1. GPT-Calls: Enhancing Call Segmentation and Tagging by Generating Synthetic Conversations via Large Language Models
- Author
-
Malkiel, Itzik, Alon, Uri, Yehuda, Yakir, Keren, Shahar, Barkan, Oren, Ronen, Royi, and Koenigstein, Noam
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Computer Science - Computation and Language ,Computation and Language (cs.CL) ,Machine Learning (cs.LG) - Abstract
Transcriptions of phone calls are of significant value across diverse fields, such as sales, customer service, healthcare, and law enforcement. Nevertheless, the analysis of these recorded conversations can be an arduous and time-intensive process, especially when dealing with extended or multifaceted dialogues. In this work, we propose a novel method, GPT-distilled Calls Segmentation and Tagging (GPT-Calls), for efficient and accurate call segmentation and topic extraction. GPT-Calls is composed of offline and online phases. The offline phase is applied once to a given list of topics and involves generating a distribution of synthetic sentences for each topic using a GPT model and extracting anchor vectors. The online phase is applied to every call separately and scores the similarity between the transcripted conversation and the topic anchors found in the offline phase. Then, time domain analysis is applied to the similarity scores to group utterances into segments and tag them with topics. The proposed paradigm provides an accurate and efficient method for call segmentation and topic extraction that does not require labeled data, thus making it a versatile approach applicable to various domains. Our algorithm operates in production under Dynamics 365 Sales Conversation Intelligence, and our research is based on real sales conversations gathered from various Dynamics 365 Sales tenants.
- Published
- 2023