8 results on '"Koyanagi K"'
Search Results
2. Progress of Fundamental Technology R&D Toward Accelerator Magnets Using Coated Conductors in S-Innovation Program
- Author
-
Amemiya, Naoyuki, Zheming, Zhang, Sano, T., Sogabe, Y., Ogitsu, Toru, Koyanagi, K., Kurusu, T., Mori, Y., Iwata, Yoshiyuki, Noda, Koji, and Yoshimoto, M.
- Abstract
We report the progress of an R&D project of fundamental technologies for cryocooler-cooled accelerator magnets using coated conductors funded by the Japan Science and Technology Agency under its S-Innovation Program. Its target applications include carbon cancer therapy and accelerator-driven subcritical reactor. We have been carrying out design studies of HTS magnets for spiral sector fixed-field alternating gradient accelerators to show their feasibility for the target applications and to clarify the requirements of winding technologies. A three-dimensional winding machine has been developed to fabricate a model magnet in which winding technologies required for the designed magnet are implemented. With respect to the large magnetization of coated conductors, which is one of the big concerns on their uses in accelerator magnets, the magnetic field measurements using rotating pick-up coils have been made to clarify its influence on the multipole components of the magnetic field. A method for numerical electromagnetic field analyses of coils with three-dimensional shapes has been developed to predict the influence of magnetization on the field quality of magnets.
- Published
- 2015
3. Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry
- Author
-
Takayama, S., Koyanagi, K., Miyazaki, H., Takami, S., Orikasa, T., Ishii, Y., Kurusu, T., Obana, T., and Suzuki, K.
- Subjects
Physics::Medical Physics - Abstract
Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.
- Published
- 2017
4. Thermal stability of the conduction-cooled HTS magnets for rotating gantry
- Author
-
Takayama, S., Koyanagi, K., Tasaki, K., Kurusu, T., Ishii, Y., Amemiya, Naoyuki, Suzuki, K., Ogitsu, Toru, Iwata, Yoshiyuki, and Noda, Koji
- Subjects
Quantitative Biology::Tissues and Organs ,Physics::Medical Physics - Abstract
Carbon ion cancer therapy is becoming more widespread due to its high curative effects and low burden on patients. In particle cancer therapy, it is desirable that the treatment beam irradiates the tumor from different directions in order to reduce the dose on normal cells. A rotating gantry is a suitable apparatus for meeting this requirement. Since the irradiation device orbits a patient inside the gantry, the beam can irradiate the tumor from any direction without changing the posture of the patient. Rotating gantries are already commonly used for proton cancer therapy. On the other hand, those designed for carbon ion cancer therapy have not yet been adopted because they are too large and heavy for installation in general hospitals. An R&D project to reduce the size of a rotating gantry for carbon ion cancer therapy by applying high-temperature superconducting (HTS) magnets is now in progress. It is difficult to use a coolant for the magnets mounted on the rotating gantry because they are rotating. Therefore, conduction cooling should be employed. On the other hand, the magnetic field generated by the magnets of the rotating gantry should be changed depending on the energy of the carbon ion beam in raster-scanning irradiation, and there is some possibility that the carbon ion beam will collide with the coils. This causes anomalous thermal inputs, such as those due to ac loss and beam loss, resulting in the problem of poor thermal stability of the conduction-cooled HTS coils heated by such thermal inputs. Therefore, it is important to estimate the thermal stability of the conduction-cooled HTS coils correctly. In this paper, a saddle-shaped HTS coil was designed, and the thermal runaway current of the HTS coil was numerically simulated.
- Published
- 2017
5. Insert model coil wound by Al2O3-Cu strengthened Nb3Sn wire
- Author
-
Koyanagi, K., Nakayama, S., Murase, S., Nomura, S., Shimamura, K., Urata, M., Shiga, N., Satoshi Awaji, and Watanabe, K.
- Published
- 1997
6. Influence of manufacturing accuracy on magnetic field distribution in the magnet for HTS rotating gantry
- Author
-
Takayama, S., Koyanagi, K., Tosaka, T., Tasaki, K., Kurusu, T., Amemiya, Naoyuki, Suzuki, K., Ogitsu, Toru, Iwata, Yoshiyuki, and Noda, Koji
- Subjects
Quantitative Biology::Tissues and Organs ,Physics::Medical Physics ,equipment and supplies ,human activities - Abstract
Because of its high curative effects and low burden on patients, carbon ion cancer therapy is becoming more widely used. The accelerated carbon ions are delivered to patients via electromagnets on a rotating gantry. One advantage of a rotating gantry is that a tumor can be irradiated with carbon ions from any direction without changing the posture of the patient. On the other hand, because of the high magnetic rigidity of carbon ions, rotating gantries for carbon cancer therapy are about three times heavier than those for proton cancer therapy, according to our estimation. Use of high-temperature superconducting (HTS) magnets has been considered for reducing the size of the rotating gantry for carbon cancer therapy. For accurate irradiation, these HTS magnets must generate high-uniformity magnetic fields, and the shape of the HTS coils was designed by 3-D analysis to generate uniform magnetic fields. In our design, saddle-shaped HTS coils were used since they can efficiently generate a magnetic field. The conductor positions and the coil end shape were optimized to generate a uniform magnetic field. On the other hand, it was difficult to maintain the HTS conductor in the designed saddle shape because it has a tapelike shape and anisotropic flexibility in bending. In this paper, the winding accuracy of the fabricated HTS saddle-shaped coil was measured, and the influence of the measurement result on the magnetic field distribution was evaluated.
- Published
- 2016
7. Highly Strengthened Superconducting Magnet for a 40 T Compact Hybrid Magnet(Magnet Technology)
- Author
-
Watanabe, K., Awaji, S., Kobayashi, N., Fukase, T., Motokawa, M., Koyanagi, K., Sumiyoshi, Y., Urata, M., Tezuka, M., Nakayama, S., and Murase, S.
- Subjects
reinforcement ,Nb_3Sn superconductor ,Cu-Al_2O_3 stabilizer ,high field ,large bore superconducting magnet - Abstract
A 16 T outer superconducting magnet for a 40 T compact hybrid magnet is investigated. A highly strengthened superconducting magnet with a 360 mm room temperature bore can be made using newly developed (Nb, Ti)_3Sn wires with Cu-Al_2O_3 reinforcing stabilizer. The coil weight is outstandingly reduced by as much as 70 %.
- Published
- 1996
8. The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts
- Author
-
Yamasaki, C., Murakami, K., Fujii, Y., Sato, Y., Harada, E., Takeda, J., Taniya, T., Sakate, R., Kikugawa, S., Shimada, M., Tanino, M., Koyanagi, K.O., Barrero, R.A., Gough, C., Chun, H., Habara, T., Hanaoka, H., Hayakawa, Y., Hilton, P.B., Kaneko, Y., Kanno, M., Kawahara, Y., Kawamura, T., Matsuya, A., Nagata, N., Nishikata, K., Noda, A.O., Nurimoto, S., Saichi, N., Sakai, H., Sanbonmatsu, R., Shiba, R., Suzuki, M., Takabayashi, K., Takahashi, A., Tamura, T., Tanaka, M., Tanaka, S., Todokoro, F., Yamaguchi, K., Yamamoto, N., Okido, T., Mashima, J., Hashizume, A., Jin, L., Lee, K., Lin, Y., Nozaki, A., Sakai, K., Tada, M., Miyazaki, S., Makino, T., Ohyanagi, H., Osato, N., Tanaka, N., Suzuki, Y., Ikeo, K., Saitou, N., Sugawara, H., O'Donovan, C., Kulikova, T., Whitfield, E., Halligan, B., Shimoyama, M., Twigger, S., Yura, K., Kimura, K., Yasuda, T., Nishikawa, T., Akiyama, Y., Motono, C., Mukai, Y., Nagasaki, H., Suwa, M., Horton, P., Kikuno, R., Ohara, O., Lancet, D., Eveno, E., Graudens, E., Imbeaud, S., Debily, M., Hayashizaki, Y., Amid, C., Han, M., Osanger, A., Endo, T., Thomas, M.A., Hirakawa, M., Makalowski, W., Nakao, M., Kim, N., Yoo, H., de Souza, S.J., Bonaldo, M.D.F., Niimura, Y., Kuryshev, V., Schupp, I., Wiemann, S., Bellgard, M., Shionyu, M., Jia, L., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Zhang, Q., Go, M., Minoshima, S., Ohtsubo, M., Hanada, K., Tonellato, P., Isogai, T., Zhang, J., Lenhard, B., Kim, S., Chen, Z., Hinz, U., Estreicher, A., Nakai, K., Makalowska, I., Hide, W., Tiffin, N., Wilming, L., Chakraborty, R., Soares, M.B., Chiusano, M.L., Auffray, C., Yamaguchi-Kabata, Y., Itoh, T., Hishiki, T., Fukuchi, S., Nishikawa, K., Sugano, S., Nomura, N., Tateno, Y., Imanishi, T., Gojobori, T., Genexpress, Centre National de la Recherche Scientifique (CNRS), Yamasaki, C., Murakami, K., Fujii, Y., Sato, Y., Harada, E., Takeda, J., Taniya, T., Sakate, R., Kikugawa, S., Shimada, M., Tanino, M., Koyanagi, K. O., Barrero, R. A., Gough, C., Chun, H. W., Habara, T., Hanaoka, H., Hayakawa, Y., Hilton, P. B., Kaneko, Y., Kanno, M., Kawahara, Y., Kawamura, T., Matsuya, A., Nagata, N., Nishikata, K., Noda, A. O., Nurimoto, S., Saichi, N., Sakai, H., Sanbonmatsu, R., Shiba, R., Suzuki, M., Takabayashi, K., Takahashi, A., Tamura, T., Tanaka, M., Tanaka, S., Todokoro, F., Yamaguchi, K., Yamamoto, N., Okido, T., Mashima, J., Hashizume, A., Jin, L., Lee, K. B., Lin, Y. C., Nozaki, A., Sakai, K., Tada, M., Miyazaki, S., Makino, T., Ohyanagi, H., Osato, N., Tanaka, N., Suzuki, Y., Ikeo, K., Saitou, N., Sugawara, H., Odonovan, C., Kulikova, T., Whitfield, E., Halligan, B., Shimoyama, M., Twigger, S., Yura, K., Kimura, K., Yasuda, T., Nishikawa, T., Akiyama, Y., Motono, C., Mukai, Y., Nagasaki, H., Suwa, M., Horton, P., Kikuno, R., Ohara, O., Lancet, D., Eveno, E., Graudens, E., Imbeaud, S., Debily, M. A., Hayashizaki, Y., Amid, C., Han, M., Osanger, A., Endo, T., Thomas, M. A., Hirakawa, M., Makalowski, W., Nakao, M., Kim, N. S., Yoo, H. S., De Souza, S. J., Bonaldo Mde, F., Niimura, Y., Kuryshev, V., Schupp, I., Wiemann, S., Bellgard, M., Shionyu, M., Jia, L., Thierry Mieg, D., Thierry Mieg, J., Wagner, L., Zhang, Q., Go, M., Minoshima, S., Ohtsubo, M., Hanada, K., Tonellato, P., Isogai, T., Zhang, J., Lenhard, B., Kim, S., Chen, Z., Hinz, U., Estreicher, A., Nakai, K., Makalowska, I., Hide, W., Tiffin, N., Wilming, L., Chakraborty, R., Soares, M. B., Chiusano, MARIA LUISA, Auffray, C., Yamaguchi Kabata, Y., Itoh, T., Hishiki, T., Fukuchi, S., Nishikawa, K., Sugano, S., Nomura, N., Tateno, Y., Imanishi, T., and Gojobori, T.
- Subjects
DNA, Complementary ,[SDV]Life Sciences [q-bio] ,Pseudogene ,Locus (genetics) ,Biology ,computer.software_genre ,User-Computer Interface ,03 medical and health sciences ,Annotation ,0302 clinical medicine ,Databases, Genetic ,Genetics ,Animals ,Humans ,Gene family ,RNA, Messenger ,Gene ,database ,030304 developmental biology ,Internet ,0303 health sciences ,Human genome ,Database ,Alternative splicing ,Chromosome Mapping ,Proteins ,Articles ,Gene expression profiling ,Genes ,transcriptome ,computer ,030217 neurology & neurosurgery - Abstract
International audience; Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of full-length cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB_4.6. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 (98.1%) protein-coding and 642 (1.9%) non-protein-coding loci; 858 (2.5%) transcribed loci overlapped with predicted pseudogenes. For all these transcripts and genes, we provide comprehensive annotation including gene structures, gene functions, alternative splicing variants, functional non-protein-coding RNAs, functional domains, predicted sub cellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs, co-localization with orphan diseases, gene expression profiles, orthologous genes, protein-protein interactions (PPI) and annotation for gene families. The current H-InvDB annotation resources consist of two main views: Transcript view and Locus view and eight sub-databases: the DiseaseInfo Viewer, H-ANGEL, the Clustering Viewer, G-integra, the TOPO Viewer, Evola, the PPI view and the Gene family/group.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.