1. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages
- Author
-
Katja Hönzke, Benedikt Obermayer, Christin Mache, Diana Fatykhova, Mirjana Kessler, Simon Dökel, Emanuel Wyler, Morris Baumgardt, Anna Löwa, Karen Hoffmann, Patrick Graff, Jessica Schulze, Maren Mieth, Katharina Hellwig, Zeynep Demir, Barbara Biere, Linda Brunotte, Angeles Mecate-Zambrano, Judith Bushe, Melanie Dohmen, Christian Hinze, Sefer Elezkurtaj, Mario Tönnies, Torsten T. Bauer, Stephan Eggeling, Hong-Linh Tran, Paul Schneider, Jens Neudecker, Jens C. Rückert, Kai M. Schmidt-Ott, Jonas Busch, Frederick Klauschen, David Horst, Helena Radbruch, Josefine Radke, Frank Heppner, Victor M. Corman, Daniela Niemeyer, Marcel A. Müller, Christine Goffinet, Ronja Mothes, Anna Pascual-Reguant, Anja Erika Hauser, Dieter Beule, Markus Landthaler, Stephan Ludwig, Norbert Suttorp, Martin Witzenrath, Achim D. Gruber, Christian Drosten, Leif-Erik Sander, Thorsten Wolff, Stefan Hippenstiel, and Andreas C. Hocke
- Subjects
Pulmonary and Respiratory Medicine ,Adult ,Cancer Research ,SARS-CoV-2 ,COVID-19 ,Peptidyl-Dipeptidase A ,Viral Tropism ,Cardiovascular and Metabolic Diseases ,Influenza, Human ,Macrophages, Alveolar ,Humans ,Angiotensin-Converting Enzyme 2 ,Technology Platforms ,Function and Dysfunction of the Nervous System ,Lung - Abstract
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive.MethodsSpectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 “gain-of-function” experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validateex vivoresults.ResultsWe provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead,ex vivoinfected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in “inflammatory alveolar macrophages”, comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection.ConclusionsCollectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.
- Published
- 2022