1. Retrieval Algorithm for Aerosol Effective Height from the Geostationary Environment Monitoring Spectrometer (GEMS)
- Author
-
Park, Sang Seo, Kim, Jhoon, Cho, Yeseul, Lee, Hanlim, Park, Junsung, Lee, Dong-Won, Lee, Won-Jin, and Kim, Deok-Rae
- Abstract
An algorithm for aerosol effective height (AEH) was developed for operational use with observations from the Geostationary Environment Monitoring Spectrometer (GEMS). The retrieval technique uses the slant column density of the oxygen dimer (O2-O2) at 477 nm, which is converted into AEH after retrieval of aerosol and surface optical properties from GEMS operational algorithms. The AEH retrieval results show significant AEH values and continuously monitor aerosol vertical height information in severe dust plumes over East Asia, and the collection of plume height information for anthropogenic aerosol pollutants over India. Compared to the AEH retrieved from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the retrieval results show insignificant bias with a standard deviation of 1.4 km for the AEH difference over the GEMS observation domain from January to June 2021 due to uncertainty in input parameters for aerosol and surface. The AEH difference depends on aerosol optical properties and surface albedo. Compared to the aerosol layer height obtained from the tropospheric monitoring instrument (TROPOMI), differences of 0.78 ± 0.81 and 1.16 ± 0.92 km were obtained for pixels with single scattering albedo (SSA) < 0.90 and 0.90 < SSA < 0.95, respectively, with significant dependence on aerosol type.
- Published
- 2023