1. Correlation Trends in the Hyperfine Structures of $^{210,212}$Fr
- Author
-
Sahoo, B. K., Nandy, D. K., Das, B. P., and Sakemi, Y.
- Subjects
Nuclear Theory (nucl-th) ,Nuclear Theory ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,Physics::Atomic Physics ,Computational Physics (physics.comp-ph) ,Physics - Computational Physics ,Physics - Atomic Physics - Abstract
We demonstrate the importance of electron correlation effects in the hyperfine structure constants of many low-lying states in $^{210}$Fr and $^{212}$Fr. This is achieved by calculating the magnetic dipole and electric quadrupole hyperfine structure constants using the Dirac-Fock approximation, second order many-body perturbation theory and the coupled-cluster method in the singles and doubles approximation in the relativistic framework. By combining our recommended theoretical results with the corresponding experimental values, improved nuclear magnetic dipole and electric quadrupole moments of the above isotopes are determined. In the present work, it is observed that there are large discrepancies between the hyperfine structure constants of the $7D_{5/2}$ state obtained from the experimental and theoretical studies whereas good agreements are found for the other $D_{5/2}$ states. Our estimated hyperfine constants for the $8P$, $6D$, $10S$ and $11S$ states could be very useful as benchmarks for the measurement of these quantities., 10 pages, 8 tables
- Published
- 2015