1. Effect of forced weld cooling on high-strength low alloy steels to interpass temperature
- Author
-
Laitila, J. M. (Juhani Markus) and Larkiola, J. (Jari)
- Subjects
multipass welding ,monipalkohitsaus ,interpass time ,heat-affected zone ,arc welding ,jäähtymisaika ,high-strength steel ,cooling time ,kaarihitsaus ,production time ,tuotantoaika ,ultrahigh-strength steel ,lujat teräkset ,erikoislujat teräkset - Abstract
One of the challenges in welding ultrahigh- and high-strength steels is the effect of limited heat input on the production times. As the cooling times of these steels have to be controlled tightly to achieve the desired weld qualities, such as impact toughness, the allowed heat input is low, which translates to reduced material deposition rates. This means that multipass welding is often required to achieve good weld quality. Because multipass welding is often used, the time spent waiting for the weld to cool to the desired interpass temperature, which is usually 100 °C, is often multiple minutes for each weld pass. The trend so far has been that more efficient welding processes have been developed to maximize the material deposition rates without increasing the heat input. Even with these efforts the use of multipass welding is still required. The use of ultrahigh- or high-strength steels reduces the material cost, allows for lighter and thinner structures while reducing transport costs as well. However, the production cost can negate some of these cost savings because of the wasted time due to the aforementioned problems with multipass welding. To establish the feasibility of introducing forced cooling to the welding process, the effect of the cooling on the mechanical properties was studied by conducting tensile, impact, and fatigue strength experiments with Gleeble simulated and with welded specimens. Also, the microstructural differences were studied. The tensile properties were improved when forced cooling was used to cool the weld down to the temperature of 100 °C and the impact toughness was also improved or remained unchanged. The cooling also demonstrated that it may have a positive effect on the fatigue strength of the steel. The grain size was usually reduced due to the forced cooling and larger quantities of lower bainite could be seen in some of the experiments. Overall there were no negative effects caused by the forced cooling on the steel. The external cooling method used was water-cooled copper heat sinks that were placed on top of the steel being welded. This external cooling had the potential to reduce the time it takes for the steel to cool down to 100 °C by 83.6% when 6 mm thick steel was welded. Overall, taking into consideration other processes, such as Setup times, the potential time savings that can be achieved by applying such cooling methods to multipass welding processes is a significant and worthwhile option to consider. Tiivistelmä Hitsausprosesseissa yksi merkittävimmistä ongelmista erikoislujilla teräksillä on saavuttaa riittävän nopeat jäähdytysajat sillä hidas jäähtyminen heikentää hitsin lujuutta. Jäähdytysnopeuksien kasvattaminen vaatii lämmöntuonnin vähentämistä, jolloin hitsipalkojen lukumäärää joudutaan vastaavasti kasvattamaan. Hitsipalkon lämpötila pitää olla esim. 100°C ennen kuin seuraava palko voidaan hitsata päälle. Jäähtyminen saattaa kestää kuitenkin useita minuutteja, jolloin tuotannon tehokkuus kärsii palkojen lukumäärän lisääntyessä. Palkojen määrää on pyritty vähentämään kehittämällä tehokkaampia hitsausprosesseja, mutta siitä huolimatta monipalkohitsausta käytetään yleisesti. Hitsausprosessiin käytetty tehollinen työaika kasvaa jäähtymiseen kuluvan ajan vuoksi ja se kumoaa helposti muutoin optimoidut materiaali- ja kuljetuskustannukset. Tämän tutkimuksen tarkoituksena oli tutkia nopeutetun eli pakotetun jäähdytyksen vaikutusta erikoislujien terästen mekaanisiin ominaisuuksiin sekä selvittää pakotetun jäähdytyksen aikaansaamiseksi kehitetyn laitteiston suorityskykyä ja vaikutusta tuotannon tehokkuuteen. Tutkittujen terästen mekaaniset ominaisuudet määritettiin lujuus-, iskusitkeys- ja väsymislujuuskokein. Lisäksi jäähdytyksen vaikutusta teräksen faasirakenteeseen tutkittiin mikrorakennetarkastelujen kautta. Työssä osoitetaan, että pakotettu jäähdytys paransi hitsien lujuusominaisuuksia kuten myötö- ja murtolujuutta. Lisäksi iskusitkeys kasvoi osalle näytteistä, muiden pysyessä ennallaan. Väsytystestausta tehtiin vain osalle näytteistä mutta niilläkin vaikutus oli positiivinen eli väsymislujuus näytti kasvavan. Teräksen hitsialueen mikrorakenteeseen liittyen, jäähdytys pienensi HAZ-vyöhykkseen raekokoa osassa testeistä, sekä joidenkin terästen kohdalla ala-bainiitin osuus kasvoi selkeästi. Oleellista kokeellisessa osuudessa oli, että jäähdytyksellä ei ollut yhdenkään kokeen kohdalla heikentävää vaikutusta tutkittavan teräksen mekaanisiin ominaisuuksiin. Jäähdytysajat 6,0 mm:n levylle 100°C:een lyhenivät keskimäärin 83,6% käytettäessä hitsin sivulle asetettuja jäähdytysblokkeja. Tämä on merkittävä tekijä tuotannon tehokkuuden kannalta konepajateollisuudessa.
- Published
- 2021