9 results on '"Noordermeer, Daan"'
Search Results
2. MadID, a Versatile Approach to Map Protein-DNA Interactions, Highlights Telomere-Nuclear Envelope Contact Sites in Human Cells
- Author
-
Sobecki, Michal, Souaid, Charbel, Boulay, Jocelyne, Guerineau, Vincent, Noordermeer, Daan, Crabbe, Laure, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département Biologie des Génomes (DBG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Telomeres et organisation du génome (TENOR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Dynamique de la Chromatine (CHRODY), Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Adenosine ,lamina interactions ,Nuclear Envelope ,[SDV]Life Sciences [q-bio] ,Cell Cycle ,High-Throughput Nucleotide Sequencing ,DNA ,m6A ,DNA Methylation ,Telomere ,telomeres ,Lamins ,Article ,Cell Line ,M.EcoGII ,DNA-Binding Proteins ,lcsh:Biology (General) ,Humans ,LADs ,MadID ,methylation ,lcsh:QH301-705.5 ,DNA Modification Methylases ,Protein Binding ,proximity labeling - Abstract
Summary Mapping the binding sites of DNA- or chromatin-interacting proteins is essential to understanding biological processes. DNA adenine methyltransferase identification (DamID) has emerged as a comprehensive method to map genome-wide occupancy of proteins of interest. A caveat of DamID is the specificity of Dam methyltransferase for GATC motifs that are not homogenously distributed in the genome. Here, we developed an optimized method named MadID, using proximity labeling of DNA by the methyltransferase M.EcoGII. M.EcoGII mediates N6-adenosine methylation in any DNA sequence context, resulting in deeper and unbiased coverage of the genome. We demonstrate, using m6A-specific immunoprecipitation and deep sequencing, that MadID is a robust method to identify protein-DNA interactions at the whole-genome level. Using MadID, we revealed contact sites between human telomeres, repetitive sequences devoid of GATC sites, and the nuclear envelope. Overall, MadID opens the way to identification of binding sites in genomic regions that were largely inaccessible., Graphical Abstract, Highlights • MadID: mapping of protein-DNA interactions in vivo using proximity labeling • Deeper and unbiased genome-wide coverage using M.EcoGII, a methyltransferase • Identification of binding sites in previously inaccessible regions of the genome • Identification of telomere-nuclear envelope contact sites, Mapping the binding sites of DNA- or chromatin-interacting proteins is essential to understanding biological processes. Sobecki et al. developed an optimized method named MadID based on proximity labeling of DNA by the bacterial methyltransferase M.EcoGII. MadID results in deep and unbiased coverage for genome-wide mapping studies.
- Published
- 2018
- Full Text
- View/download PDF
3. Additional file 1: Figures S1â S4 of Large scale genomic reorganization of topological domains at the HoxD locus
- Author
-
Fabre, Pierre, Leleu, Marion, Mormann, Benjamin, Lopez-Delisle, Lucille, Noordermeer, Daan, Beccari, Leonardo, and Duboule, Denis
- Abstract
and Tables S1 and S2. (PDF 1589 kb)
- Published
- 2017
- Full Text
- View/download PDF
4. Chromatin looping and organization at developmentally regulated gene loci
- Author
-
Noordermeer, Daan and Duboule, Denis
- Abstract
Developmentally regulated genes are often controlled by distant enhancers, silencers and insulators, to implement their correct transcriptional programs. In recent years, the development of 3C and derived techniques (4C, 5C, HiC, ChIA- PET, etc.) has confirmed that chromatin looping is an important mechanism for the transfer of regulatory information in mammalian cells. At many developmentally regulated gene loci, transcriptional activation is indeed accompanied by the formation of chromatin loops between genes and distant enhancers. Similarly, dynamic looping between insulator elements and changes in local 3D organization may be observed upon variation in transcriptional activity. Chromatin looping also occurs at silent gene loci, where its function remains less understood. In lineage- committed cells, partial 3D configurations are detected at loci that are activated at later stages. However, these partial configurations usually lack promoter–enhancer loops that accompany transcriptional activation, suggesting they have structural functions. Definitive evidence for a repressive role of chromatin looping is still lacking. Chromatin loops have been reported at repressed loci but, alternatively, they may act as a distraction for active loops. Together, these mechanisms allow fine-tuning of regulatory programs, thus providing further diversity in the transcriptional control of developmentally regulated gene loci.
- Published
- 2013
- Full Text
- View/download PDF
5. GKAP Acts as a Genetic Modulator of NMDAR Signaling to Govern Invasive Tumor Growth
- Author
-
Li, Leanne, Zeng, Qiqun, Bhutkar, Arjun, Galván Hernández, José Alberto, Karamitopoulou, Evanthia, Noordermeer, Daan, Peng, Mei-Wen, Piersigilli, Alessandra, Perren, Aurel, Zlobec, Inti, Robinson, Hugh, Iruela-Arispe, M. Luisa, and Hanahan, Douglas
- Subjects
570 Life sciences ,biology ,610 Medicine & health ,3. Good health
6. GKAP Acts as a Genetic Modulator of NMDAR Signaling to Govern Invasive Tumor Growth
- Author
-
Li, Leanne, Zeng, Qiqun, Bhutkar, Arjun, Galván, José A, Karamitopoulou, Eva, Noordermeer, Daan, Peng, Mei-Wen, Piersigilli, Alessandra, Perren, Aurel, Zlobec, Inti, Robinson, Hugh, Iruela-Arispe, M Luisa, and Hanahan, Douglas
- Subjects
GKAP/Dlgap1 ,glutamate receptor ,Antineoplastic Agents ,pancreatic ductal adenocarcinoma (PDAC) ,HSF1 ,Receptors, N-Methyl-D-Aspartate ,RIP1Tag2 ,Fragile X Mental Retardation Protein ,Mice ,Heat Shock Transcription Factors ,Cell Line, Tumor ,mental disorders ,Animals ,Humans ,Neoplasm Invasiveness ,GluN2b/NR2b/Grin2b ,Sequence Analysis, RNA ,musculoskeletal, neural, and ocular physiology ,Gene Expression Profiling ,Prognosis ,Survival Analysis ,cancer modifier ,3. Good health ,Carcinoma, Neuroendocrine ,SAP90-PSD95 Associated Proteins ,NMDAR ,Gene Expression Regulation, Neoplastic ,Pancreatic Neoplasms ,nervous system ,memantine ,FMRP ,MK801 ,Neoplasm Transplantation ,Carcinoma, Pancreatic Ductal ,Signal Transduction - Abstract
Genetic linkage analysis previously suggested that GKAP, a scaffold protein of the N-methyl-D-aspartate receptor (NMDAR), was a potential modifier of invasion in a mouse model of pancreatic neuroendocrine tumor (PanNET). Here, we establish that GKAP governs invasive growth and treatment response to NMDAR inhibitors of PanNET via its pivotal role in regulating NMDAR pathway activity. Combining genetic knockdown of GKAP and pharmacological inhibition of NMDAR, we implicate as downstream effectors FMRP and HSF1, which along with GKAP demonstrably support invasiveness of PanNET and pancreatic ductal adenocarcinoma cancer cells. Furthermore, we distilled genome-wide expression profiles orchestrated by the NMDAR-GKAP signaling axis, identifying transcriptome signatures in tumors with low/inhibited NMDAR activity that significantly associate with favorable patient prognosis in several cancer types.
7. MOESM4 of CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains
- Author
-
Llères, David, Moindrot, Benoît, Pathak, Rakesh, Piras, Vincent, Mélody Matelot, Pignard, Benoît, Marchand, Alice, Poncelet, Mallory, Perrin, Aurélien, Tellier, Virgile, Feil, Robert, and Noordermeer, Daan
- Subjects
3. Good health - Abstract
Additional file 4. Review history.
8. MOESM4 of CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains
- Author
-
Llères, David, Moindrot, Benoît, Pathak, Rakesh, Piras, Vincent, Mélody Matelot, Pignard, Benoît, Marchand, Alice, Poncelet, Mallory, Perrin, Aurélien, Tellier, Virgile, Feil, Robert, and Noordermeer, Daan
- Subjects
3. Good health - Abstract
Additional file 4. Review history.
9. A complex CTCF binding code defines TAD boundary structure and function
- Author
-
Andrea Papale, Mallory Poncelet, David Holcman, Jéril Degrouard, Mélanie Miranda, Sourav Ghosh, Nathan Lecouvreur, Sébastien Bloyer, Amélie Leforestier, Daan Noordermeer, Vincent Piras, Li-Hsin Chang, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (IBENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Noordermeer, Daan, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Regulation of gene expression ,0303 health sciences ,030302 biochemistry & molecular biology ,DNA replication ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Computational biology ,Insulator (genetics) ,[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Structural variation ,03 medical and health sciences ,chemistry.chemical_compound ,chemistry ,CTCF ,DNA ,Function (biology) ,Recombination ,030304 developmental biology - Abstract
SummaryTopologically Associating Domains (TADs) compartmentalize vertebrate genomes into sub-Megabase functional neighbourhoods for gene regulation, DNA replication, recombination and repair1-10. TADs are formed by Cohesin-mediated loop extrusion, which compacts the DNA within the domain, followed by blocking of loop extrusion by the CTCF insulator protein at their boundaries11-20. CTCF blocks loop extrusion in an orientation dependent manner, with both experimental and in-silico studies assuming that a single site of static CTCF binding is sufficient to create a stable TAD boundary21-24. Here, we report that most TAD boundaries in mouse cells are modular entities where CTCF binding clusters within extended genomic intervals. Optimized ChIP-seq analysis reveals that this clustering of CTCF binding does not only occur among peaks but also frequently within those peaks. Using a newly developed multi-contact Nano-C assay, we confirm that individual CTCF binding sites additively contribute to TAD separation. This clustering of CTCF binding may counter against the dynamic DNA-binding kinetics of CTCF25-27, which urges a re-evaluation of current models for the blocking of loop extrusion21-23. Our work thus reveals an unanticipatedly complex code of CTCF binding at TAD boundaries that expands the regulatory potential for TAD structure and function and can help to explain how distant non-coding structural variation influences gene regulation, DNA replication, recombination and repair5,28-34.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.