1. Tensor-Factorization-Based 3D Single Image Super-Resolution with Semi-Blind Point Spread Function Estimation
- Author
-
Janka Hatvani, Jerome Michetti, Adrian Basarab, Denis Kouame, Miklós Gyöngy, Pázmány Péter Catholic University, CoMputational imagINg anD viSion (IRIT-MINDS), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), and Pázmány Péter Catholic University - PPCU (HUNGARY)
- Subjects
Point spread function ,Image quality ,Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Computed tomography ,02 engineering and technology ,Iterative reconstruction ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Traitement des images ,0302 clinical medicine ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,Single image ,Image resolution ,3D super-resolution ,Tensor factorization ,medicine.diagnostic_test ,3D computed tomography ,Total variation denoising ,Superresolution ,Kernel (image processing) ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Image enhancement ,020201 artificial intelligence & image processing ,Semi-blind deconvolution ,Algorithm - Abstract
International audience; A volumetric non-blind single image super-resolution technique using tensor factorization has been recently introduced by our group. That method allowed a 2-order-of-magnitude faster high-resolution image reconstruction with equivalent image quality compared to state-of-the-art algorithms. In this work a joint alternating recovery of the high-resolution image and of the unknown point spread function parameters is proposed. The method is evaluated on dental computed tomography images. The algorithm was compared to an existing 3D super-resolution method using low-rank and total variation regularization, combined with the same alternating PSF-optimization. The two algorithms have shown similar improvement in PSNR, but our method converged roughly 40 times faster, under 6 minutes both in simulation and on experimental dental computed tomography data
- Published
- 2019
- Full Text
- View/download PDF