This Ph.D. project is aimed to discover new strategies to develop materials to utilize in the fields of Green Energy and Green Chemistry and it was directed at the application of 2D Materials in particular. This thesis is divided into five main chapters where we presented five exemplary systems in which we focused our attention on different aspects of materials design. Each chapter comprises an introduction and a conclusion section, in which we tried to go into the details of each targeted application and of the specific design strategy employed. However, at the beginning and at the end of the thesis, the reader can find an Introduction and a Conclusion section where we tried to collocate the goals and challenges of this work within a broader context of materials science and catalysis/electrocatalysis. In our studies in the Green Energy area, we focused on the use of MoS2-based materials in water splitting cathodic half-reaction in order to obtain the best possible performance in hydrogen generation in different conditions. To do that, different strategies were developed to drive the original material to adapt to specific application. In detail, in Chapter Two we investigated the design of three-dimensional MoS2 structures doped with different amount of Ni in order to activate MoS2 for the Hydrogen Evolution Reaction (HER) performed in alkaline environment, which typically hinder this reaction. We carried out an extensive structural characterization in order to establish the role of each type of active sites formed on the material in the HER activity and kinetics. In Chapter Three, we developed an electrodeposition method for preparing amorphous MoS2/Ag2S hybrid using recycled DVD as the support; this revealed as a viable opportunity to turn an abundant waste into an added-value material. After a suitable investigation to understand what kind of material was formed upon electrodeposition, MoS2/Ag2S/DVD was tested for HER in acidic medium. In Chapter Four another kind of hybrid was prepared by designing a one-pot solvothermal synthesis of MoS2(1-x)Se2x nanosheets grown on N-doped reduced Graphene Oxide (N-rGO). The goal was the control of the optoelectronic properties of the final material, since the combination of MoS2(1-x)Se2x and N-rGO allows to form p-n nanojunctions, which induce an enhancement of HER activity upon illumination with visible light. Then we used different techniques to prove what was the best Se:S ratio to optimize both the absolute performances in HER and the enhancement upon light irradiation. Regarding Green Chemistry area, we used Graphene Acid (GA) as starting material and we exploited its uniform surface functionalization to prepare materials for heterogeneous catalysis for different reactions, comparing them with the benchmark Graphene Oxide (GO), modified with the same protocol. In Chapter Five, we synthesized a heterogeneous catalyst by covalently grafting Ferrocene (Fc) moieties to –COOH surface groups of GA and GO. The resulting Fc-modified graphene derivatives have been tested as heterogeneous catalysts for the C-H insertion of aryl diazonium salts into several arene substrates. The tests revealed a strong influence of the support, which we could attribute the intrinsic properties of GA. In Chapter Six, we have grown Pd nanoparticles on GA to prepare a catalyst for Suzuki-Miyaura cross coupling reaction. We have studied the effect of surface functionalization on the nanoparticles formation process and on the derived capability on the controlling the size distribution. The catalysts were tested in Suzuki cross coupling in green conditions and we could highlight the influence of nanoparticles size on activity. Moreover, we studied the same catalysts also for boronic acid homocoupling reaction, that can provide similar final products, but in a more atom economically way.