1. Quantifying Exciton Transport in Singlet Fission Diblock Copolymers
- Author
-
Guiying He, Lauren M. Yablon, Kaia R. Parenti, Kealan J. Fallon, Luis M. Campos, and Matthew Y. Sfeir
- Subjects
Colloid and Surface Chemistry ,General Chemistry ,Biochemistry ,Catalysis - Abstract
Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scales─from individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimers─an area that has been underexplored.
- Published
- 2022
- Full Text
- View/download PDF