Cristiani, C. Broeg, C. Maire, Andrea Modigliani, Stéphane Udry, Nuno C. Santos, Marco Riva, C. Lovis, Enric Palle, I. Hughes, P. Di Marcantonio, ITA, ESP, PRT, and CHE
- Subjects
530 Physics ,Continuum (design consultancy) ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Molecular physics ,Spectral line ,Atmosphere ,Espresso ,Planet ,0103 physical sciences ,Irradiation ,010303 astronomy & astrophysics ,Spectrograph ,Solar and Stellar Astrophysics (astro-ph.SR) ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,520 Astronomy ,Astronomy and Astrophysics ,500 Science ,620 Engineering ,Transmission (telecommunications) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly-irradiated, ultra-hot Jupiter-size planet WASP-76b. We investigate the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R approx 140,000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800-7880 A) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows wiggles that are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 sigma (Na I) and 2.8 sigma (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 sigma upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we found the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~ 0.1 % in the transmission spectrum and ~ 10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b., 20 pages, 19 figures, accepted for publication in Astronomy and Astrophysics
- Published
- 2021
- Full Text
- View/download PDF
13. A sub-Neptune and a non-transiting Neptune-mass companion unveiled by ESPRESSO around the bright late-F dwarf HD 5278 (TOI-130)
- Author
-
J. I. González Hernández, Thomas Barclay, Yann Alibert, George R. Ricker, Keivan G. Stassun, Paolo Molaro, Stefano Cristiani, J. Haldemann, Jorge Lillo-Box, M. Fasnaugh, Giuseppina Micela, Stéphane Udry, François Bouchy, Baptiste Lavie, Enric Palle, G. Lo Curto, S. G. Sousa, J. F. Otegi, Francesco Pepe, Mahmoudreza Oshagh, Rafael Rebolo, Valentina D'Odorico, Jon M. Jenkins, Pedro Figueira, Nuno C. Santos, Carlos Martins, Nelson J. Nunes, Daniel Conde Rodriguez, Aldo S. Bonomo, David Ehrenreich, Joshua N. Winn, Mario Damasso, Ennio Poretti, Romain Allart, A. Suárez Mascareño, C. Lovis, Alexandre Cabral, J. D. Twicken, V. Adibekyan, Sara Seager, David R. Ciardi, M. R. Zapatero Osorio, P. Di Marcantonio, S. C. C. Barros, D. Mégevand, Alessandro Sozzetti, David W. Latham, Andrea Mehner, Sozzetti, A. [0000-0002-7504-365X], Nunes, N. [0000-0002-3837-6914], Haldemann, J. [0000-0003-1231-2389], Istituto Nazionale di Astrofisica (INAF), Agenzia Spaziale Italiana (ASI), iss National Science Foundation (SNSF), Fundacao para a Ciencia e a Tecnologia (FCT), European Commission (EC), European Research Council (ERC), Ministerio de Economía y Competitividad (MINECO), and Agencia Estatal de Investigación (AEI) http://dx.doi.org/10.13039/501100011033
- Subjects
530 Physics ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,individual: HD 5278 (TOI-130) [Stars] ,Espresso ,Neptune ,0103 physical sciences ,miscellaneous [Methods] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,radial velocities [Techniques] ,010308 nuclear & particles physics ,520 Astronomy ,photometric [Techniques] ,Astronomy and Astrophysics ,Planetary system ,500 Science ,620 Engineering ,Planetary systems ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,composition [Planets and satellites] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. Transiting sub-Neptune-type planets, with radii approximately between 2 and 4 R⊕, are of particular interest as their study allows us to gain insight into the formation and evolution of a class of planets that are not found in our Solar System. Aims. We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by the TESS mission orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period of Pb = 14.3 days. Methods. We used 43 ESPRESSO high-resolution spectra and broad-band photometry information to derive accurate stellar atmospheric and physical parameters of HD 5278. We exploited the TESS light curve and spectroscopic diagnostics to gauge the impact of stellar activity on the ESPRESSO RVs. We performed separate as well as joint analyses of the TESS photometry and the ESPRESSO RVs using fully Bayesian frameworks to determine the system parameters. Results. Based on the ESPRESSO spectra, the updated stellar parameters of HD 5278 are Teff = 6203 ± 64 K, log g = 4.50 ± 0.11 dex, [Fe/H] = −0.12 ± 0.04 dex, M⋆ = 1.126−0.035+0.036 M⊙, and R⋆ = 1.194−0.016+0.017 R⊙. We determine HD 5278 b’s mass and radius to be Mb = 7.8−1.4+1.5 M⊕ and Rb = 2.45 ± 0.05R⊕. The derived mean density, ϱb = 2.9−0.5+0.6 g cm−3, is consistent with the bulk composition of a sub-Neptune with a substantial (~ 30%) water mass fraction and with a gas envelope comprising ~17% of the measured radius. Given the host brightness and irradiation levels, HD 5278 b is one of the best targetsorbiting G-F primaries for follow-up atmospheric characterization measurements with HST and JWST. We discover a second, non-transiting companion in the system, with a period of Pc = 40.87−0.17+0.18 days and a minimum mass of Mc sin ic = 18.4−1.9+1.8 M⊕. We study emerging trends in parameters space (e.g., mass, radius, stellar insolation, and mean density) of the growing population of transiting sub-Neptunes, and provide statistical evidence for a low occurrence of close-in, 10 − 15M⊕ companions around G-F primaries with Teff ≳ 5500 K. The authors acknowledge the ESPRESSO project team for its effort and dedication in building the ESPRESSO instrument. This work has received financial support from the ASI-INAF agreement no. 2018-16-HH.0. M.D. acknowledges financial support from the FP7-SPACE Project ETAEARTH (GA No. 313014). A.S. We gratefully acknowledges support from the Italian Space Agency (ASI) under contract 2018-24-HH.0. The INAF authors acknowledge financial support of the Italian Ministry of Education, University, and Research with PRIN 201278X4FL and the Progetti Premiali funding scheme.to acknowledge the Swiss National Science Foundation (SNSF) for supporting research with ESPRESSO through the SNSF grants no. 140649, 152721, and 166227. The ESPRESSO Instrument Project was partially funded through SNSF's FLARE Programme for large infrastructures. This work has been carried out in part within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation. This work was supported by FCT -Funda cao para a Ciencia e Tecnologia through national funds and by FEDER through COMPETE2020 -Programa Operacional Competitividade e Internacionaliza cao by these grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020; PTDC/FIS-AST/32113/2017 POCI-01-0145-FEDER-032113; PTDC/FIS-AST/28953/2017 & POCI-01-0145-FEDER-028953; PTDC/FIS-AST/28987/2017 & POCI-01-0145-FEDER-028987; PTDC/FIS-OUT/29048/2017 & IF/00852/2015. S.C.C.B. acknowledges support from FCT through contract nr. IF/01312/2014/CP1215/CT0004. S.G.S acknowledges the support from FCT through Investigator FCT contract nr. CEECIND/00826/2018 and POPH/FSE (EC). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project Four Aces, grant agreement no. 724427). V.A. acknowledges the support from FCT through Investigator FCT contract nr. IF/00650/2015/CP1273/CT0001. Y.A. and J.H. acknowledge the Swiss National Science Foundation (SNSF) for supporting research through the SNSF grant 200 020_192038. J.I.G.H. acknowledges financial support from Spanish Ministry of Science and Innovation (MICINN) under the 2013 Ramon y Cajal programme RYC-2013-14 875. J.I.G.H., A.S.M., R.R., and C.A.P. acknowledge financial support from the Spanish MICINN AYA2017-86 389-P. A.S.M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) under the 2019 Juan de la Cierva Programme. R.A. is a Trottier Postdoctoral Fellow and acknowledges support from the Trottier Family Foundation. This work was supported in part through a grant from FRQNT. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This publication makes use of The Data & Analysis Center for Exoplanets (DACE), which is a facility based at the University of Geneva (CH) dedicated to extrasolar planets data visualization, exchange and analysis. DACE is a platform of the Swiss National Centre of Competence in Research (NCCR) PlanetS, federating the expertise in Exoplanet research. The DACE platform is available at https://dace.unige.ch.This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST).; We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Peerreview
- Published
- 2021
- Full Text
- View/download PDF
14. Fundamental physics with ESPRESSO: Precise limit on variations in the fine-structure constant towards the bright quasar HE 0515$-$4414
- Author
-
Michael T. Murphy, Paolo Molaro, Ana C. O. Leite, Guido Cupani, Stefano Cristiani, Valentina D’Odorico, Ricardo Génova Santos, Carlos J. A. P. Martins, Dinko Milaković, Nelson J. Nunes, Tobias M. Schmidt, Francesco A. Pepe, Rafael Rebolo, Nuno C. Santos, Sérgio G. Sousa, Maria-Rosa Zapatero Osorio, Manuel Amate, Vardan Adibekyan, Yann Alibert, Carlos Allende Prieto, Veronica Baldini, Willy Benz, François Bouchy, Alexandre Cabral, Hans Dekker, Paolo Di Marcantonio, David Ehrenreich, Pedro Figueira, Jonay I. González Hernández, Marco Landoni, Christophe Lovis, Gaspare Lo Curto, Antonio Manescau, Denis Mégevand, Andrea Mehner, Giuseppina Micela, Luca Pasquini, Ennio Poretti, Marco Riva, Alessandro Sozzetti, Alejandro Suárez Mascareño, Stéphane Udry, and Filippo Zerbi
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The strong intervening absorption system at redshift 1.15 towards the very bright quasar HE 0515$-$4414 is the most studied absorber for measuring possible cosmological variations in the fine-structure constant, $\alpha$. We observed HE 0515$-$4414 for 16.1$\,$h with the Very Large Telescope and present here the first constraint on relative variations in $\alpha$ with parts-per-million (ppm) precision from the new ESPRESSO spectrograph: $\Delta\alpha/\alpha = 1.3 \pm 1.3_{\rm stat} \pm 0.4_{\rm sys}\,{\rm ppm}$. The statistical uncertainty (1$\sigma$) is similar to the ensemble precision of previous large samples of absorbers, and derives from the high S/N achieved ($\approx$105 per 0.4$\,$km$\,$s$^{-1}$ pixel). ESPRESSO's design, and calibration of our observations with its laser frequency comb, effectively removed wavelength calibration errors from our measurement. The high resolving power of our ESPRESSO spectrum ($R=145000$) enabled the identification of very narrow components within the absorption profile, allowing a more robust analysis of $\Delta\alpha/\alpha$. The evidence for the narrow components is corroborated by their correspondence with previously detected molecular hydrogen and neutral carbon. The main remaining systematic errors arise from ambiguities in the absorption profile modelling, effects from redispersing the individual quasar exposures, and convergence of the parameter estimation algorithm. All analyses of the spectrum, including systematic error estimates, were initially blinded to avoid human biases. We make our reduced ESPRESSO spectrum of HE 0515$-$4414 publicly available for further analysis. Combining our ESPRESSO result with 28 measurements, from other spectrographs, in which wavelength calibration errors have been mitigated, yields a weighted mean $\Delta\alpha/\alpha = -0.5 \pm 0.5_{\rm stat} \pm 0.4_{\rm sys}\,$ppm at redshifts 0.6-2.4., Comment: Accepted by A&A. The ESPRESSO quasar spectrum, reduced contributing exposures, and absorption profile fits are available at https://github.com/MTMurphy77/ESPRESSO_HE0515-4414
- Published
- 2021
- Full Text
- View/download PDF
15. ESPRESSO at VLT. On-sky performance and first results
- Author
-
G. Avila, Alexandre Cabral, Andrea Mehner, S. Deiries, C. Allende Prieto, Vardan Adibekyan, Roberto Cirami, Manuel Abreu, Luca Pasquini, M. Affolter, Luca Oggioni, Igor Coretti, Nelson J. Nunes, J. Knudstrup, G. Lo Curto, Nuno C. Santos, C. Lovis, Enric Palle, Damien Ségransan, Filippo Maria Zerbi, Yann Alibert, Jose Luis Rasilla, I. Hughes, A. Fragoso, S. Santana Tschudi, T. M. Schmidt, Romain Allart, Florian Kerber, Antonino Bianco, R. Génova Santos, Mahmoudreza Oshagh, Matteo Genoni, A. Segovia, João P. Faria, Rafael Rebolo, Vincent Bourrier, M. Moschetti, Olivier Demangeon, M. A. Monteiro, Marco Landoni, Danuta Sosnowska, Valentina D'Odorico, Willy Benz, P. Figueira, François Bouchy, Baptiste Lavie, Andrea Modigliani, Marco Riva, L. Genolet, Matteo Aliverti, Paolo Santin, B. Delabre, Paolo Molaro, J. L. Lizon, F. Tenegi, M. R. Zapatero Osorio, Antonio Gouveia Oliveira, Francesco Pepe, Paolo Conconi, Stéphane Udry, Guido Cupani, Hugo M. Tabernero, S. G. Sousa, José Manuel Rebordão, Hans Dekker, T. Bandy, Ennio Poretti, S. C. C. Barros, D. Álvarez, A. Suárez Mascareño, Stefano Cristiani, C. Maire, J. I. González Hernández, Giuseppina Micela, Giorgio Calderone, V. Baldini, Xavier Dumusque, Alessandro Sozzetti, Claudio Cumani, João Coelho, M. Amate, Francesco Borsa, Olaf Iwert, Denis Mégevand, Cristina Martins, Antonio Manescau, Alessio Zanutta, Michael T. Murphy, C. Broeg, Mario Damasso, M. Mayor, Jorge Lillo-Box, Pedro Santos, P. Di Marcantonio, P. Spano, Edoardo Maria Alberto Redaelli, Diogo Alves, Giorgio Pariani, Mário J. P. F. G. Monteiro, David Ehrenreich, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Swiss National Science Foundation (SNSF), Fundacao para a Ciencia e a Tecnologia (FCT), European Research Council (ERC), Agencia Estatal de Investigación (AEI), and Australian Research Council
- Subjects
Accuracy and precision ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,01 natural sciences ,7. Clean energy ,law.invention ,010309 optics ,Telescope ,Espresso ,Observatory ,law ,0103 physical sciences ,miscellaneous [Cosmology] ,spectrographs [Instrumentation] ,010303 astronomy & astrophysics ,Spectrograph ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Very Large Telescope ,radial velocities [Techniques] ,Asteroseismology ,Astronomy ,Astronomy and Astrophysics ,Exoplanet ,detection [Planets and satellites] ,Space and Planetary Science ,atmospheres [Planets and satellites] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
ESPRESSO is the new high-resolution spectrograph of ESO's Very-Large Telescope (VLT). It was designed for ultra-high radial-velocity precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UT) of the VLT at a spectral resolving power of 140,000 or 190,000 over the 378.2 to 788.7 nm wavelength range, or with all UTs together, turning the VLT into a 16-m diameter equivalent telescope in terms of collecting area, while still providing a resolving power of 70,000. We provide a general description of the ESPRESSO instrument, report on the actual on-sky performance, and present our Guaranteed-Time Observation (GTO) program with its first results. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1st, 2018, but improvements to the instrument and re-commissioning runs were conducted until July 2019. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65 arcsec exceeds the 10% mark under nominal astro-climatic conditions. We demonstrate a radial-velocity precision of better than 25 cm/s during one night and 50 cm/s over several months. These values being limited by photon noise and stellar jitter show that the performanceis compatible with an instrumental precision of 10 cm/s. No difference has been measured across the UTs neither in throughput nor RV precision. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterisation and many other fields., 26 pages, 28 figures
- Published
- 2021
16. Into the storm
- Author
-
Yann Alibert, Olivier Demangeon, Andrea Mehner, Aurélien Wyttenbach, Nuno C. Santos, H. J. Hoeijmakers, C. Lovis, Enric Palle, Hugo M. Tabernero, S. G. Sousa, M. R. Zapatero Osorio, Vincent Bourrier, N. Casasayas-Barris, Paolo Molaro, Francesco Borsa, P. Di Marcantonio, J. I. González Hernández, N. J. Nunes, Stefano Cristiani, Julia V. Seidel, P. Figueira, Vardan Adibekyan, Alessandro Sozzetti, Francesco Pepe, Romain Allart, Jorge Lillo-Box, Cristina Martins, David Ehrenreich, and L. Pino
- Subjects
530 Physics ,Gas giant ,Line: profiles ,FOS: Physical sciences ,Techniques: spectroscopic ,Astrophysics ,Astrophysics - Earth and planetary astrophysics ,01 natural sciences ,Atmosphere ,Planet ,Methods: data analysis ,0103 physical sciences ,Hot Jupiter ,Astrophysics::Solar and Stellar Astrophysics ,Planets and satellites: atmospheres ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,Planets and satellites: individual: WASP-76 b ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Atmospheric models ,010308 nuclear & particles physics ,520 Astronomy ,Astronomy and Astrophysics ,500 Science ,620 Engineering ,Exoplanet ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Exosphere - Abstract
Despite swift progress in the characterisation of exoplanet atmospheres in composition and structure, the study of atmospheric dynamics has not progressed at the same speed. While theoretical models have been developed to describe the lower layers of the atmosphere and, disconnected, the exosphere, little is known about the intermediate layers up to the thermosphere. We aim to provide a clearer picture of atmospheric dynamics for the class of ultra hot Jupiters, highly-irradiated gas giants, on the example of WASP-76~b. We analysed two datasets jointly, obtained with the HARPS and ESPRESSO spectrographs, to interpret the resolved planetary sodium doublet. We then applied an updated version of the MERC code, with added planetary rotation, also provides the possibility to model the latitude dependence of the wind patterns. We retrieve the highest Bayesian evidence for an isothermal atmosphere, interpreted as a mean temperature of $3389\pm227$ K, a uniform day-to-night side wind of $5.5^{+1.4}_{-2.0}\,$ km/s in the lower atmosphere with a vertical wind in the upper atmosphere of $22.7^{+4.9}_{-4.1}\,$ km/s, switching atmospheric wind patterns at $10^{-3}$ bar above the reference surface pressure ($10$ bar). Our results for WASP-76~b are compatible with previous studies of the lower atmospheric dynamics of WASP-76~b and other ultra hot Jupiters. They highlight the need for vertical winds in the intermediate atmosphere above the layers probed by global circulation model studies to explain the line broadening of the sodium doublet in this planet. This work demonstrates the capability of exploiting the resolved spectral line shapes to observationally constrain possible wind patterns in exoplanet atmospheres, an invaluable input to more sophisticated 3D atmospheric models in the future., 17 pages, 20 figures, submitted to A&A 15.Feb.2021, accepted for publication in A&A 20.Jul.2021
- Published
- 2021
17. The Solar Gravitational Redshift from HARPS-LFC Moon Spectra A Test of the General Theory of Realitivity*,**
- Author
-
Tobias Wilken, J. I. González Hernández, Matthias Steffen, A. Suárez Mascareño, Ronald Holzwarth, B. Toledo-Padrón, Hans-Günter Ludwig, Elisabetta Caffau, Paolo Molaro, Massimiliano Esposito, L. Pasquini, Tilo Steinmetz, G. Lo Curto, Rafael Rebolo, Theodor W. Hänsch, Antonio Manescau, Rafael A. Probst, Thomas Udem, Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Solar System ,010504 meteorology & atmospheric sciences ,General relativity ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,Spectral line ,Sun: granulation ,Gravitational potential ,Sun: activity ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,Line (formation) ,instrumentation: spectrographs ,Physics ,Sun: photosphere ,Astronomy and Astrophysics ,Redshift ,atlases ,Wavelength ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Physics::Space Physics ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,techniques: spectroscopic ,Gravitational redshift - Abstract
The General Theory of Relativity predicts the redshift of spectral lines in the solar photosphere, as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun's reflected light on solar system bodies. The laser frequency comb (LFC) calibration system attached to the HARPS spectrograph offers the possibility to perform an accurate measurement of the solar gravitational redshift (GRS) by observing the Moon or other solar system bodies. We have analysed the line shift observed in Fe absorption lines from five high-quality HARPS-LFC spectra of the Moon. We select an initial sample of 326 photospheric Fe lines in the spectral range 476-585 nm and measure their line positions and equivalent widths (EWs). Accurate line shifts are derived from the wavelength position of the core of the lines compared with the laboratory wavelengths. We fit the observed spectral Fe lines using CO$^5$BOLD 3D synthetic profiles. Convective motions in the solar photosphere do not affect the line cores of Fe lines stronger than about $\sim 150$ mA. In our sample, only 15 FeI lines have EWs in the range $150, Comment: Accepted for publication in Astronomy & Astrophysics
- Published
- 2020
- Full Text
- View/download PDF
18. Four direct measurements of the fine-structure constant 13 billion years ago
- Author
-
Sarah E. I. Bosman, Luca Pasquini, Chung-Chi Lee, Paolo Molaro, Jochen Liske, Mariusz P. Dąbrowski, Katarzyna Leszczynska, Konrad Marosek, Robert F. Carswell, Matthew Bainbridge, Carlos Martins, Dinko Milaković, John K. Webb, A. C. O. Leite, Vincent Dumont, Michael R. Wilczynska, John D. Barrow, Wilczynska, Michael R [0000-0002-4264-8038], Webb, John K [0000-0002-0004-9360], Carswell, Robert F [0000-0002-0185-1144], Dąbrowski, Mariusz P [0000-0001-8722-9470], Dumont, Vincent [0000-0002-4718-1051], Leite, Ana Catarina [0000-0001-8361-6684], Liske, Jochen [0000-0001-7542-2927], Marosek, Konrad [0000-0002-5681-8245], Martins, Carlos JAP [0000-0002-4886-9261], Milaković, Dinko [0000-0001-6283-4041], Molaro, Paolo [0000-0002-0571-4163], Pasquini, Luca [0000-0001-7517-8274], and Apollo - University of Cambridge Repository
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics ,01 natural sciences ,General Relativity and Quantum Cosmology ,0103 physical sciences ,Range (statistics) ,010306 general physics ,010303 astronomy & astrophysics ,Spectrograph ,Research Articles ,Physics ,Very Large Telescope ,Multidisciplinary ,SciAdv r-articles ,Quasar ,Fine-structure constant ,Astrophysics - Astrophysics of Galaxies ,Billion years ,Redshift ,5101 Astronomical Sciences ,Astrophysics of Galaxies (astro-ph.GA) ,Spatial variability ,51 Physical Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Research Article - Abstract
Observations of the redshift z=7.085 quasar J1120+0641 have been used to search for variations of the fine structure constant, alpha, over the redshift range 5.5 to 7.1. Observations at z=7.1 probe the physics of the universe when it was only 0.8 billion years old. These are the most distant direct measurements of alpha to date and the first measurements made with a near-IR spectrograph. A new AI analysis method has been employed. Four measurements from the X-SHOOTER spectrograph on the European Southern Observatory's Very Large Telescope (VLT) directly constrain any changes in alpha relative to the value measured on Earth (alpha_0). The weighted mean strength of the electromagnetic force over this redshift range in this location in the universe is da/a = (alpha_z - alpha_0)/alpha_0 = (-2.18 +/- 7.27) X 10^{-5}, i.e. we find no evidence for a temporal change from the 4 new very high redshift measurements. When the 4 new measurements are combined with a large existing sample of lower redshift measurements, a new limit on possible spatial variation of da/a is marginally preferred over a no-variation model at the 3.7 sigma level., Comment: Accepted for publication in Science Advances
- Published
- 2020
- Full Text
- View/download PDF
19. Direct evidence for shock-powered optical emission in a nova
- Author
-
Adam Popowicz, Miroslav Filipovic, Brian D. Metzger, Adam Kawash, Koji Mukai, Raimundo Lopes de Oliveira, Marina Orio, Elad Steinberg, Stuart D. Ryder, Andrzej Pigulski, Gerald Handler, Patrick J. Vallely, Ken J. Shen, R. Z. E. Alsaberi, Luca Izzo, P. Manojlovic, Benjamin J. Shappee, K. R. Pollard, David A. H. Buckley, K. L. Page, Frederick M. Walter, Alexei Y. Kniazev, Ondřej Pejcha, Jennifer L. Sokoloski, Paolo Molaro, K. L. Li, E. J. Harvey, Werner W. Weiss, Herbert Pablo, Justin D. Linford, Elias Aydi, Gregg A. Wade, Laura Chomiuk, Anthony F. J. Moffat, Christopher S. Kochanek, Kirill Sokolovsky, Rainer Kuschnig, Michael J. I. Brown, Jay Strader, Joanna Mikolajewska, Indrek Vurm, and Konstanze Zwintz
- Subjects
010504 meteorology & atmospheric sciences ,High-energy astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,ACCELERATION ,01 natural sciences ,Luminosity ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,OUTBURST ,Ejecta ,010303 astronomy & astrophysics ,QC ,Astrophysics::Galaxy Astrophysics ,QB ,0105 earth and related environmental sciences ,Time domain astronomy ,LIGHT CURVES ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,EJECTION ,White dwarf ,Astronomy and Astrophysics ,Nova (laser) ,Stars ,Wavelength ,Astrophysics - High Energy Astrophysical Phenomena ,GAMMA-RAY EMISSION - Abstract
Classical novae are thermonuclear explosions that occur on the surfaces of white dwarf stars in interacting binary systems (Bode & Evans 2008). It has long been thought that the luminosity of classical novae is powered by continued nuclear burning on the surface of the white dwarf after the initial runaway (Gallaher & Starrfield 1978). However, recent observations of GeV $\gamma$-rays from classical novae have hinted that shocks internal to the nova ejecta may dominate the nova emission. Shocks have also been suggested to power the luminosity of events as diverse as stellar mergers (Metzger & Pejcha 2017), supernovae (Moriya et al. 2018), and tidal disruption events (Roth et al. 2016), but observational confirmation has been lacking. Here we report simultaneous space-based optical and $\gamma$-ray observations of the 2018 nova V906 Carinae (ASASSN-18fv), revealing a remarkable series of distinct correlated flares in both bands. The optical and $\gamma$-ray flares occur simultaneously, implying a common origin in shocks. During the flares, the nova luminosity doubles, implying that the bulk of the luminosity is shock-powered. Furthermore, we detect concurrent but weak X-ray emission from deeply embedded shocks, confirming that the shock power does not appear in the X-ray band and supporting its emergence at longer wavelengths. Our data, spanning the spectrum from radio to $\gamma$-ray, provide direct evidence that shocks can power substantial luminosity in classical novae and other optical transients., Comment: 49 pages including supplementary information. Accepted and published in Nature Astronomy
- Published
- 2020
- Full Text
- View/download PDF
20. Characterization of the K2-38 planetary system: Unraveling one of the densest planets known to date
- Author
-
Claudio Cumani, João Coelho, Luca Oggioni, Nelson J. Nunes, Alessio Zanutta, Matteo Genoni, Antonio Manescau, Jorge Lillo-Box, François Bouchy, A. Segovia, Nuno C. Santos, M. Moschetti, M. Affolter, L. Genolet, A. Fragoso, Paolo Spanò, G. Lo Curto, Pedro Figueira, Valentina D'Odorico, Alessandro Sozzetti, C. Broeg, Alexandre Cabral, Andrea Mehner, J. L. Rasilla, Marco Riva, B. Toledo-Padrón, Roberto Cirami, I. Hughes, C. Lovis, Rafael Rebolo, Hugo M. Tabernero, Francesco Pepe, L. Pasquini, Willy Benz, Ennio Poretti, Marco Landoni, B. Lavie, T. Bandy, Yann Alibert, Antonio Cesar de Oliveira, Diego Bossini, A. Suárez Mascareño, Mahmoudreza Oshagh, C. Allende Prieto, Stefano Cristiani, Filippo Maria Zerbi, M. A. Monteiro, S. Deiries, Danuta Sosnowska, Carlos Martins, Paolo Conconi, R. Génova Santos, F. Tenegi, Charles Maire, Igor Coretti, Matteo Aliverti, S. C. C. Barros, E. Mueller, J. I. González Hernández, Andrea Modigliani, Serena Benatti, B. Delabre, David Alves, M. Amate, Olaf Iwert, V. Baldini, Stéphane Udry, G. Cupani, Hans Dekker, P. Di Marcantonio, Pedro Santos, V. Adibekyan, Giorgio Calderone, D. Mégevand, M. R. Zapatero Osorio, Manuel Abreu, S. Santana Tschudi, J. Knudstrup, Romain Allart, Andrea Bianco, Olivier Demangeon, Paolo Molaro, Paolo Santin, Mario Damasso, Enric Palle, S. G. Sousa, Giorgio Pariani, J.-L. Lizon, Gerardo Avila, David Ehrenreich, Edoardo Maria Alberto Redaelli, Mário J. P. F. G. Monteiro, Giuseppina Micela, Toledon Padron, M.[0000-0001-8160-5076], Pallé, E. [0000-0003-0987-1593], Zapatero Osorio, M. R. [0000-0001-5664-2852], Spanish Ministry of Science and Innovation (MICINN) project, Fundacion La Caixa, Swiss National Science Foundation (SNSF), ESPRESSO through the SNSF, European Commission, Spanish MICINN under the 2013 Ramon y Cajal program, FCT - Fundacao para a Ciencia e a Tecnologia, FEDER through COMPETE2020 Programa Operacional Competitividade e Internacionalizacao, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, European Research Council (ERC), Fundacao para a Ciencia e a Tecnologia (FCT), and Ministerio de Ciencia e Innovación (MICINN)
- Subjects
Star (game theory) ,FOS: Physical sciences ,photometric [Techniqies] ,Astrophysics ,Characterization (mathematics) ,01 natural sciences ,Spectral line ,K2 38 ,Planet ,individual [Stars] ,0103 physical sciences ,spectrographs [Instrumentation] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,radial velocities [Techniques] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Radius ,Planetary system ,Light curve ,Radial velocity ,detection [Planets and satellites] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,composition [Planets and satellites] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Toledo-Padrón, B. et al., Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with Pb = 4.01593 ± 0.00050 d and Pc = 10.56103 ± 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, Teff = 5731 ± 66, log g = 4.38 ± 0.11 dex, and [Fe/H] = 0.26 ± 0.05 dex, and thus the mass and radius of K2-38, Ma = 1.03-0.02+0.04 MaS and Ra = 1.06-0.06+0.09 RaS. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with RP = 1.54 ± 0.14 RaS and Mp = 7.3-1.0+1.1 MaS, and K2-38c as a sub-Neptune with RP = 2.29 ± 0.26 RaS and Mp = 8.3-1.3+1.3 MaS. Combining the radius and mass measurements, we derived a mean density of ρp = 11.0-2.8+4.1 g cm-3 for K2-38b and ρp = 3.8-1.1+1.8 g cm-3 for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
21. ELT-HIRES, the high resolution spectrograph for the ELT: the Phase A study and the path to construction
- Author
-
François Bouchy, Andrzej Niedzielski, Thomas Marquart, Stefano Cristiani, Giuseppina Micela, Matteo Genoni, Livia Origlia, Eric Stempels, Philipp Huke, A. Fragoso, I. de Castro Leão, G. Pietrzynski, Valentina D'Odorico, Erik Zackrisson, C. Hansen, E. Niemczura, Graham J. Murray, D. Sosnowska, Andreas Korn, Edwin A. Bergin, Michella Grey Araújo Monteiro, A. Cabral, A. Humphrey, M. R. Zapatero Osorio, P. Figueira, Stefano Covino, Sheila Vilarindo de Sousa, E. Gallo, John D. Monnier, Matteo Aliverti, Igor Coretti, Jose Luis Rasilla, G. Cupani, Sergio Ribeiro Augusto, David Lunney, José Peñate, Luca Pasquini, Lise Christensen, Klaus G. Strassmeier, Phil Rees, Andrea Chiavassa, Marco Riva, C. Lovis, Alessandro Marconi, B. L. Canto Martins, Étienne Artigau, B. Chazelas, Vardan Adibekyan, Enrico Pinna, Nelson J. Nunes, Christoph Mordasini, F. Sortino, Raffaele Gratton, Enric Palle, Rafael Rebolo, Lison Malo, Holger Drass, Isabelle Boisse, Tzu-Chiang Shen, P. Maslowski, I. Hughes, F. Tenegi, P. Parr-Burman, Hans Kjeldsen, René Doyon, A. Mucciarelli, Pedro J. Amado, J. I. González Hernández, Björn Benneke, Andrea Tozzi, Elena Mason, Johan P. U. Fynbo, Roberto Maiolino, M. Woche, C. Allende Prieto, Nikolai Piskunov, M. Amate, D. Romano, Nicoletta Sanna, J. R. De Medeiros, Tim Morris, P. Di Marcantonio, M. Sarajlic, A. Pollo, Xavier Bonfils, R. Calvo-Ortega, Francesco Pepe, Marco Xompero, Paolo Molaro, Roberto Cirami, Philippe Berio, G. Cresci, N. Bezawada, B. Nisini, L. Vanzi, J. Hlavacek-Larrondo, Ansgar Reiners, Ernesto Oliva, Manuel Abreu, M. A. F. de Souza, Stéphane Udry, Martin G. Haehnelt, Luca Valenziano, Michael Weber, S. Becerril, S. Rousseau, Cristina Martins, C. Broeg, Marco Landoni, S. C. C. Barros, V. Cunha Parro, Jochen Liske, I. Di Varano, Driss Kouach, Giorgio Pariani, ITA, USA, GBR, FRA, DEU, ESP, BRA, CAN, CHL, DNK, POL, SWE, CHE, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,COSMIC cancer database ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Phase (waves) ,Astronomy ,01 natural sciences ,Exoplanet ,010309 optics ,Stars ,0103 physical sciences ,Path (graph theory) ,Spectral resolution ,Extremely large telescope ,010303 astronomy & astrophysics ,Spectrograph ,ComputingMilieux_MISCELLANEOUS - Abstract
HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
- Published
- 2020
- Full Text
- View/download PDF
22. Broadband transmission spectroscopy of HD 209458b with ESPRESSO: evidence for Na, TiO, or both
- Author
-
Cristina Martins, Marco Riva, C. Lovis, Enric Palle, E. Poretti, O. D. S. Demangeon, S. G. Sousa, S. C. C. Barros, P. Figueira, G. Lo Curto, Xavier Dumusque, Nelson J. Nunes, Romain Allart, J. I. González Hernández, Vardan Adibekyan, Rafael Rebolo, François Bouchy, S. Cristiani, Yann Alibert, Stéphane Udry, Andrea Mehner, M. R. Zapatero Osorio, C. Allende Prieto, B. Lavie, David Ehrenreich, Alessandro Sozzetti, A. Suárez Mascareño, Paolo Molaro, Francesco Pepe, E. Cristo, N. C. Santos, Denis Mégevand, Giuseppina Micela, J. H. C. Martins, Vincent Bourrier, P. Di Marcantonio, Hugo M. Tabernero, A. Cabral, N. Casasayas-Barris, Francesco Borsa, Antonio Manescau, M. Oshagh, Hans Dekker, J. P. Faria, V. D'Odorico, Fundacao para a Ciencia e a Tecnologia (FCT), Istituto Nazionale di Astrofisica (INAF), European Research Council (ERC), Agencia Estatal de Investigación (AEI), Santos, N. C. [0000-0003-4422-2919], Cristo, E. [0000-0001-5992-7589], Demangeon, O. D. S. [0000-0001-7918-0355], Oshagh, M. [0000-0002-0715-8789], Palle, E. [0000-0003-0987-1593], Portuguese Foundation for Science and Technology, FEDER through COMPETE2020 -Programa Operacional Competitividade e Internacionalizacao, Italian Ministry of Education University, and Research, European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (project Four Aces grant), and Spanish Ministry of Science Innovation and Universities (MICIU)
- Subjects
FOS: Physical sciences ,Context (language use) ,01 natural sciences ,7. Clean energy ,Spectral line ,spectroscopic [Techniques] ,Espresso ,Planet ,0103 physical sciences ,HD 209458b ,Chromatic scale ,Spectroscopy ,010303 astronomy & astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Exoplanet ,3. Good health ,Computational physics ,Planetary systems ,Transmission (telecommunications) ,13. Climate action ,Space and Planetary Science ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The detection and characterization of exoplanet atmospheres is currently one of the main drivers pushing the development of new observing facilities. In this context, high-resolution spectrographs are proving their potential and showing that high-resolution spectroscopy will be paramount in this field. Aims. We aim to make use of ESPRESSO high-resolution spectra, which cover two transits of HD 209458b, to probe the broadband transmission optical spectrum of the planet. Methods. We applied the chromatic Rossiter-McLaughin method to derive the transmission spectrum of HD 209458b. We compared the results with previous HST observations and with synthetic spectra. Results. We recover a transmission spectrum of HD 209458b similar to the one obtained with HST data. The models suggest that the observed signal can be explained by only Na, only TiO, or both Na and TiO, even though none is fully capable of explaining our observed transmission spectrum. Extra absorbers may be needed to explain the full dataset, though modeling approximations and observational errors can also be responsible for the observed mismatch. Conclusions. Using the chromatic Rossiter-McLaughlin technique, ESPRESSO is able to provide broadband transmission spectra of exoplanets from the ground, in conjunction with space-based facilities, opening good perspectives for similar studies of other planets., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
- Full Text
- View/download PDF
23. A precise architecture characterization of the π Mensae planetary system
- Author
-
Giorgio Pariani, A. Fragoso, Andrea Modigliani, Paolo Molaro, Yann Alibert, Jose Luis Rasilla, Giuseppina Micela, S. Santana Tschudi, David Ehrenreich, Antonino Bianco, Paolo Conconi, Hans Dekker, P. Figueira, Denis Mégevand, Luca Pasquini, Matteo Aliverti, B. Delabre, Filippo Maria Zerbi, T. Bandy, M. A. Monteiro, E. Mueller, R. Génova Santos, C. Maire, A. Suárez Mascareño, Edoardo Maria Alberto Redaelli, Manuel Abreu, Giorgio Calderone, Luca Oggioni, G. Avila, C. Allende Prieto, L. Genolet, Mahmoudreza Oshagh, Nelson J. Nunes, M. Affolter, Stéphane Udry, Vardan Adibekyan, Ennio Poretti, Alessandro Sozzetti, G. Lo Curto, David Alves, Danuta Sosnowska, Alexandre Cabral, Andrea Mehner, J. Knudstrup, Romain Allart, F. Tenegi, Nuno C. Santos, Stefano Cristiani, Marco Riva, Florian Kerber, José Manuel Rebordão, Rafael Rebolo, Olivier Demangeon, C. Lovis, Enric Palle, Damien Ségransan, I. Hughes, Mário J. P. F. G. Monteiro, Vincent Bourrier, J. I. González Hernández, G. Cupani, M. Amate, J. L. Lizon, Roberto Cirami, M. R. Zapatero Osorio, Antonio Gouveia Oliveira, Paolo Santin, João P. Faria, François Bouchy, Baptiste Lavie, S. G. Sousa, Hugo M. Tabernero, Willy Benz, D. Álvarez, Francesco Borsa, T. M. Schmidt, P. Di Marcantonio, Diego Bossini, Francesco Pepe, P. Spano, Pedro Santos, Marco Landoni, S. C. C. Barros, Xavier Dumusque, Olaf Iwert, Cristina Martins, Michael T. Murphy, V. Baldini, C. Broeg, Matteo Genoni, Claudio Cumani, A. Segovia, M. Moschetti, João Coelho, Valentina D'Odorico, Alessio Zanutta, S. Deiries, Igor Coretti, Jorge Lillo-Box, Mario Damasso, Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Swiss National Science Foundation (SNSF), Agenzia Spaziale Italiana (ASI), Fundação para a Ciência e a Tecnologia (FCT), Australian Research Council (ARC), Istituto Nazionale Astrofisica (INAF), Pallé, E. [0000-0003-0987-1593], Progetto Premiale 2015 FRONTIERA funding scheme of the Italian Ministry of Education University and Research, ESPRESSO through the SNSF 140649 152721 166227 184618 University and Research OB.FU. 1.05.06.11, SNSF's FLARE Programme, FEDER through COMPETE2020 -Programa Operacional Competitividade e Internacionalizacao UID/FIS/04434/2019 UIDB/04434/2020 UIDP/04434/2020 PTDC/FIS-AST/32113/2017 POCI-01-0145-FEDER-032113 PTDC/FIS-AST/28953/2017 POCI-01-0145-FEDER-028953 PTDC/FIS-AST/28987/2017 POCI-01-0145-FEDER-028987, Fundação para a Ciência e a Tecnologia (FCT) IF/01312/2014/CP1215/CT0004 IF/00650/2015/CP1273/CT0001 IF/00028/2014/CP1215/CT0002 DL 57/2016/CP1364/CT0005, Spanish Government, Ministerio de Ciencia e Innovación (MICINN) under the 2013 Ramon y Cajal program RYC-2013-14875, Australian Research Council, Istituto Nazionale Astrofisica (INAF) Agenzia Spaziale Italiana (ASI) n.2018-16-HH.0, and Unidad de Excelencia María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC
- Subjects
Orbital plane ,Brown dwarf ,Orbital eccentricity ,Context (language use) ,Astrophysics ,01 natural sciences ,Planet ,pi Men ,individual: π Men [Stars] ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Stars: individual: π Men ,radial velocities [Techniques] ,010308 nuclear & particles physics ,photometric [Techniques] ,individual: [stars] ,Astronomy and Astrophysics ,Astrometry ,Planetary system ,Radial velocity ,Planetary systems ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Techniques: radial velocities ,Astrophysics::Earth and Planetary Astrophysics ,Techniques: photometric ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Damasso, M. et al., Context. The bright star π Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M· planet at ∼0.07 au and a sub-stellar companion on a ∼2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization. Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of π Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. Results. We present a precise characterization of the planetary system around π Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s-1) allow for a precise retrieval of the Doppler signal induced by π Men c. The residuals show a root mean square of 1.2 m s-1, which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than ∼2 M· within the orbit of π Men c). We improve the ephemeris of π Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of π Men b with high precision (ib =45.8-1.1+1.4 deg). This leads to the precise measurement of its absolute mass mb =14.1-0.4+0.5 MJup, indicating that π Men b can be classified as a brown dwarf. Conclusions. The π Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the π Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of π Men b contributes to make the brown dwarf desert a bit greener., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
24. Absorption and emission features of 7Be ii in the outburst spectra of V838 Her (Nova Her 1991)
- Author
-
Paolo Molaro, Luca Izzo, P. Selvelli, and ITA
- Subjects
Galaxies: abundances ,Doubly ionized oxygen ,abundances [Galaxies] ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Spectral line ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,general [Ultraviolet] ,Novae, cataclysmic variables ,0103 physical sciences ,Absorption (logic) ,Ultraviolet: general ,010306 general physics ,Ejecta ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Line (formation) ,Physics ,Nebula ,Stars: individual: V838 Her ,Stars: abundances ,Galaxies: evolution ,Resonance ,Astronomy and Astrophysics ,Nova (laser) ,evolution [Galaxies] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,abundances [Stars] ,individual: V838 Her [Stars] - Abstract
High and low resolution $IUE$ spectra of V838 Her in the early outburst stages exhibit a strong absorption feature shortward of $\lambda$3130. We discuss the nature of this spectral feature and provide convincing evidence that it corresponds to the blue-shifted resonance doublet of singly-ionized $^7$Be, recently discovered in other novae. During the evolution of the outburst the appearance of an emission feature close to $\lambda$3130 is also identified as $^7$Be II $\lambda$3132 because the usual identification as the O III $\lambda$3133.7 Bowen fluorescence line is hardly compatible with both the known oxygen under-abundance in the nova ejecta and the low optical depths in the nebula due to the high outflow velocity. The average $^7$Be abundance relative to hydrogen, estimated by four different methods, i.e. the $^7$Be II / Mg II absorption ratio, and the $^7$Be II / Mg II, $^7$Be II / He II$_{1640}$, and $^7$Be II / H$\beta$ emission ratios is N(Be)/N(H) $\approx$ 2.5 $\times 10^{-5}$ (by number), i.e. $\approx$ 1.7 $\times 10^{-4}$ by mass. This corresponds to an overproduction of $^7$Be by about 1 dex in comparison with the theoretical models of massive CO and ONe novae. Since $^7$Be all converts into $^7$Li, the $^7$Be/H abundance implies a $^7$Li/H overabundance of about 4 dex over the $^7$/H meteoritic value and indicates a total ejected mass of $^7$Li of $\approx$ 9.5$\times$10$^{-10}$ $M_{\odot}$. These data are in line with previous observations and indicate that large amounts of $^7$Li can be synthesized in a variety of novae, including very fast ONe novae., Comment: MNRAS accepted, 13 pages, 6 figures
- Published
- 2018
- Full Text
- View/download PDF
25. FRANCESCO FONTANA AND THE BIRTH OF THE ASTRONOMICAL TELESCOPE
- Author
-
Paolo Molaro
- Subjects
History ,Physics and Astronomy (miscellaneous) ,Astronomy and Astrophysics - Published
- 2017
- Full Text
- View/download PDF
26. Thomas Harriot at the National Gallery?
- Author
-
Paolo Molaro
- Subjects
History of astronomy ,Space and Planetary Science ,media_common.quotation_subject ,Art history ,Astronomy and Astrophysics ,Art ,media_common - Published
- 2017
- Full Text
- View/download PDF
27. Rotational and Rotational-Vibrational Raman Spectroscopy of Air to Characterize Astronomical Spectrographs
- Author
-
Florian Kerber, Denis Mégevand, Alexandre Cabral, Andrea Mehner, Paolo Molaro, Thomas Pfrommer, M. Amate, Marco Riva, Gaspare Lo Curto, P. Figueira, Francesco Pepe, Paolo Di Marcantonio, Diego Parraguez, Maria Rosa Zapatero Osorio, Shanshan Yu, Frédéric P. A. Vogt, and Christophe Lovis
- Subjects
Physics ,Very Large Telescope ,Angular momentum ,Physics - Instrumentation and Detectors ,Resolution (electron density) ,FOS: Physical sciences ,General Physics and Astronomy ,Instrumentation and Detectors (physics.ins-det) ,Laser ,Quantum number ,01 natural sciences ,law.invention ,Physics - Atmospheric and Oceanic Physics ,symbols.namesake ,law ,Atmospheric and Oceanic Physics (physics.ao-ph) ,0103 physical sciences ,symbols ,Atomic physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,010306 general physics ,Raman spectroscopy ,Ground state ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Raman scattering - Abstract
Raman scattering enables unforeseen uses for the laser guide-star system of the Very Large Telescope. Here, we present the observation of one up-link sodium laser beam acquired with the ESPRESSO spectrograph at a resolution $\lambda/\Delta\lambda \sim 140'000$. In 900s on-source, we detect the pure rotational Raman lines of $^{16}$O$_2$, $^{14}$N$_2$, and $^{14}$N$^{15}$N (tentatively) up to rotational quantum numbers $J$ of 27, 24, and 9, respectively. We detect the $^{16}$O$_2$ fine-structure lines induced by the interaction of the electronic spin \textbf{S} and end-over-end rotational angular momentum \textbf{N} in the electronic ground state of this molecule up to $N=9$. The same spectrum also reveals the $\nu_{1\leftarrow0}$ rotational-vibrational Q-branch for $^{16}$O$_2$ and $^{14}$N$_2$. These observations demonstrate the potential of using laser guide-star systems as accurate calibration sources for characterizing new astronomical spectrographs., Comment: 11 pages, 3 figures. Accepted for publication in Physical Review Letters
- Published
- 2019
- Full Text
- View/download PDF
28. WASP-127b: a misaligned planet with a partly cloudy atmosphere and tenuous sodium signature seen by ESPRESSO
- Author
-
P. Di Marcantonio, M. Cretignier, Alessandro Sozzetti, Stéphane Udry, Vincent Bourrier, P. Figueira, J. I. González Hernández, Stefano Cristiani, Vardan Adibekyan, François Bouchy, Baptiste Lavie, Olivier Demangeon, Núria Casasayas-Barris, A. Suárez Mascareño, Cristina Martins, Nuno C. Santos, Marco Riva, C. Lovis, Enric Palle, Antonio Manescau, Denis Mégevand, Hans Dekker, Nelson J. Nunes, Monika Lendl, Alexandre Cabral, Andrea Mehner, Ennio Poretti, Lorenzo Pino, M. R. Zapatero Osorio, Francesco Pepe, Willy Benz, Yann Alibert, G. Lo Curto, S. G. Sousa, Valentina D'Odorico, Paolo Molaro, Rafael Rebolo, Hugo M. Tabernero, Giuseppina Micela, M. Amate, Xavier Dumusque, Jorge Lillo-Box, Francesco Borsa, Romain Allart, C. Allende Prieto, Filippo Maria Zerbi, R. Génova Santos, Mahmoudreza Oshagh, David Ehrenreich, Swiss National Science Foundation (SNSF), European Research Council (ERC), Fundacao para a Ciencia e a Tecnologia (FCT), Istituto Nazionale di Astrofisica (INAF), Allart, R. [0000-0002-1199-9759], Pino, L. [0000-0002-1321-8856], Zapatero Osorio, M. R. [0000-0001-5664-2852], Pallé, E. [0000-0003-0987-1593], Pepe, F. [0000-0002-9815-773X], Cristiani, S. [0000-0002-2115-5234], Rebolo, R. [0000-0003-3767-7085], Bourrier, V. [0000-0002-9148-034X], Demangeon, O. D. S. [0000-0001-7918-0355], Lendl, M. [0000-0001-9699-1459], Lillo Box, J. [0000-0003-3742-1987], Sozzetti, A. [0000-0002-7504-365X], Tabernero, H. [0000-0002-8087-4298], Adibekyan, V. [0000-0002-0601-6199], Allende Prieto, C. [0000-0002-0084-572X], Cabral, A. [0000-0002-9433-871X], D´Odorico, V. [0000-0003-3693-3091], Di Marcantonio, P. [0000-0003-3168-2289], González Hernández, J. I. [0000-0002-0264-7356], Mehner, A. [0000-0002-9564-3302], Molaro, P. [0000-0002-0571-4163], Poretti, E. [0000-0003-1200-0473], Zerbi, F. M. [0000-0002-9996-973X], European Research Council (ERC) under the European Union, FEDER through COMPETE2020 Programa Operacional Competitividade e Internacionalizacao, Research Projects of National Relevance (PRIN), 201278X4FL, and Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
- Subjects
individual: WASP-127b [Planets and satellites] ,Atmospheres ,010504 meteorology & atmospheric sciences ,Satellites ,FOS: Physical sciences ,Planets ,Context (language use) ,Astrophysics ,Spectroscopic ,01 natural sciences ,spectroscopic [Techniques] ,Atmosphere ,Planet ,0103 physical sciences ,observational [Methods] ,Transit (astronomy) ,Observational ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Line (formation) ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Astronomy and Astrophysics ,Exoplanet ,Blueshift ,Orbit ,WASP-127b ,13. Climate action ,Space and Planetary Science ,atmospheres [Planets and satellites] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context The study of exoplanet atmospheres is essential for understanding the formation, evolution, and composition of exoplanets. The transmission spectroscopy technique is playing a significant role in this domain. In particular, the combination of state-of-The-Art spectrographs at low-And high-spectral resolution is key to our understanding of atmospheric structure and composition. Aims. We observed two transits of the close-in sub-Saturn-mass planet, WASP-127b, with ESPRESSO in the frame of the Guaranteed Time Observations Consortium. We aim to use these transit observations to study the system architecture and the exoplanet atmosphere simultaneously. Methods. We used the Reloaded Rossiter-McLaughlin technique to measure the projected obliquity λ and the projected rotational velocity veq sin(i∗). We extracted the high-resolution transmission spectrum of the planet to study atomic lines. We also proposed a new cross-correlation framework to search for molecular species and we applied it to water vapor. Results. The planet is orbiting its slowly rotating host star (veq sin(i∗) = 0.53-0.05+0.07 km s-1) on a retrograde misaligned orbit (λ =-128.41-5.46+5.60 °). We detected the sodium line core at the 9-σ confidence level with an excess absorption of 0.34 ± 0.04%, a blueshift of 2.74 ± 0.79 km s-1, and a full width at half maximum of 15.18 ± 1.75 km s-1. However, we did not detect the presence of other atomic species but set upper limits of only a few scale heights. Finally, we put a 3-σ upper limit on the average depth of the 1600 strongest water lines at equilibrium temperature in the visible band of 38 ppm. This constrains the cloud-deck pressure between 0.3 and 0.5 mbar by combining our data with low-resolution data in the near-infrared and models computed for this planet. Conclusions. WASP-127b, with an age of about 10 Gyr, is an unexpected exoplanet by its orbital architecture but also by the small extension of its sodium atmosphere (~7 scale heights). ESPRESSO allows us to take a step forward in the detection of weak signals, thus bringing strong constraints on the presence of clouds in exoplanet atmospheres. The framework proposed in this work can be applied to search for molecular species and study cloud-decks in other exoplanets., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
- Full Text
- View/download PDF
29. ON THE LOST PORTRAIT OF GALILEO BY THE TUSCAN PAINTER SANTI DI TITO
- Author
-
Paolo Molaro
- Subjects
History ,Physics and Astronomy (miscellaneous) ,Astronomy and Astrophysics - Published
- 2016
- Full Text
- View/download PDF
30. Review of Particle Physics
- Author
-
J Lesgourgues, Siegfried Bethke, C. Hanhart, P Eerola, Christian W. Bauer, F Takahashi, Oleg Zenin, A. de Gouvea, C. Grojean, O Buchmuller, Masaharu Tanabashi, P. de Jong, J. Erler, R Sekhar Chivukula, M Taševský, S.I. Eidelman, C. W. Walter, D J Miller, A. Piepke, Torbjörn Sjöstrand, Y Sumino, Orin I. Dahl, Herbert K. Dreiner, A Soffer, Chi Lin, Bogdan A. Dobrescu, S. M. Spanier, R E Mitchell, Marcela Carena, Manuella Vincter, Otmar Biebel, M Karliner, V. S. Lugovsky, Ren-Yuan Zhu, J. J. Beatty, C. Patrignani, A Pomarol, U Thoma, Kurtis F Johnson, N Varelas, William J. Marciano, David Milstead, Sw. Banerjee, Michael Doser, P Urquijo, A. Gurtu, A Bettini, Aneesh V. Manohar, L. S. Littenberg, Michael Syphers, Burkert, M C Gonzalez-Garcia, Ron L. Workman, Jamie Holder, German Valencia, Subir Sarkar, M Kenzie, Charles G Wohl, W. Fetscher, J Hisano, W Vogelsang, Th. Gutsche, Zoltan Ligeti, Thibault Damour, K Rabbertz, Marumi Kado, Sharma, G. Cowan, Klaus Mönig, Fabio Maltoni, C. L. Woody, Anatoli Romaniouk, A. Stahl, Michal Kreps, J Ellis, W-M. Yao, B C Allanach, J Anderson, Ken Ichi Hikasa, Eberhard Klempt, Keith A. Olive, V I Belousov, David H. Weinberg, J.J. Hernández-Rey, Meenakshi Narain, Younghoon Kwon, Andreas Ringwald, M O Wascko, K Trabelsi, E. J. Weinberg, R Yoshida, Jonas Rademacker, D. M. Asner, R A Ryutin, Paolo Molaro, C Lourengo, Peter Skands, Vorobyev, Wolfgang Walkowiak, S. B. Lugovsky, B. K. Heltsley, K. S. Lugovsky, Uli Katz, Daniel Tovey, George F. Smoot, Stephen R. Sharpe, S Heinemeyer, Brian D. Fields, H Ramani, Y Gershtein, R S Thorne, Ofer Lahav, K M Black, T Mannel, Timothy Gershon, Yoshinari Hayato, P. Schaffner, E. Blucher, G. Venanzoni, T Skwarnicki, Giancarlo D'Ambrosio, A J Schwartz, D J Robinson, G Rybka, Joey Huston, M S Sozzi, L.J. Rosenberg, L P Lellouch, Sophia L. Stone, U G Meißner, L. R. Wiencke, L Verde, S. Rolli, G. Dissertori, Augusto Ceccucci, S. T. Petcov, Matthias Neubert, Koji Nakamura, J. Beringer, E Pianori, W Zheng, G Zanderighi, Paul William Richardson, Daniel de Florian, Maksym Titov, C Lippmann, K Terashi, Y. Sakai, A Höcker, Ezhela, L. Tiator, Manuel Drees, A Pich, S Profumo, Gavin P. Salam, R. M. Barnett, J Schwiening, E C Aschenauer, Howard Baer, O. Schneider, Tony Gherghetta, P A Zyla, Jack Laiho, T Hyodo, Jonathan L. Rosner, B. Krusche, H J Gerber, Kate Scholberg, Stefan Roesler, Shoji Hashimoto, D Wands, G Aielli, A Holtkamp, Andrei Gritsan, Arnulf Quadt, A Freitas, Alessandro Cerri, U Egede, H. R. Gallagher, G. Gerbier, V A Khoze, S. R. Klein, B. N. Ratcliff, Y Makida, S. P. Wakely, Christoph Grab, Alberto Masoni, M Mikhasenko, Tony Liss, R. N. Cahn, A A Godizov, Paolo Nason, P. Nevski, T. Sumiyoshi, M D'Onofrio, A Lusiani, B. Foster, Thomas DeGrand, N. P. Tkachenko, Martin White, Douglas Scott, M Yokoyama, G P Zeller, M Ryskin, Petr Vogel, Christian Spiering, M A Bychkov, L. Garren, R. Kowalewski, John Terning, Claude Amsler, John Matthews, Y. Nir, A Hebecker, Mario Antonelli, M Ramsey-Musolf, Andreas Vogt, S L Zhu, Andrew R. Liddle, L Baudis, Debadi Chakraborty, Kaustubh Agashe, J Tanaka, S. Sánchez Navas, Howard E. Haber, Frank Krauss, M. C. Goodman, V A Petrov, Martin Grunewald, Fabio Sauli, D A Dwyer, R. G. Van de Water, M. Silari, John A. Peacock, S Willocq, T Shutt, Frank Zimmermann, Filip Moortgat, M Moskovic, Georg G. Raffelt, D. E. Groom, T. Basaglia, The George Washington University (GW), Thomas Jefferson National Accelerator Facility (Jefferson Lab), Florida State University [Tallahassee] (FSU), Helmholtz-Institut für Strahlen- und Kernphysik (HISKP), Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Kernphysik (IKP), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, University of Maryland [Baltimore], Università degli Studi di Roma Tor Vergata [Roma], University of Cambridge [UK] (CAM), Austrian Academy of Sciences (OeAW), INFN Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), University of Oklahoma (OU), University of Louisville, Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Universität Zürich [Zürich] = University of Zurich (UZH), Ohio State University [Columbus] (OSU), National Research Centre Kurchatov Institute, Istituto Nazionale di Fisica Nucleare, Sezione di Padova (INFN, Sezione di Padova), Ludwig-Maximilians-Universität München (LMU), University of Wisconsin Oshkosh (UWO), University of Chicago, Imperial College London, University of Virginia, Fermi National Accelerator Laboratory (Fermilab), CERN [Genève], University of Sussex, University of California (UC), Royal Holloway [University of London] (RHUL), State University of New York (SUNY Canton), Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN), Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (INFN, Sezione di Napoli), Institut des Hautes Études Scientifiques (IHES), IHES, Universidad Nacional de San Martin (UNSAM), Northwestern University [Evanston], University of Colorado [Boulder], University of Amsterdam [Amsterdam] (UvA), Yale University [New Haven], University of Liverpool, Universitätsklinikum Bonn (UKB), TKK Helsinki University of Technology (TKK), Monash university, Budker Institute of Nuclear Physics (BINP), Siberian Branch of the Russian Academy of Sciences (SB RAS), University of Illinois [Chicago] (UIC), University of Illinois System, King‘s College London, Departement Physik [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), Tufts University [Medford], Rutgers University [Camden], Rutgers University System (Rutgers), University of Minnesota System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Argonne National Laboratory [Lemont] (ANL), Departement Erdwissenschaften [ETH Zürich] (D-ERDW), Johns Hopkins University (JHU), Deutsches Elektronen-Synchrotron [Hamburg] (DESY), University College Dublin [Dublin] (UCD), Department of Condensed Matter Physics and Materials Science [TIFR] (CMPMS), Tata Institute for Fundamental Research (TIFR), Universitätsklinikum Tübingen - University Hospital of Tübingen, Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen, Laboratoire Capteurs et Architectures Electroniques (LCAE), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Forschungszentrum Jülich GmbH, KEK (High energy accelerator research organization), The University of Tokyo (UTokyo), Heidelberg University, Universidad Autónoma de Madrid (UAM), Universitat de València (UV), Tohoku University [Sendai], University of Delaware [Newark], Michigan State University System, Tokyo Metropolitan University [Tokyo] (TMU), Gran Sasso Science Institute, INFN, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Tel Aviv University (TAU), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University of Warwick [Coventry], Department of Physics [Durham University], Durham University, University of Ljubljana, University of Basel (Unibas), Yonsei University, University College of London [London] (UCL), Syracuse University, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E1 Physique des particules, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Universidade de Lisboa, GSI Helmholtzzentrum für Schwerionenforschung (GSI), City College of New York [CUNY] (CCNY), City University of New York [New York] (CUNY), Scuola Normale Superiore di Pisa (SNS), Université Catholique de Louvain = Catholic University of Louvain (UCL), Universität Siegen [Siegen], Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari (INFN, Sezione di Cagliari), Louisiana State University (LSU), University of Glasgow, Stockholms universitet, Indiana State University, INAF/OATS, Trieste, Italy, Department of Applied Physics, Ghent University, Brown University, Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU), Weizmann Institute of Science [Rehovot, Israël], University of Bologna/Università di Bologna, University of Edinburgh, Institute of Molecular Genetics of National Research Centre «Kurchatov Institute» [Moscow, Russia], Russian Academy of Sciences [Moscow] (RAS), Instituto de Fisica Corpuscular (IFIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universitat de València (UV), University of Alabama [Tuscaloosa] (UA), Universitat Autònoma de Barcelona (UAB), Georg-August-University = Georg-August-Universität Göttingen, Karlsruhe Institute of Technology (KIT), University of Bristol [Bristol], Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) (MPI-P), Tsung-Dao Lee Institute, Shanghai Jiao Tong, SLAC National Accelerator Laboratory (SLAC), Stanford University, U.S. Department of Energy [Washington] (DOE), Leopold Franzens Universität Innsbruck - University of Innsbruck, The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], University of Mary Washington, Petersburg Nuclear Physics Institute, University of Oxford, Ecole Polytechnique Fédérale de Lausanne (EPFL), Technische Universität München = Technical University of Munich (TUM), University of Cincinnati (UC), University of British Columbia (UBC), University of Washington [Seattle], Istituto Nazionale di Fisica Nucleare [Pisa] (INFN), Lund University [Lund], AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Pisa - Università di Pisa, University of Tennessee System, Northern Illinois University, Nagoya University, Tokyo University of Science [Tokyo], Czech Academy of Sciences [Prague] (CAS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, University of Sheffield [Sheffield], University of Melbourne, Monash University [Melbourne], University of Barcelona, California Institute of Technology (CALTECH), Department of Radiology [Radiologische Universitätsklinik Eberhard-Karls-Universität Tübingen], University of Portsmouth, Columbia University [New York], Colorado School of Mines, University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS), Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Max-Planck-Gesellschaft, Moscow Institute of Physics and Technology [Moscow] (MIPT), Peking University [Beijing], Institute of High Energy Physics [Beijing] (IHEP), Chinese Academy of Sciences [Changchun Branch] (CAS), Particle Data Group, Institut des Hautes Etudes Scientifiques (IHES), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), CEA/DSM, Département de Physique des Particules (ex SPP) (DPhP), UCL - SST/IRMP - Institut de recherche en mathématique et physique, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ITA, Department of Energy (US), Japan Society for the Promotion of Science, European Commission, Ministry of Education, Culture, Sports, Science and Technology (Japan), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Science and Technology Facilities Council (STFC), Tanabashi, M, Grp, P, Hagiwara, K, Hikasa, K, Nakamura, K, Sumino, Y, Takahashi, F, Tanaka, J, Agashe, K, Aielli, G, Amsler, C, Antonelli, M, Asner, D, Baer, H, Banerjee, S, Barnett, R, Basaglia, T, Bauer, C, Beatty, J, Belousov, V, Beringer, J, Bethke, S, Bettini, A, Bichsel, H, Biebel, O, Black, K, Blucher, E, Buchmuller, O, Burkert, V, Bychkov, M, Cahn, R, Carena, M, Ceccucci, A, Cerri, A, Chakraborty, D, Chen, M, Chivukula, R, Cowan, G, Dahl, O, D'Ambrosio, G, Damour, T, de Florian, D, de Gouvea, A, Degrand, T, de Jong, P, Dissertori, G, Dobrescu, B, D'Onofrio, M, Doser, M, Drees, M, Dreiner, H, Dwyer, D, Eerola, P, Eidelman, S, Ellis, J, Erler, J, Ezhela, V, Fetscher, W, Fields, B, Firestone, R, Foster, B, Freitas, A, Gallagher, H, Garren, L, Gerber, H, Gerbier, G, Gershon, T, Gershtein, Y, Gherghetta, T, Godizov, A, Goodman, M, Grab, C, Gritsan, A, Grojean, C, Groom, D, Grunewald, M, Gurtu, A, Gutsche, T, Haber, H, Hanhart, C, Hashimoto, S, Hayato, Y, Hayes, K, Hebecker, A, Heinemeyer, S, Heltsley, B, Hernandez-Rey, J, Hisano, J, Hocker, A, Holder, J, Holtkamp, A, Hyodo, T, Irwin, K, Johnson, K, Kado, M, Karliner, M, Katz, U, Klein, S, Klempt, E, Kowalewski, R, Krauss, F, Kreps, M, Krusche, B, Kuyanov, Y, Kwon, Y, Lahav, O, Laiho, J, Lesgourgues, J, Liddle, A, Ligeti, Z, Lin, C, Lippmann, C, Liss, T, Littenberg, L, Lugovsky, K, Lugovsky, S, Lusiani, A, Makida, Y, Maltoni, F, Mannel, T, Manohar, A, Marciano, W, Martin, A, Masoni, A, Matthews, J, Meissner, U, Milstead, D, Mitche, R, Moenig, K, Molaro, P, Moortgat, F, Moskovic, M, Murayama, H, Narain, M, Nason, P, Navas, S, Neubert, M, Nevski, P, Nir, Y, Olive, K, Griso, S, Parsons, J, Patrignani, C, Peacock, J, Pennington, M, Petcov, S, Petrov, V, Pianori, E, Piepke, A, Pomarol, A, Quadt, A, Rademacker, J, Raffelt, G, Ratcliff, B, Richardson, P, Ringwald, A, Roesler, S, Rolli, S, Romaniouk, A, Rosenberg, L, Rosner, J, Rybka, G, Ryutin, R, Sachrajda, C, Sakai, Y, Salam, G, Sarkar, S, Sauli, F, Schneider, O, Scholberg, K, Schwartz, A, Scott, D, Sharma, V, Sharpe, S, Shutt, T, Silari, M, Sjostrand, T, Skands, P, Skwarnicki, T, Smith, J, Smoot, G, Spanier, S, Spieler, H, Spiering, C, Stah, A, Stone, S, Sumiyoshi, T, Syphers, M, Terashi, K, Terning, J, Thoma, U, Thorne, R, Tiator, L, Titov, M, Tkachenko, N, Tornqvist, N, Tovey, D, Valencia, G, Van de Water, R, Varelas, N, Venanzoni, G, Verde, L, Vincter, M, Voge, P, Vogt, A, Wakely, S, Walkowiak, W, Walter, C, Wands, D, Ward, D, Wascko, M, Weiglein, G, Weinberg, D, Weinberg, E, White, M, Wiencke, L, Willocq, S, Woh, C, Womersley, J, Woody, C, Workman, R, Yao, W, Zeller, G, Zenin, O, Zhu, R, Zhu, S, Zimmermann, F, Zyla, P, Anderson, J, Fuller, L, Lugovsky, V, Schaffner, P, Tanabashi, M., Grp, Particle Data, Hagiwara, K., Hikasa, K., Nakamura, K., Sumino, Y., Takahashi, F., Tanaka, J., Agashe, K., Aielli, G., Amsler, C., Antonelli, M., Asner, D. M., Baer, H., Banerjee, Sw., Barnett, R. M., Basaglia, T., Bauer, C. W., Beatty, J. J., Belousov, V. I., Beringer, J., Bethke, S., Bettini, A., Bichsel, H., Biebel, O., Black, K. M., Blucher, E., Buchmuller, O., Burkert, V., Bychkov, M. A., Cahn, R. N., Carena, M., Ceccucci, A., Cerri, A., Chakraborty, D., Chen, M. -C., Chivukula, R. S., Cowan, G., Dahl, O., D'Ambrosio, G., Damour, T., de Florian, D., de Gouvea, A., Degrand, T., de Jong, P., Dissertori, G., Dobrescu, B. A., D'Onofrio, M., Doser, M., Drees, M., Dreiner, H. K., Dwyer, D. A., Eerola, P., Eidelman, S., Ellis, J., Erler, J., Ezhela, V. V., Fetscher, W., Fields, B. D., Firestone, R., Foster, B., Freitas, A., Gallagher, H., Garren, L., Gerber, H. -J., Gerbier, G., Gershon, T., Gershtein, Y., Gherghetta, T., Godizov, A. A., Goodman, M., Grab, C., Gritsan, A. V., Grojean, C., Groom, D. E., Grunewald, M., Gurtu, A., Gutsche, T., Haber, H. E., Hanhart, C., Hashimoto, S., Hayato, Y., Hayes, K. G., Hebecker, A., Heinemeyer, S., Heltsley, B., Hernandez-Rey, J. J., Hisano, J., Hocker, A., Holder, J., Holtkamp, A., Hyodo, T., Irwin, K. D., Johnson, K. F., Kado, M., Karliner, M., Katz, U. F., Klein, S. R., Klempt, E., Kowalewski, R. V., Krauss, F., Kreps, M., Krusche, B., Kuyanov, Yu. V., Kwon, Y., Lahav, O., Laiho, J., Lesgourgues, J., Liddle, A., Ligeti, Z., Lin, C. -J., Lippmann, C., Liss, T. M., Littenberg, L., Lugovsky, K. S., Lugovsky, S. B., Lusiani, A., Makida, Y., Maltoni, F., Mannel, T., Manohar, A. V., Marciano, W. J., Martin, A. D., Masoni, A., Matthews, J., Meissner, U. -G., Milstead, D., Mitche, R. E., Moenig, K., Molaro, P., Moortgat, F., Moskovic, M., Murayama, H., Narain, M., Nason, P., Navas, S., Neubert, M., Nevski, P., Nir, Y., Olive, K. A., Griso, S. Pagan, Parsons, J., Patrignani, C., Peacock, J. A., Pennington, M., Petcov, S. T., Petrov, V. A., Pianori, E., Piepke, A., Pomarol, A., Quadt, A., Rademacker, J., Raffelt, G., Ratcliff, B. N., Richardson, P., Ringwald, A., Roesler, S., Rolli, S., Romaniouk, A., Rosenberg, L. J., Rosner, J. L., Rybka, G., Ryutin, R. A., Sachrajda, C. T., Sakai, Y., Salam, G. P., Sarkar, S., Sauli, F., Schneider, O., Scholberg, K., Schwartz, A. J., Scott, D., Sharma, V., Sharpe, S. R., Shutt, T., Silari, M., Sjostrand, T., Skands, P., Skwarnicki, T., Smith, J. G., Smoot, G. F., Spanier, S., Spieler, H., Spiering, C., Stah, A., Stone, S. L., Sumiyoshi, T., Syphers, M. J., Terashi, K., Terning, J., Thoma, U., Thorne, R. S., Tiator, L., Titov, M., Tkachenko, N. P., Tornqvist, N. A., Tovey, D. R., Valencia, G., Van de Water, R., Varelas, N., Venanzoni, G., Verde, L., Vincter, M. G., Voge, P., Vogt, A., Wakely, S. P., Walkowiak, W., Walter, C. W., Wands, D., Ward, D. R., Wascko, M. O., Weiglein, G., Weinberg, D. H., Weinberg, E. J., White, M., Wiencke, L. R., Willocq, S., Woh, C. C., Womersley, J., Woody, C. L., Workman, R. L., Yao, W. -M., Zeller, G. P., Zenin, O. V., Zhu, R. -Y., Zhu, S. -L., Zimmermann, F., Zyla, P. A., Anderson, J., Fuller, L., Lugovsky, V. S., Schaffner, P., Robinson, D. J., Wohl, C. G., Allanach, B. C., Aschenauer, E. C., Baudis, L., Sekhar Chivukula, R., Egede, U., Gonzalez-Garcia, M. C., Huston, J., Kenzie, M., Khoze, V. A., Lellouch, L. P., Liddle, A. R., Lourenco, C., Mikhasenko, M., Miller, D. J., Mitchell, R. E., Monig, K., Pich, A., Profumo, S., Rabbertz, K., Ramani, H., Ramsey-Musolf, M., Ryskin, M., Schwiening, J., Soffer, A., Sozzi, M. S., Stahl, A., Tasevsky, M., Trabelsi, K., Urquijo, P., van de Water, R., Vogel, P., Vogelsang, W., Vorobyev, V., Yokoyama, M., Yoshida, R., Zanderighi, G., Zheng, W., and Department of Physics
- Subjects
high energy ,lepton ,mixing [neutrino] ,High Energy Physics::Lattice ,Cosmic microwave background ,diffraction ,Technicolor ,Astrophysics ,Omega ,01 natural sciences ,Physics, Particles & Fields ,higgs-boson production ,Big Bang nucleosynthesis ,cosmological model: parameter space ,tau ,dark energy ,Monte Carlo ,fields ,pentaquark ,instrumentation ,Settore FIS/01 ,gauge boson ,Anomalous magnetic dipole moment ,deep-inelastic scattering ,new physics ,Physics ,DOUBLE-BETA-DECAY ,Electroweak interaction ,density [dark matter] ,HEAVY FLAVOUR ,Quarkonium ,review ,particle ,physics ,SUPERSYMMETRIC STANDARD MODEL ,square-root-s ,Physics, Nuclear ,grand unified theory ,boson: heavy ,statistics ,Physical Sciences ,Higgs boson ,axion: mass ,flavor: violation ,Neutrino ,ELECTROWEAK SYMMETRY-BREAKING ,numerical calculations: Monte Carlo ,on-line ,S013EPH ,Quark ,heavy [boson] ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Physics, Multidisciplinary ,anomalous magnetic-moment ,electroweak radiative-corrections ,dark matter: density ,Higgs particle ,meson ,neutrino masses, neutrino mixing ,neutrino oscillations ,114 Physical sciences ,CHIRAL PERTURBATION-THEORY ,neutrino mixing ,Standard Model ,quark ,0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics ,Nucleosynthesis ,quantum chromodynamics ,CP: violation ,Dark matter ,ddc:530 ,particle physics ,Strong Interactions ,010306 general physics ,sparticle ,S013DF ,grand unified theories ,PRODUCTION ,Gauge boson ,Science & Technology ,neutrino masses ,010308 nuclear & particles physics ,C50 Other topics in experimental particle physics ,Particle Data Group ,Astronomy and Astrophysics ,Deep inelastic scattering ,to-leading-order ,Automatic Keywords ,heavy boson ,axion ,tables (particle physics) ,Tetraquark ,proton-proton collisions ,Supersymmetry ,hadron ,neutrino: mixing ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmology ,Volume (compression) ,HIGGS-BOSON ,UB-VERTICAL-BAR ,cosmological model ,dark energy density ,experimental methods ,ddc:539.72021 ,Physics beyond the Standard Model ,standard model ,group theory ,General Physics and Astronomy ,tables, particle physics ,high energy physics ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Quantum chromodynamics ,energy: high ,E Rev 2016 ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,Settore FIS/01 - Fisica Sperimentale ,photon ,Nuclear & Particles Physics ,parameter space [cosmological model] ,dark energy: density ,high [energy] ,M013WX ,fermion-pair production ,Nuclear and High Energy Physics ,Particle physics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,dark matter ,statistical analysis ,Double beta decay ,0103 physical sciences ,conservation law ,cold dark-matter ,TAU LEPTONS ,Astrophysics::Galaxy Astrophysics ,tables ,DEEP-INELASTIC-SCATTERING ,electroweak interaction ,High Energy Physics::Phenomenology ,750 GeV diphoton excess ,PRODUCTION CROSS-SECTION ,baryon ,density [dark energy] ,Physics and Astronomy ,gravitation ,CKM matrix ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,High Energy Physics::Experiment ,supersymmetry ,Minimal Supersymmetric Standard Model - Abstract
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app., United States Department of Energy (DOE) DE-AC02-05CH11231, government of Japan (Ministry of Education, Culture, Sports, Science and Technology), Istituto Nazionale di Fisica Nucleare (INFN), Physical Society of Japan (JPS), European Laboratory for Particle Physics (CERN), United States Department of Energy (DOE)
- Published
- 2018
- Full Text
- View/download PDF
31. Beryllium detection in the very fast nova ASASSN-16kt (V407 Lupi)
- Author
-
A. de Ugarte Postigo, Piercarlo Bonifacio, A. Zapata, Paolo Molaro, Luca Izzo, Daniel Fernandez, Leonardo Vanzi, J. L. Prieto, Zach Cano, M. Della Valle, Christina C. Thöne, Ministerio de Economía, Fomento y Turismo (Chile), Ministerio de Ciencia e Innovación (España), European Commission, Comisión Nacional de Investigación Científica y Tecnológica (Chile), Fondo Nacional de Desarrollo Científico y Tecnológico (Chile), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Galaxies, Etoiles, Physique, Instrumentation (GEPI), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid (UPM), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Grupo de Investigación en Energía y Medioambiente [Bucaramanga]] (GIEMA), Universidad Industrial de Santander [Bucaramanga] (UIS), UMR - Interactions Plantes Microorganismes Environnement (UMR IPME), and Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- Subjects
individual: ASASSN- 16kt: V407 Lup [Stars] ,FOS: Physical sciences ,01 natural sciences ,evolution [Galaxy] ,health services administration ,0103 physical sciences ,Abundances ,010306 general physics ,010303 astronomy & astrophysics ,Novae ,Solar and Stellar Astrophysics (astro-ph.SR) ,[PHYS]Physics [physics] ,Physics ,Cataclysmic variables ,Galaxy: evolution ,stars: individual: ASASSN-16kt: V407 Lup ,Astronomy and Astrophysics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Stars: individual: ASASSN- 16kt: V407 Lup ,Christian ministry ,Nuclear reactions ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Humanities ,Nucleosynthesis ,geographic locations - Abstract
We present high-resolution spectroscopic observations of the fast nova ASASSN-16kt (V407 Lup). A close inspection of spectra obtained at early stages has revealed the presence of low-ionization lines, and among the others we have identified the presence of the ionized Be doublet in a region relatively free from possible contaminants. After studying their intensities, we have inferred that ASASSN-16kt has produced (5.9-7.7)× 10M of Be. The identification of bright Ne lines may suggest that the nova progenitor is a massive (1.2 M) oxygen-neon white dwarf. The high outburst frequency of oxygen-neon novae implies that they likely produce an amount of Be similar, if not larger, to that produced by carbon-oxygen novae, then confirming that classical novae are among the main factories of lithium in the Galaxy.© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society., LI, CT, ZC and AdUP acknowledge support from the Spanish research project AYA 2014-58381-P. CT and AdUP furthermore acknowledge support from Ramn y Cajal fellowships Ramon y Cajal (RyC)-2012-09984 and RyC-2012-09975. ZC also acknowledges support from the Juan de la Cierva Incorporacion fellowship IJCI-2014-21669. LV acknowledge support from Commission Nacional de Investigacion Cientifica y Tecnologica (CONICYT) through project Fondecyt n. 1171364. AZ acknowledge support from Conicyt through the 'Beca Doctorado Nacional' 21170536. Support for JLP is provided in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) through the grant 1151445 and by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS.
- Published
- 2018
- Full Text
- View/download PDF
32. Quando una stella del rock guarda le stelle
- Author
-
Paolo Molaro
- Abstract
Tony Levin, leggendario bassista dei King Crimson, ha realizzato un videoclip, “Copernicus”, nel quale rielabora in immagini, parole e musica una sua visita agli osservatori Eso del Paranal e di Alma. Paolo Molaro, astronomo all’Inaf di Trieste, era là in Cile con l’artista
- Published
- 2018
- Full Text
- View/download PDF
33. ESPRESSO data flow in operations: results of commissioning activities
- Author
-
Sérgio F. Sousa, Paolo Molaro, Giorgio Calderone, G. Lo Curto, Francesco Pepe, Denis Mégevand, Roberto Cirami, Alex Segovia, P. Di Marcantonio, Valentina D'Odorico, Stefano Cristiani, J. I. González Hernández, Andrea Modigliani, C. Lovis, D. Sosnowska, and Guido Cupani
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Group method of data handling ,business.industry ,Project commissioning ,01 natural sciences ,Data flow diagram ,Espresso ,Software ,Observatory ,0103 physical sciences ,Software engineering ,business ,010303 astronomy & astrophysics ,Spectrograph ,0105 earth and related environmental sciences ,Data reduction - Abstract
ESPRESSO, the next generation ESO VLT high-resolution ultra-stable spectrograph, after the successful Preliminary Acceptance Europe held at the integration site of the Observatory of Geneva, has been re-integrated at Paranal and started its commissioning activities at the end of 2017. One critical aspect for ESPRESSO future operations, compared with other instruments currently running at ESO, is the way it will be operated which poses several constraints on its data flow. ESPRESSO has been conceived and developed as a “truly science-grade products generating machine” thanks to its fixed format and long-term stability. In addition to the Data Reduction Software (DRS), a Data Analysis Software (DAS), developed within the standard ESO Data Flow System, will be provided to the users – a novelty for the instruments at Paranal. Moreover, ESPRESSO will be fed either by the light of any of the UTs or by the incoherently combined light of up to four UTs, a feature which required a re-thinking of the current Paranal data handling injection schema. In this paper, after describing the main challenges and peculiarities of the ESPRESSO data flow system listed above, we will present the results of the first commissioning activities and the lessons learned to handle data produced by an instrument with such ambitious scientific requirements.
- Published
- 2018
34. Gamma-Ray Observations of Nova Sgr 2015 No. 2 with INTEGRAL
- Author
-
Laura Delgado, Paolo Molaro, Vincent Tatischeff, Thomas Siegert, Pierre Jean, V. G. Savchenko, Alain Coc, Roland Diehl, Sumner Starrfield, Margarita Hernanz, Christoph Weinberger, Jordi José, Moritz M. M. Pleintinger, Jochen Greiner, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière ( CSNSM ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de Catalunya. Departament de Física, and Universitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica
- Subjects
Nuclear reaction ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,education ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Spectral line ,Nucleosynthesis ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010306 general physics ,010303 astronomy & astrophysics ,nuclear reactions ,Astrophysics::Galaxy Astrophysics ,white dwarfs ,Physics ,novae ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Solar mass ,cataclysmic variables ,Spectrometer ,Reaccions nuclears ,abundances ,Gamma ray ,White dwarf ,nucleosynthesis ,Astronomy and Astrophysics ,Nova (laser) ,gamma rays: general ,Stars ,Estels ,Space and Planetary Science ,Física::Astronomia i astrofísica [Àrees temàtiques de la UPC] ,spectroscopic [techniques] ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,general [gamma rays] ,techniques: spectroscopic - Abstract
INTEGRAL observed the nova V5668 Sgr around the time of its optical maximum on March 21, 2015. Studies at UV wavelengths showed spectral lines of freshly produced Be-7. This could be measurable also in gamma-rays at 478 keV from the decay to Li-7. Novae are also expected to synthesise Na-22 which decays to Ne-22, emitting a 1275 keV photon. About one week before the optical maximum, a strong gamma-ray flash on time-scales of hours is expected from short-lived radioactive nuclei, such as N-13 and F-18. These beta-plus-unstable nuclei should yield emission up to 511 keV, but which has never been observed. The spectrometer SPI aboard INTEGRAL pointed towards V5668 by chance. We use these observations to search for possible gamma-ray emission of decaying Be-7, and to directly measure the synthesised mass during explosive burning. We also aim to constrain possible burst-like emission days to weeks before the optical maximum using the SPI anticoincidence shield (ACS). We extract spectral and temporal information to determine the fluxes of gamma-ray lines at 478 keV, 511 keV, and 1275 keV. A measured flux value directly converts into abundances produced by the nova. The SPI-ACS rates are analysed for burst-like emission using a nova model light-curve. For the obtained nova flash candidate events, we discuss possible origins. No significant excess for the expected gamma-ray lines is found. Our upper limits on the synthesised Be-7 and Na-22 mass depend on the uncertainties of the distance to the nova: The Be-7 mass is constrained to less than $4.8\times10^{-9}\,(d/kpc)^2$, and Na-22 to less than $2.4\times10^{-8}\,(d/kpc)^2$ solar masses. For the Be-7 mass estimate from UV studies, the distance to V5668 Sgr must be larger than 1.2 kpc. During three weeks before the optical maximum, we find 23 burst-like events in the ACS rate, of which six could possibly be associated with V5668 Sgr., Comment: 11 pages, 7 figures, 1 table, accepted by A&A
- Published
- 2018
- Full Text
- View/download PDF
35. The Earth transiting the Sun as seen from Jupiter's moons: detection of an inverse Rossiter–McLaughlin effect produced by the opposition surge of the icy Europa
- Author
-
Paolo Molaro, C. Lovis, Simone Zaggia, M. Barbieri, Lorenzo Monaco, and ITA
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Opposition surge ,Conjunction (astronomy) ,Rossiter–McLaughlin effect ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Physics::Geophysics ,Jupiter ,Radial velocity ,Astrophysics - Solar and Stellar Astrophysics ,Exploration of Jupiter ,13. Climate action ,Space and Planetary Science ,Planet ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Transit (astronomy) ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report on a multi-wavelength observational campaign which followed the Earth's transit on the Sun as seen from Jupiter on 5 Jan the 2014. Simultaneous observations of Jupiter's moons Europa and Ganymede obtained with HARPS from La Silla, Chile, and HARPS-N from La Palma, Canary Islands, were performed to measure the Rossiter-McLaughlin effect due to the Earth's passage using the same technique successfully adopted for the 2012 Venus Transit (Molaro et al 2013). The expected modulation in radial velocities was of about 20 cm/s but an anomalous drift as large as 38 m/s, i.e. more than two orders of magnitude higher and opposite in sign, was detected instead. The consistent behaviour of the two spectrographs rules out instrumental origin of the radial velocity drift and BiSON observations rule out the possible dependence on the Sun's magnetic activity. We suggest that this anomaly is produced by the Opposition Surge on Europa's icy surface, which amplifies the intensity of the solar radiation from a portion of the solar surface centered around the crossing Earth which can then be observed as a a sort of inverse Rossiter-McLaughling effect. in fact, a simplified model of this effect can explain in detail most features of the observed radial velocity anomalies, namely the extensions before and after the transit, the small differences between the two observatories and the presence of a secondary peak closer to Earth passage. This phenomenon, observed here for the first time, should be observed every time similar Earth alignments occur with rocky bodies without atmospheres. We predict it should be observed again during the next conjunction of Earth and Jupiter in 2026., 9 pages, 7 figures
- Published
- 2015
- Full Text
- View/download PDF
36. The GAPS Programme with HARPS-N at TNG: XIII. the orbital obliquity of three close-in massive planets hosted by dwarf K-type stars: WASP-43, HAT-P-20 and Qatar-2
- Author
-
Gloria Andreuzzi, R. Zanmar Sanchez, Aldo S. Bonomo, Avet Harutyunyan, F. Borsa, A. F. Martinez Fiorenzano, Giampaolo Piotto, Riccardo Smareglia, Marco Molinaro, Luca Borsato, Thomas Henning, Emilio Molinari, Riccardo Claudi, E. Covino, R. Cosentino, Marco Pedani, A. F. Lanza, John Southworth, L. Di Fabrizio, Isabella Pagano, P. Giacobbe, Andrea Bignamini, A. Suárez Mascareño, Gaetano Scandariato, C. Boccato, Silvano Desidera, K. Biazzo, Giuseppe Leto, Paolo Molaro, Giuseppina Micela, V. Granata, Monica Rainer, Luca Malavolta, S. Masiero, Oliver Turner, M. Esposito, Antonio Maggio, Raffaele Gratton, Serena Benatti, Alessandro Sozzetti, David R. Anderson, Luigi Mancini, Jesus Maldonado, Laura Affer, Simona Ciceri, Mario Damasso, Valerio Nascimbeni, E. Poretti, and ITA
- Subjects
stars: individual: Qatar-2 ,Planetary systems ,Stars: Individual: HAT-P-20 ,Stars: Individual: Qatar-2 ,Stars: Individual: WASP-43 ,Techniques: Photometric ,Techniques: Radial velocities ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,techniques: photometric ,Settore FIS/05 - Astronomia e Astrofisica ,Planet ,0103 physical sciences ,techniques: radial velocities ,Astrophysics::Solar and Stellar Astrophysics ,Transit (astronomy) ,010306 general physics ,010303 astronomy & astrophysics ,planetary systems ,Astrophysics::Galaxy Astrophysics ,QB ,Orbital elements ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,stars: individual: WASP-43 ,Astronomy and Astrophysics ,Effective temperature ,Light curve ,Exoplanet ,Radial velocity ,Stars ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,stars: individual: HAT-P-20 ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. The orbital obliquity of planets with respect to the rotational axis of their host stars is a relevant parameter for the characterization of the global architecture of planetary systems and a key observational constraint to discriminate between different scenarios proposed to explain the existence of close-in giant planets. Aims: In the framework of the GAPS project, we conduct an observational programme aimed at determinating the orbital obliquity of known transiting exoplanets. The targets are selected to probe the obliquity against a wide range of stellar and planetary physical parameters. Methods: We exploit high-precision radial velocity (RV) measurements, delivered by the HARPS-N spectrograph at the 3.6 m Telescopio Nazionale Galileo, to measure the Rossiter-McLaughlin (RM) effect in RV time-series bracketing planet transits, and to refine the orbital parameters determinations with out-of-transit RV data. We also analyse new transit light curves obtained with several 1-2 m class telescopes to better constrain the physical fundamental parameters of the planets and parent stars. Results: We report here on new transit spectroscopic observations for three very massive close-in giant planets: WASP-43 b, HAT-P-20 b and Qatar-2 b (Mp = 2.00, 7.22, 2.62 MJ; a = 0.015, 0.036, 0.022 AU, respectively) orbiting dwarf K-type stars with effective temperature well below 5000 K (Teff = 4500 ± 100, 4595 ± 45, 4640 ± 65 K respectively). These are the coolest stars (except for WASP-80) for which the RM effect has been observed so far. We find λ = 3.5 ± 6.8 deg for WASP-43 b and λ = -8.0 ± 6.9 deg for HAT-P-20 b, while for Qatar-2, our faintest target, the RM effect is only marginally detected, though our best-fit value λ = 15 ± 20 deg is in agreement with a previous determination. In combination with stellar rotational periods derived photometrically, we estimate the true spin-orbit angle, finding that WASP-43 b is aligned while the orbit of HAT-P-20 b presents a small but significant obliquity ( deg). By analyzing the CaII H&K chromospheric emission lines for HAT-P-20 and WASP-43, we find evidence for an enhanced level of stellar activity that is possibly induced by star-planet interactions. Based on observations collected at the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundación Galileo Galilei of the Istituto Nazionale di Astrofisica (INAF) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the frame of the programme Global Architecture of Planetary Systems (GAPS).Also based on observations collected at the 0.82 m IAC80 Telescope, operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide.
- Published
- 2017
37. Cosmological evolution of the Nitrogen abundance
- Author
-
Paolo Molaro, Taysun Kimm, Keith A. Olive, Joseph Silk, Yohan Dubois, Patrick Petitjean, Irina Dvorkin, Elisabeth Vangioni, Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Metallicity ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Physical cosmology ,ISM: abundances-galaxies: abundances -- galaxies: ISM ,Nucleosynthesis ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,nuclear reactions ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Star formation ,abundances ,Stellar rotation ,Astronomy ,nucleosynthesis ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Interstellar medium ,Stars ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,large-scale structure of Universe ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The abundance of nitrogen in the interstellar medium is a powerful probe of star for- mation processes over cosmological timescales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of DLAs at redshift 2 - 3. We study the evolution of nitrogen with a detailed chemical evolution model and find good agreement with observations, including the relative abundances of N/O and N/Si ratios. We find that the principal contribution of nitrogen comes from intermediate mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 10**8.5 solar mass. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: differ- ence in the masses of the DLA host galaxies, and difference in the their position inside the galaxy., Comment: accepted for publication in MNRAS
- Published
- 2017
- Full Text
- View/download PDF
38. The ESO UVES Advanced Data Products Quasar Sample – IV. On the deficiency of argon in DLA systems
- Author
-
Paolo Molaro, Miriam Centurion, Valentina D'Odorico, Attila Popping, Celine Peroux, Tayyaba Zafar, Kumail Abbas, and Giovanni Vladilo
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,Metallicity ,FOS: Physical sciences ,chemistry.chemical_element ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Spectral line ,Ionization ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Argon ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Quasar ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Redshift ,Interstellar medium ,chemistry ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this work, we study argon abundances in the interstellar medium of high-redshift galaxies (23.5 are required to probe the final stages of this process of cosmic reionisation., Comment: 14 pages, 9 figures, 7 tables, MNRAS accepted
- Published
- 2014
- Full Text
- View/download PDF
39. The ESO UVES advanced data products quasar sample – III. Evidence of bimodality in the [N/α] distribution
- Author
-
Paolo Molaro, Valentina D'Odorico, Tayyaba Zafar, Giovanni Vladilo, Celine Peroux, Attila Popping, and Miriam Centurion
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Data products ,010308 nuclear & particles physics ,FOS: Physical sciences ,chemistry.chemical_element ,Astronomy and Astrophysics ,Quasar ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Nitrogen ,Bimodality ,Stars ,Distribution (mathematics) ,chemistry ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Dwarf galaxy - Abstract
We report here a study of nitrogen and $\alpha$-capture element (O, S, and Si) abundances in 18 Damped Ly$\alpha$ Absorbers (DLAs) and sub-DLAs drawn from the ESO-UVES Advanced Data Products (EUADP) database. We report 9 new measurements, 5 upper and 4 lower limits of nitrogen that when compiled with available nitrogen measurements from the literature makes a sample of 108 systems. The extended sample presented here confirms the [N/$\alpha$] bimodal behaviour suggested in previous studies. Three-quarter of the systems show $\langle$[N/$\alpha$]$\rangle=-0.85$ ($\pm$0.20 dex) and one-quarter ratios are clustered at $\langle$[N/$\alpha$]$\rangle= -1.41$ ($\pm$0.14 dex). The high [N/$\alpha$] plateau is consistent with the HII regions of dwarf irregular and blue compact dwarf galaxies although extended to lower metallicities and could be interpreted as the result of a primary nitrogen production by intermediate mass stars. The low [N/$\alpha$] values are the lowest ever observed in any astrophysical site. In spite of this fact, even lower values could be measured with the present instrumentation, but we do not find them below [N/$\alpha$] $\approx$ $-1.7$. This suggests the presence of a floor in [N/$\alpha$] abundances, which along with the lockstep increase of N and Si may indicate a primary nitrogen production from fast rotating, massive stars in relatively young or unevolved systems., Comment: 16 pages, 14 figures, 12 tables, MNRAS accepted
- Published
- 2014
- Full Text
- View/download PDF
40. DLA abundances in the CUBES’s spectral window
- Author
-
Paolo Molaro
- Subjects
Physics ,Number density ,Electromagnetic spectrum ,Astronomy ,Astronomy and Astrophysics ,Quasar ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Computer Science::Computational Geometry ,Galaxy ,Redshift ,Spectral line ,Space and Planetary Science ,Absorption (electromagnetic radiation) ,Line (formation) - Abstract
Absorption systems observed along the line of sights to distant quasars are observed at all redshifts and the full range of the electromagnetic spectrum is needed to recover the variety of transitions of different elements. However, some important elements are found within the Lyman forest and their absorption line profiles need to be analyzed against the presence of possible Ly-α contamination. Considering the cosmological evolution of the number density of hydrogen clouds, the probability to detect uncontaminated metal lines is higher in the UV-Optical region exploited by CUBES. The list of these elements includes some important ones such as D, H2, O i, N i, O vi, Ar i, P ii, C ii, S ii and B ii. The determination of some of them in the Damped Ly-α galaxies and their astronomical interest are briefly discussed.
- Published
- 2014
- Full Text
- View/download PDF
41. ESPRESSO: The next European exoplanet hunter
- Author
-
C. Lovis, M. Amate, Olaf Iwert, B. Delabre, V. Baldini, M. Affolter, Giorgio Toso, Hans Dekker, V. De Caprio, Nuno C. Santos, Florian Kerber, L. Genolet, I. Hughes, Igor Coretti, Matteo Aliverti, P. Di Marcantonio, Filippo Maria Zerbi, C. Broeg, Rafael Rebolo, Eros Vanzella, M. R. Zapatero Osorio, Paolo Molaro, Guido Cupani, J.-L. Lizon, Valentina D'Odorico, P. Spano, Charles Maire, S. Galeotta, Marco Landoni, Gerardo Avila, J. L. Rasilla, Marco Riva, S. Santana Tschudi, Ricardo Gomes, Paul Bristow, Pedro Figueira, Pedro Santos, Alexandre Cabral, D. Mégevand, Matteo Viel, Francesco Pepe, João Coelho, Roberto Cirami, F. Tenegi, A. Fragoso, C. Allende Prieto, Danuta Sosnowska, Carlos Martins, Antonio Cesar de Oliveira, M. A. Monteiro, Reinhold J. Dorn, J. I. González Hernández, S. G. Sousa, Stefano Cristiani, Manuel Abreu, Ennio Poretti, M. Mannetta, and Paolo Conconi
- Subjects
Physics ,Espresso ,Optics ,Space and Planetary Science ,business.industry ,Astronomy ,Astronomy and Astrophysics ,Instrumentation (computer programming) ,business ,Spectrograph ,Exoplanet - Abstract
Departamento deFsica eAstronomia, Faculdade Cincias, Universidade do Porto,Rua das Estrelas, 4150-762PortugalReceived2013 Aug 29, accepted 2013 Nov1Published online 2014 Jan 15Keywords instrumentation: spectrographs –plantary systems –techniques: spectroscopicThe acronym ESPRESSO stems for Echelle SPectrograph for RockyExoplanets and Stable Spectroscopic Observations;this instrument will be the next VLThigh resolution spectrograph. The spectrograph will be installed at the Combined-CoudeL´ aboratory of the VLTand linked to the four 8.2mUnit Telescopes (UT) through four optical Coudet´ rains.ESPRESSO will combine efficiencyand extreme spectroscopic precision. ESPRESSO is foreseen to achieve again oftwomagnitudes with respect to its predecessor HARPS, and to improve the instrumental radial-velocity precision to reachthe 10 cms
- Published
- 2014
- Full Text
- View/download PDF
42. Fundamental constants and high-resolution spectroscopy
- Author
-
Giovanni Vladilo, Miriam Centurion, Sebastian Lopez, S. D'Odorico, Hadi Rahmani, Patrick Petitjean, Piercarlo Bonifacio, Dieter Reimers, Michael T. Murphy, S. A. Levshakov, Paolo Molaro, I. I. Agafonova, T. M. Evans, Raghunathan Srianand, J. Whitmore, Martin Wendt, and Carlos Martins
- Subjects
Physics ,Wavelength ,Absorption spectroscopy ,13. Climate action ,Space and Planetary Science ,Astronomy and Astrophysics ,Quasar ,Atomic physics ,Mass ratio ,Absorption (electromagnetic radiation) ,Spectroscopy ,Spectral line ,Dimensionless quantity - Abstract
Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = mp/me, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution (R ≈ 60000) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα /α is obtained for the absorber at zabs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3 ± 2.4stat ± 1.0sys ppm if Al II λ 1670 A and three FeII transitions are used, and +1.1 ± 2.6stat ppm in a slightly different analysis with only FeII transitions used. This is one of the tightest bounds on α -variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2–5.4) ± 1.7 ppm depending on dipole model used and this constraint of Δα /α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H2 absorption lines of the zabs ≈ 2.4018 damped Lyα system towards HE 0027–1836 provides Δμ /μ = (–7.6 ± 8.1stat ± 6.3sys) ppm which is also consistent with a null variation. The cross-correlation analysis between individual exposures taken over three years and comparison with almost simultaneous asteroid observations revealed the presence of a possible wavelength dependent velocity drift as well as of inter-order distortions which probably dominate the systematic error and are a significant obstacle to achieve more accurate measurements. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2014
- Full Text
- View/download PDF
43. Catalog for the ESPRESSO blind radial velocity exoplanet survey
- Author
-
S. Hojjatpanah, Rafael Rebolo, Nuno C. Santos, Yann Alibert, V. Adibekyan, Antonino F. Lanza, Paolo Molaro, Mahmoudreza Oshagh, M. R. Zapatero Osorio, Bárbara Rojas-Ayala, J. H. C. Martins, S. G. Sousa, Pedro Figueira, J. I. González Hernández, Ennio Poretti, Giuseppina Micela, Stefano Cristiani, P. Di Marcantonio, V. Neves, E. Delgado-Mena, A. Suárez Mascareño, and Francesco Pepe
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Planetary system ,01 natural sciences ,Exoplanet ,010309 optics ,Radial velocity ,Espresso ,Stars ,Space and Planetary Science ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Spectrograph ,Circumstellar habitable zone ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
One of the main scientific drivers for ESPRESSO,\'Echelle SPectrograph, is the detection and characterization of Earth-class exoplanets. With this goal in mind, the ESPRESSO Guaranteed Time Observations (GTO) Catalog identifies the best target stars for a blind search for the radial velocity (RV) signals caused by Earth-class exoplanets. Using the most complete stellar catalogs available, we screened for the most suitable G, K, and M dwarf stars for the detection of Earth-class exoplanets with ESPRESSO. For most of the stars, we then gathered high-resolution spectra from new observations or from archival data. We used these spectra to spectroscopically investigate the existence of any stellar binaries, both bound or background stars. We derived the activity level using chromospheric activity indexes using $log(R'_{HK})$, as well as the projected rotational velocity $\textit{v sin i}$. For the cases where planet companions are already known, we also looked at the possibility that additional planets may exist in the host's habitable zone using dynamical arguments. We estimated the spectroscopic contamination level, $\textit{v sin i}$, activity, stellar parameters and chemical abundances for 249 of the most promising targets. Using these data, we selected 45 stars that match our criteria for detectability of a planet like Earth. The stars presented and discussed in this paper constitute the ESPRESSO GTO catalog for the RV blind search for Earth-class planets. They can also be used for any other work requiring a detailed spectroscopic characterization of stars in the solar neighborhood., Comment: Corrected a typo in references. Corrected typo in table B.2
- Published
- 2019
- Full Text
- View/download PDF
44. Highly enriched 7 Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the Galactic 7 Li origin
- Author
-
Elena Mason, Luca Izzo, Paolo Molaro, M. Della Valle, Piercarlo Bonifacio, INAF - Osservatorio Astronomico di Trieste (OAT), Istituto Nazionale di Astrofisica (INAF), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, ITA, and Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA)
- Subjects
Physics ,[PHYS]Physics [physics] ,Milky Way ,Resonance ,Astronomy ,Astronomy and Astrophysics ,Nova (laser) ,Astrophysics ,01 natural sciences ,7. Clean energy ,Spectral line ,13. Climate action ,Space and Planetary Science ,Nucleosynthesis ,0103 physical sciences ,Galaxy formation and evolution ,010306 general physics ,Ejecta ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Equivalent width ,ComputingMilieux_MISCELLANEOUS - Abstract
We report on the evidence of highly blueshifted resonance lines of the singly ionized isotope of 7Be II in high resolution UVES spectra of Nova Sagittarii 2015 No. 2 (V5668 Sgr). The resonance doublet lines 7Be II at λλ313.0583, 313.1228 nm are clearly detected in several non-saturated and partially resolved high velocity components during the evolution of the outburst. The total absorption identified with Be II has an equivalent width much larger than all other elements and comparable to hydrogen. We estimate an atomic fraction N(7Be)/N(Ca) ≈ 53-69 from unsaturated and resolved absorption components. The detection of 7Be in several high velocity components shows that 7Be has been freshly created in a thermonuclear runaway via the reaction 3He(α, γ)7Be during the Nova explosion, as postulated by Arnould & Norgaar, however in much larger amounts than predicted by current models. 7Be II decays to 7Li II with a half-life of 53.22 d, comparable to the temporal span covered by the observations. The non-detection of 7Li I requires that 7Li remains ionized throughout our observations. The massive Be II ejecta result into a 7Li production that is ≈ 4.7-4.9 dex above the meteoritic abundance. If such a high production is common even in a small fraction (≈5 per cent) of Novae, they can make all the stellar 7Li of the Milky Way.
- Published
- 2016
- Full Text
- View/download PDF
45. Long-term radial-velocity variations of the Sun as a star: The HARPS view
- Author
-
Antonino F. Lanza, Lorenzo Monaco, Paolo Molaro, Raphaëlle D. Haywood, and ITA
- Subjects
010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Rotation ,01 natural sciences ,symbols.namesake ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,activity [Sun] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,radial velocities [Techniques] ,Astronomy and Astrophysics ,Exoplanet ,Galilean moons ,Radial velocity ,Stars ,detection [Planets and satellites] ,Amplitude ,Astrophysics - Solar and Stellar Astrophysics ,magnetic fields [Sun] ,13. Climate action ,Space and Planetary Science ,Asteroid ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,activity [Stars] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programs. We use the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlate it with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at about 95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models., 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and Astrophysics
- Published
- 2016
46. Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight
- Author
-
Lorenzo Monaco, Marco Fulle, G. Lo Curto, Paolo Molaro, Luca Pasquini, A. F. Lanza, Federico Tosi, and ITA
- Subjects
SURFACE ,010504 meteorology & atmospheric sciences ,Dwarf planet ,FOS: Physical sciences ,TRANSIT ,BRIGHT SPOTS ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,Telescope ,Spitzer Space Telescope ,law ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,radial velocities [Techniques] ,STAR ,ICE ,SUN ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,ATLAS ,Albedo ,Planetary system ,general [Planets and satellites] ,Radial velocity ,Planetary systems ,Amplitude ,Space and Planetary Science ,Asteroid ,individual: Ceres [Minor planets, asteroids] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occator's bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres' albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations., 5 pag, 1fig, two tables, MNRAS Letters 2016
- Published
- 2016
47. Un transito futurista
- Author
-
Paolo Molaro
- Abstract
Ispirato dal passaggio di Mercurio sul Sole del 1914, Giacomo Balla realizzò alcune opere dedicate al fenomeno. Pochi mesi più tardi firmò il “Manifesto per la Ricostruzione Futurista dell’Universo”. Ce ne parla Paolo Molaro, astrofisico all’Osservatorio astronomico di Trieste dell’Inaf
- Published
- 2016
- Full Text
- View/download PDF
48. Possible portrait of Galileo Galilei as a young scientist
- Author
-
Paolo Molaro
- Subjects
Physics ,Painting ,symbols.namesake ,Portrait ,Space and Planetary Science ,Galileo (satellite navigation) ,symbols ,Art history ,Astronomy and Astrophysics ,Biography ,Young scientist - Abstract
We describe here the possible discovery of a portrait of Galileo Galilei in his youth. The painting is not signed and the identification is mainly physiognomic. In fact, the face reveals clear resemblance to Domenico Tintoretto's portrait and to Giuseppe Calendi's engraving derived from a lost portrait made by Santi di Tito in 1601. Along with the portraits by Tintoretto, Furini, Leoni, Passignano, and Sustermans this could be another portrait of Galileo made al naturale, but, unlike the others, it depicts the scientist before he reached fame. Galileo looks rather young, at age of about 20–25 years. His eyes in the portrait are clear and the expression intense and appealing. From Galileo's correspondence we know of a portrait made by his friend Ludovico Cigoli. Rather interesting, though admittedly quite improbable, is the possibility of a self-portrait whose existence is mentioned in the first biography of Galileo by Salusbury in 1664 (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2012
- Full Text
- View/download PDF
49. TOPoS
- Author
-
Paolo Molaro, B. Plez, Luca Sbordone, Elisabetta Caffau, Hans-Günter Ludwig, Andreas Koch, Matthias Steffen, P. Francois, M. Spite, Piercarlo Bonifacio, A. J. Gallagher, Norbert Christlieb, C. Abate, Lorenzo Monaco, R. Cayrel, Ralf S. Klessen, F. Spite, Simone Zaggia, Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Galaxies, Etoiles, Physique, Instrumentation ( GEPI ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Picardie Jules Verne ( UPJV ), Laboratoire Univers et Particules de Montpellier ( LUPM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Université de Montpellier ( UM ), and Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
stars: abundances ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Metallicity ,Population ,population II [Stars] ,Context (language use) ,Astrophysics ,01 natural sciences ,Spectral line ,Galactic halo ,0103 physical sciences ,Galaxy formation and evolution ,halo [Galaxy] ,observations [Cosmology] ,education ,010303 astronomy & astrophysics ,Physics ,education.field_of_study ,010308 nuclear & particles physics ,abundances [Galaxy] ,stars: population II ,Astronomy and Astrophysics ,Galaxy ,Galaxy: halo ,Stars ,formation [Galaxy] ,Galaxy: formation ,Space and Planetary Science ,abundances [Stars] ,cosmology: observations ,Galaxy: abundances ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims. Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods. We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results. We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] α-to-iron ratios. Conclusions. The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] ~−4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations.
- Published
- 2018
- Full Text
- View/download PDF
50. Stringent bounds to spatial variations of the electron-to-proton mass ratio in the Milky Way
- Author
-
Mikhail Kozlov, Sergei A. Levshakov, and Paolo Molaro
- Subjects
Physics ,Nuclear and High Energy Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Molecular cloud ,Hadron ,Analytical chemistry ,FOS: Physical sciences ,Mass ratio ,Atomic and Molecular Physics, and Optics ,Radial velocity ,Gravitational potential ,Excited state ,Nucleon ,Order of magnitude ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The ammonia method to probe variations of the electron-to-proton mass ratio, Delta_mu/mu, is applied for the first time to dense prestellar molecular clouds in the Milky Way. Carefully selected sample of 21 NH_3/CCS pairs observed in the Perseus molecular cloud provide the offset Delta V (CCS-NH_3)= 36+/-7_{stat}+/-13.5_{sys} m/s . A similar offset of Delta V = 40.8 +/- 12.9_{stat} m/s between NH_3 (J,K) = (1,1) and N_2H+ J = 1-0 has been found in an isolated dense core L183 by Pagani et al. (2009). Overall these observations provide a safe bound of a maximum offset between ammonia and the other molecules at the level of Delta V < 100 m/s. This bound corresponds to Delta_mu/mu < 1E-7, which is an order of magnitude more sensitive than available extragalactic constraints. Taken at face value the measured Delta V shows positive shifts between the line centers of NH_3 and these two other molecules and suggest a real offset, which would imply a Delta_mu/mu about 4E-8. If Delta_mu/mu follows the gradient of the local gravitational potential, then the obtained results are in conflict with laboratory atomic clock experiments in the solar system by 5 orders of magnitude, thus requiring a chameleon-type scalar field model. New measurements involving other molecules and a wider range of objects along with verification of molecular rest frequencies are currently planned to confirm these first indications., 7 pages +2 figures. Galileo Galilei Institute Conferences on Dark Matter and Dark Energy
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.