22 results on '"Liu, H. Q."'
Search Results
2. Characteristics of the edge temperature ring oscillation during stationary improved confnement mode in EAST
- Author
-
Liu, A. D., Zou, X. L., Zhong, X. M., Song, Y. T., Han, M. K., Duan, Y. M., Liu, H. Q., Wang, T. B., Li, E. Z., Zhang, L., Feng, X., Zhuang, G., and group, EAST I-mode working
- Subjects
Plasma Physics (physics.plasm-ph) ,FOS: Physical sciences ,Physics - Plasma Physics - Abstract
I-mode is a natural ELMy-free regime with H-mode like improved energy confnement and L-mode like particle confnement, making it an attractive scenario for future tokamak based fusion reactors. A kind of low frequency oscillation was widely found and appeared to be unique in I-mode, with the frequency between stationary zonal flow and geodesic-acoustic mode (GAM) zonal flow. In EAST, 90 percent I-mode shots have such mode, called edge temperature ring oscillation (ETRO). The mode probably plays an important role during I-mode development and sustainment, while investigations are needed to clarify the differences between ETRO and the similar mode named as low frequency edge oscillation (LFEO) in AUG and C-Mod, especially whether it is still GAM. In the paper, the ETRO characteristics in EAST were investigated in detail and most do not agree with GAM, including that 1) during L-I transition with edge Te and Ti both increasing, ETRO has a smaller frequency than GAM; 2) ETRO has distinct harmonics in various diagnostics; 3) The magnetic component of ETRO is dominated by m = 1 structure; 4) ETRO is accompanied by turbulence transition between electron-scale and ion-scale; 5) As I-mode approaching to H-mode, ETRO frequency would decrease rapidly with Te increasing. These features imply that ETRO is probably caused by the stationary zonal flow with fnite frequency. Moreover, other damping mechanisms need to be involved besides collision in the Imode edge region. It was found that modest fueling could decrease the ETRO intensity with the I-mode confnement sustaining, suggesting that supersonic molecular beam injection (SMBI) could be used as an effective tool to control ETRO., Comment: 23 pages, 16 figures
- Published
- 2023
- Full Text
- View/download PDF
3. Edge Temperature Ring Oscillation Modulated by Turbulence Transition for Sustaining Stationary Improved Energy Confinement Plasmas
- Author
-
Liu, A. D., Zou, X. L., Han, M. K., Wang, T. B., Zhou, C., Wang, M. Y., Duan, Y. M., Verdoolaege, G., Dong, J. Q., Wang, Z. X., Feng, X., Xie, J. L., Zhuang, G., Ding, W. X., Zhang, S. B., Liu, Y., Liu, H. Q., Wang, L., Li, Y. Y., Wang, Y. M., Lv, B., Hu, G. H., Zhang, Q., Wang, S. X., Zhao, H. L., Qu, C. M., Liu, Z. X., Liu, Z. Y., Zhang, J., Ji, J. X., Zhong, X. M., Lan, T., Li, H., Mao, W. Z., Liu, W. D., and Team, EAST
- Subjects
Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,FOS: Physical sciences ,Physics - Plasma Physics - Abstract
A reproducible stationary improved confinement mode (I-mode) has been achieved recently in the Experimental Advanced Superconducting Tokamak, featuring good confinement without particle transport barrier, which could be beneficial to solving the heat flux problem caused by edge localized modes (ELM) and the helium ash problem for future fusion reactors. The microscopic mechanism of sustaining stationary I-mode, based on the coupling between turbulence transition and the edge temperature oscillation, has been discovered for the first time. A radially localized edge temperature ring oscillation (ETRO) with azimuthally symmetric structure ($n=0$,$m=0$) has been identified and it is caused by alternative turbulence transitions between ion temperature gradient modes (ITG) and trapped electron modes (TEM). The ITG-TEM transition is controlled by local electron temperature gradient and consistent with the gyrokinetic simulations. The self-organizing system consisting with ETRO, turbulence and transport transitions plays the key role in sustaining the I-mode confinement. These results provide a novel physics basis for accessing, maintaining and controlling stationary I-mode in the future., 11 pages, 6 figures
- Published
- 2020
4. Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357)
- Author
-
Früh-Green G.L.[1], Orcutt B.N.[2], Rouméjon S.[1], Lilley M.D.[3], Morono Y.[4], Cotterill C.[5], Green S.[5], Escartin J.[6], John B.E.[7], McCaig A.M.[8], Cannat M.[6], Ménez B.[6], Schwarzenbach E.M.[9], Williams M.J.[10, Morgan S.[11], Lang S.Q.[12], Schrenk M.O.[13], Brazelton W.J.[14], Akizawa N.[15, Boschi C.[16], Dunkel K.G.[17], Quéméneur M.[18], Whattam S.A.[19, Mayhew L.[20], Harris M.[21, Bayrakci G.[21], Behrmann J.-H.[22], Herrero-Bervera E.[23], Hesse K.[24], Liu H.-Q.[25], Ratnayake A.S.[26, Twing K.[13, 14], Weis D.[27], Zhao R.[28], Bilenker L.[27], Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), British Geological Survey [Edinburgh], British Geological Survey (BGS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Physics of Geological Processes [Oslo] (PGP), Department of Physics [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Department of Geosciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawai‘i [Mānoa] (UHM), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), University of Wyoming (UW), Department of Geology [Leicester], University of Leicester, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), King Fahad University, High Temp Resistant Polymers & Composites Key Lab, Inst Microelect & Solid State Elect, Chengdu University of Technology (CDUT), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)
- Subjects
Si metasomatism ,010504 meteorology & atmospheric sciences ,IODP Expedition 357 ,Atlantis Massif ,Detachment faulting ,serpentinization ,deep biosphere ,Geochemistry ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Geochemistry and Petrology ,Ultramafic rock ,14. Life underwater ,Metasomatism ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Peridotite ,geography ,geography.geographical_feature_category ,Gabbro ,Serpentinization ,Geology ,Massif ,Seafloor spreading ,Detachment fault ,Deep biosphere ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,Mafic - Abstract
Highlights • Seabed rock drills and real-time fluid monitoring for first time in ocean drilling • First time recovery of continuous sequences along oceanic detachment fault zone • Highly heterogeneous rock type and alteration in shallow detachment fault zone • High methane and hydrogen concentrations in Atlantis Massif shallow basement • Oceanic serpentinites potentially provide important niches for microbial life Abstract IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life.
- Published
- 2018
- Full Text
- View/download PDF
5. Developing steady state ELM-absent H-mode scenarios with advanced divertor configuration in EAST tokamak
- Author
-
Calabrò, G., Xiao, B. J., J. G., Li, Luo, Z. P., Yuan, Q. P., Wang, L., Wu, K., Albanese, R., Ambrosino, Roberto, Castaldo, A., Crisanti, F., De Tommasi, G., Gong, X. Z., Huang, Yufei, Innocente, Paolo, Liu, H. Q., Lombroni, R., Meineri, C., Mele, A., Minucci, S., Pironti, A., Qian, J. P., Ramogida, G., Vianello, N., and Zhang, Tingting
- Published
- 2018
6. Expedition 357 methods
- Author
-
Früh-Green, G.L., Orcutt, B.N., Green, S.L., Cotterill, C., Morgan, S., Akizawa, N., Bayrakci, G., Behrmann, Jan H., Boschi, C., Brazleton, W.J., Cannat, M., Dunkel, K.G., Escartin, J., Harris, M., Herrero-Bervera, E., Hesse, K., John, B.E., Lang, S.Q., Lilley, M.D., Liu, H.-Q., Mayhew, L.E., McCaig, A.M., Menez, B., Morono, Y., Quéméneur, M., Rouméjon, S., Sandaruwan Ratnayake, A., Schrenk, M.O., Schwarzenbach, E.M., Twing, K.I., Weis, D., Whattham, S.A., Williams, M., and Zhao, R.
- Abstract
This chapter documents the primary procedures and methods employed by the operational and scientific groups during the offshore and onshore phases of International Ocean Discovery Program (IODP) Expedition 357. This information concerns only shipboard and Onshore Science Party (OSP) methods described in the site chapters. Methods for postexpedition research conducted on Expedition 357 samples and data will be described in individual scientific contributions. Detailed drilling and engineering operations are described in the Operations section of each site chapter.
- Published
- 2017
7. Western sites. Atlantis Massif: Serpentinisation and life
- Author
-
Früh-Green, G.L., Orcutt, B.N., Green, S.L., Cotterill, C., Morgan, S., Akizawa, N., Bayrakci, G., Behrmann, J.-H., Boschi, C., Brazleton, W.J., Cannat, M., Dunkel, K.G., Escartin, J., Harris, M., Herrero-Bervera, E., Hesse, K., John, B.E., Lang, S.Q., Lilley, M.D., Liu, H.-Q., Mayhew, L.E., McCaig, A.M., Menez, B., Morono, Y., Quéméneur, M., Rouméjon, S., Sandaruwan Ratnayake, A., Schrenk, M.O., Schwarzenbach, E.M., Twing, K.I., Weis, D., Whattham, S.A., Williams, M., and Zhao, R.
- Abstract
International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.30 to 16.44 meters below seafloor and core recoveries as high as 74.76% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 reveal a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential (ORP), temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans and will verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, MAR, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif.
- Published
- 2017
- Full Text
- View/download PDF
8. Expedition 357 summary. Atlantis Massif: Serpentinisation and life
- Author
-
Früh-Green, G.L., Orcutt, B.N., Green, S.L., Cotterill, C., Morgan, S., Akizawa, N., Bayrakci, G., Behrmann, J.-H., Boschi, C., Brazleton, W.J., Cannat, M., Dunkel, K.G., Escartin, J., Harris, M., Herrero-Bervera, E., Hesse, K., John, B.E., Lang, S.Q., Lilley, M.D., Liu, H.-Q., Mayhew, L.E., McCaig, A.M., Menez, B., Morono, Y., Quéméneur, M., Rouméjon, S., Sandaruwan Ratnayake, A., Schrenk, M.O., Schwarzenbach, E.M., Twing, K.I., Weis, D., Whattham, S.A., Williams, M., and Zhao, R.
- Abstract
International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.30 to 16.44 meters below seafloor and core recoveries as high as 74.76% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 reveal a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential (ORP), temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans and will verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, MAR, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif.
- Published
- 2017
- Full Text
- View/download PDF
9. Expedition 357 methods. Atlantis Massif: Serpentinisation and life
- Author
-
Früh-Green, G.L., Orcutt, B.N., Green, S.L., Cotterill, C., Morgan, S., Akizawa, N., Bayrakci, G., Behrmann, J.-H., Boschi, C., Brazleton, W.J., Cannat, M., Dunkel, K.G., Escartin, J., Harris, M., Herrero-Bervera, E., Hesse, K., John, B.E., Lang, S.Q., Lilley, M.D., Liu, H.-Q., Mayhew, L.E., McCaig, A.M., Menez, B., Morono, Y., Quéméneur, M., Rouméjon, S., Sandaruwan Ratnayake, A., Schrenk, M.O., Schwarzenbach, E.M., Twing, K.I., Weis, D., Whattham, S.A., Williams, M., and Zhao, R.
- Abstract
This chapter documents the primary procedures and methods employed by the operational and scientific groups during the offshore and onshore phases of International Ocean Discovery Program (IODP) Expedition 357. This information concerns only shipboard and Onshore Science Party (OSP) methods described in the site chapters. Methods for postexpedition research conducted on Expedition 357 samples and data will be described in individual scientific contributions. Detailed drilling and engineering operations are described in the Operations section of each site chapter.
- Published
- 2017
- Full Text
- View/download PDF
10. Eastern sites. Atlantis Massif: Serpentinisation and life
- Author
-
Früh-Green, G.L., Orcutt, B.N., Green, S.L., Cotterill, C., Morgan, S., Akizawa, N., Bayrakci, G., Behrmann, J.-H., Boschi, C., Brazleton, W.J., Cannat, M., Dunkel, K.G., Escartin, J., Harris, M., Herrero-Bervera, E., Hesse, K., John, B.E., Lang, S.Q., Lilley, M.D., Liu, H.-Q., Mayhew, L.E., McCaig, A.M., Menez, B., Morono, Y., Quéméneur, M., Rouméjon, S., Sandaruwan Ratnayake, A., Schrenk, M.O., Schwarzenbach, E.M., Twing, K.I., Weis, D., Whattham, S.A., Williams, M., and Zhao, R.
- Abstract
International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.30 to 16.44 meters below seafloor and core recoveries as high as 74.76% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 reveal a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential (ORP), temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans and will verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, MAR, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif.
- Published
- 2017
- Full Text
- View/download PDF
11. Central sites. Atlantis Massif: Serpentinisation and life
- Author
-
Früh-Green, G.L., Orcutt, B.N., Green, S.L., Cotterill, C., Morgan, S., Akizawa, N., Bayrakci, G., Behrmann, J.-H., Boschi, C., Brazleton, W.J., Cannat, M., Dunkel, K.G., Escartin, J., Harris, M., Herrero-Bervera, E., Hesse, K., John, B.E., Lang, S.Q., Lilley, M.D., Liu, H.-Q., Mayhew, L.E., McCaig, A.M., Menez, B., Morono, Y., Quéméneur, M., Rouméjon, S., Sandaruwan Ratnayake, A., Schrenk, M.O., Schwarzenbach, E.M., Twing, K.I., Weis, D., Whattham, S.A., Williams, M., and Zhao, R.
- Abstract
International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.30 to 16.44 meters below seafloor and core recoveries as high as 74.76% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 reveal a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential (ORP), temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans and will verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, MAR, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif.
- Published
- 2017
- Full Text
- View/download PDF
12. On multiple exponential sums and their applications
- Author
-
Liu, H.-Q
- Subjects
primitive circle problem ,direct factors of abelian groups ,11L07 ,multiple exponential sums ,squarefree divisor problem - Abstract
We prove new estimates for the remainder terms in the known asymptotic formulas for three famous problems, by using the contemporary bounds for triple exponential sums.
- Published
- 2011
13. The number of cubefull numbers in an interval (supplement)
- Author
-
Liu, H.-Q.
- Subjects
11L05 ,cubefull numbers ,exponential sums - Abstract
We derive a new result which extends the range of validity of the asymptotic formula for cubefull integers in an interval.
- Published
- 2010
14. On the average number of unitary factors of finite abelian groups
- Author
-
Liu, H.-Q.
- Subjects
Condensed Matter::Quantum Gases ,11L06 ,Condensed Matter::Other ,abelian groups ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,exponential sums ,11N45 - Abstract
We give a slight improvement on a well-known problem.
- Published
- 2010
15. A Study on the Development Path of China's Low-Carbon Economy under the Global Climate Change
- Author
-
Duan, H. Y., Wang, D. F., Zhang, J., Liu, H. Q., and Wang, X. E.
- Abstract
n/a
- Published
- 2010
16. Exponential sums and the abelian group problem
- Author
-
Liu, H.-Q.
- Subjects
11L06 ,11M20 ,exponential sums ,Abelian groups - Abstract
We give new estimates for multiple exponential sums, which infers $$A(x)=C_1x+C_2x^{1/2}+C_3x^{1/3}+O(x^{1/4}e^{V(x)}), V(x)=\frac{1}{\sqrt{3}}(L\log{L})^{1/2}+O((L\log{L})^{1/2}),$$ where $L=\log{x}$, $A(x)$ is the number of non-isomorphic abelian groups of orders $\leq{x}$, and $x$ is large.
- Published
- 2010
17. La Crosse encephalitis virus habitat associations in Nicholas County, West Virginia
- Author
-
Nasci, Roger S., Moore, Chester G., Biggerstaff, Brad J., Panella, Nicholas A., Liu, H. Q., Karabatsos, Nick, Davis, Brent S., Brannon, E. S., and Entomology
- Subjects
La crosse virus ,Mosquito ecology ,fungi ,Aedes canadensis ,Aedes triseriatus - Abstract
Aedes triseriatus (Say) population density patterns and La Crosse encephalitis virus infection rates were evaluated in relation to a variety of habitat parameters over a 14-wk period. Ovitraps and landing collections were used in a La Crosse virus-enzootic area in Nicholas County, WV. Studs sites were divided into categories by habitat type and by proximity to the residences of known La Crosse encephalitis cases. Results demonstrated that Ae. triseriatus population densities were higher in sugar maple/red maple habitats than in hemlock/mixed hardwood habitats or in a site characterized by a large number of small red maple trees. Sites containing artificial containers had higher population densities than those without. La Crosse virus minimum infection rates in mosquitoes collected as eggs ranged from 0.4/1,000 to 7.5/1,000 in the 12 study sites, but did not differ significantly among sites regardless of habitat type or proximity to human case residences. La Crosse virus infection rates in landing Ae. triseriatus mosquitoes ranged from 0.0/1,000 to 27.0/1,000. La Crosse virus was also isolated from host-seeking Ae. canadensis (Theobald) in two study sites, at rates similar to those found in the Ae. triseriatus populations. The Ae. triseriatus oviposition patterns and La Crosse virus infection rates suggest that this mosquito species disperses readily in the large woodlands of central West Virginia. The La Crosse enzootic habitats in Nicholas County, WV, are contrasted with those studied in other geographic regions where La Crosse virus is found.
- Published
- 2000
18. Heterooctanuclear Cluster Complex Formation with Phosphine Participation: Synthesis, Structure, and Magnetic Properties of Co6Ru2(mp)10(PBu3n) 6 (H2mp = 2-Mercaptophenol, PBu3n = Tri-n-butylphosphine)
- Author
-
Chen, Z. -N, Li, W. -J, Kang, B. -S, Hong, M. -C, Zhou, Z. -Y, Mak, T. C. W., Zhang Lin, Chen, X. -M, and Liu, H. -Q
19. Geochemical and mineral magnetic characteristics of high arsenic aquifer sediment from Datong basin, North China
- Author
-
Xianjun Xie, Wang, Y. X., Liu, H. Q., and Duan, M. Y.
20. Crystal and molecular structure of Co6S8(PBu3n)(6) and synergism in the cluster core M6E8P6 (E = S, Se, Te)
- Author
-
Kang, B. S., Chen, Z. N., Chengyong Su, Zheng, K. C., and Liu, H. Q.
21. Reactions of transition metal thiolato units iv.* formation of phosphine-containing cobalt or nickel complexes with iso-maleonitrile-dithiolate
- Author
-
Kang, B. -S, Chen, Z. -N, Lin, Z., Zhang Lin, Liu, H. -Q, and Huang, X. -Y
22. Microstructures and initial oxidation of Nb-Cr based coating systems
- Author
-
Li, Y. -Q, Li, W. -Z, Liu, H. -Q, Yi, D. -Q, and Albano Cavaleiro
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.