1. Comparison of the APAS Independence Automated Plate Reader System with the Manual Standard of Care for Processing Urine Culture Specimens
- Author
-
Megan Chiu, Peiting Kuo, Khrissa Lecrone, Andrew Garcia, Ruohui Chen, Natalie E. Quach, Xin M. Tu, and David T. Pride
- Subjects
Microbiology (medical) ,Infectious Diseases ,General Immunology and Microbiology ,Ecology ,Anti-Infective Agents ,Physiology ,Genetics ,Standard of Care ,Cell Biology ,Microbial Sensitivity Tests - Abstract
Urine cultures are among the highest-volume tests in clinical microbiology laboratories and usually require considerable manual labor to perform. We evaluated the APAS Independence automated plate reader system and compared it to our manual standard of care (SOC) for processing urine cultures. The APAS device provides automated image interpretation of urine culture plate growth and sorts those images that require further evaluation. We examined 1,519 specimens over a 4-month period and compared the APAS growth interpretations to our SOC. We found that 72 of the 1,519 total specimens (4.74%) had growth discrepancies, where these specimens were interpreted differently by the APAS and the technologist, which required additional evaluation of plate images on the APAS system. Overall, there were 56 discrepancies in pathogen identification, which were present in 3.69% of the cultures. An additional pathogen was uncovered in a majority of these discrepancies; 12 (21.4%) identified an additional pathogen for the SOC, and 40 (71.4%) identified an additional pathogen for the APAS workflow. We found 214 (2.69%) antimicrobial susceptibility test (AST) discrepancies; 136 (1.71%) minor errors (mEs), 41 (0.52%) major errors (MEs), and 36 (0.45%) very major errors (VMEs). Many of the MEs and VMEs occurred in only a small subset of 13 organisms, suggesting that the specimen may have had different strains of the same pathogens with differing AST results. Given the significant labor required to perform urine cultures, the APAS Independence system has the potential to reduce manual labor while maintaining the identity and AST results of urinary pathogens.
- Published
- 2022