1. Dysregulation of the EphrinB2−EphB4 ratio in pediatric cerebral arteriovenous malformations is associated with endothelial cell dysfunction in vitro and functions as a novel noninvasive biomarker in patients
- Author
-
Maxwell Gruber, Edward R. Smith, Katie Pricola Fehnel, Jessica Driscoll, Darren B. Orbach, Steven Pineda, Alexander Moses-Gardner, Julie Sesen, David L. Penn, Micah Duggins-Warf, David Zurakowski, and Nishali Shah
- Subjects
Intracranial Arteriovenous Malformations ,Pathology ,medicine.medical_specialty ,Urinary system ,Receptor expression ,Receptor, EphB4 ,Clinical Biochemistry ,Gene Expression ,Ephrin-B2 ,QD415-436 ,Biochemistry ,Article ,medicine ,Humans ,Clinical significance ,RNA, Messenger ,Child ,Molecular Biology ,Cells, Cultured ,Tube formation ,business.industry ,Neuro-vascular interactions ,Endothelial Cells ,Diagnostic markers ,Human brain ,Prognosis ,Endothelial stem cell ,medicine.anatomical_structure ,ROC Curve ,Medicine ,Molecular Medicine ,Immunohistochemistry ,business ,Biomarkers ,Blood vessel - Abstract
We investigated (1) EphrinB2 and EphB4 receptor expression in cerebral AVMs, (2) the impact of an altered EphrinB2:EphB4 ratio on brain endothelial cell function and (3) potential translational applications of these data. The following parameters were compared between AVM endothelial cells (AVMECs) and human brain microvascular endothelial cells (HBMVECs): quantified EphrinB2 and EphB4 expression, angiogenic potential, and responses to manipulation of the EphrinB2:EphB4 ratio via pharmacologic stimulation/inhibition. To investigate the clinical relevance of these in vitro data, Ephrin expression was assessed in AVM tissue (by immunohistochemistry) and urine (by ELISA) from pediatric patients with AVM (n = 30), other cerebrovascular disease (n = 14) and control patients (n = 29), and the data were subjected to univariate and multivariate statistical analyses. Compared to HBMVECs, AVMECs demonstrated increased invasion (p = 0.04) and migration (p = 0.08), impaired tube formation (p = 0.06) and increased EphrinB2:EphB4 ratios. Altering the EphrinB2:EphB4 ratio (by increasing EphrinB2 or blocking EphB4) in HBMVECs increased invasion (p = 0.03 and p 25.7 pg/μg), AVMs were detected with high accuracy (80% vs. controls) and were distinguished from other cerebrovascular disease (75% accuracy). Post-treatment urinary EphrinB2 levels normalized in an index patient. In summary, AVMECs have an EphrinB2:EphB4 ratio that is increased compared to that of normal HBMVECs. Changing this ratio in HBMVECs induces AVMEC-like behavior. EphrinB2 is clinically relevant, and its levels are increased in AVM tissue and patient urine. This work suggests that dysregulation of the EphrinB2:EphB4 signaling cascade and increases in EphrinB2 may play a role in AVM development, with potential utility as a diagnostic and therapeutic target., Blood vessels: untangling the causes of brain vessel malformations Tangled blood vessel growths in the brain, known as arteriovenous malformations (AVMs), can be identified with a urine test, and the test protein may also help in treatment. AVMs often have no symptoms and can go undiagnosed, but when they rupture they can cause deadly brain hemorrhage. Better diagnostic tools and nonsurgical treatments are needed. Katie Fehnel and Edward Smith at Boston Children’s Hospital, USA, and co-workers identified an imbalance in a pair of signal/receptor proteins called ephrins in AVMs. Disturbing the balance of ephrin levels in blood vessel-forming cells disrupted growth, causing disorganized vessel formation with too many sprouts and insufficient junctions. Testing ephrin levels in patients’ urine reliably identified AVMs. These results offer a rapid and noninvasive new diagnostic tool and may help find new treatments for this mostly invisible and potentially fatal condition.
- Published
- 2020
- Full Text
- View/download PDF