22 results on '"Jocelyn Etienne"'
Search Results
2. Adhesion dynamics regulate cell intercalation behaviour in an active tissue
- Author
-
Alexander Nestor-Bergmann, Guy B. Blanchard, Alexander G. Fletcher, Nathan Hervieux, Bénédicte Sanson, Jocelyn Etienne, LIPHY-DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Shearing (physics) ,0303 health sciences ,Cell adhesion molecule ,Chemistry ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Intercalation (chemistry) ,Morphogenesis ,Context (language use) ,[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis ,Adhesion ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Coupling (electronics) ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,03 medical and health sciences ,0302 clinical medicine ,Cell cortex ,Biophysics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Here, we develop a mechanical model to understand active cell intercalation behaviours in the context of an epithelial tissue. Extending existing descriptions, such as vertex models, the junctional actomyosin cortex of every cell is modelled as a continuum morphoelastic rod, explicitly representing cortices facing each other at bicellular junctions. Cells are described directly in terms of the key subcellular constituents that drive dynamics, with localised stresses from the contractile actomyosin cortex and adhesion molecules coupling apposed cortices. This multi-scale apposed-cortex formulation reveals key behaviours that drive tissue dynamics, such as cell-cell shearing and flow of junctional material past cell vertices. We show that cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and viscous turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, the 4-way vertex is resolved and a new, orthogonal junction extends passively. The adhesion timescale defines a frictional viscosity that is an important regulator of these dynamics, modulating tension transmission in the tissue as well as the speeds of junction shrinkage and growth. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are likely to occur in active tissues with high adhesive friction.SIGNIFICANCECell intercalation, or neighbour exchange, is a crucial behaviour that can drive tissue deformations, dissipate stress and facilitate wound healing. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study the continuous dynamics of intercalation, involving shear between coupled cell cortices. Deriving a continuum description of the cell cortex, explicitly coupling neighbouring cortices with adhesions, we define the biophysical conditions required for successful neighbour exchanges. Furthermore, we show how the turnover of adhesion molecules specifies a viscous friction that regulates active tissue dynamics.
- Published
- 2021
3. Joint Motion Estimation and Source Identification using Convective Regularisation with an Application to the Analysis of Laser Nanoablations
- Author
-
Nilankur Dutta, Elena Scarpa, Bénédicte Sanson, Lukas F. Lang, Jocelyn Etienne, Carola-Bibiane Schönlieb, LIPHY-DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Kaltenbacher, Barbara, Schuster, Thomas, Wald, and Anne
- Subjects
0303 health sciences ,Discretization ,Advection ,Computer science ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Optical flow ,[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis ,02 engineering and technology ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Inverse problem ,Finite element method ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,03 medical and health sciences ,Variational method ,Continuity equation ,Motion estimation ,0202 electrical engineering, electronic engineering, information engineering ,Applied mathematics ,020201 artificial intelligence & image processing ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,030304 developmental biology - Abstract
International audience; We propose a variational method for joint motion estimation and source identification in one-dimensional image sequences. The problem is motivated by fluorescence microscopy data of laser nanoablations of cell membranes in live Drosophila embryos, which can be conveniently—and without loss of significant information—represented in space-time plots, so called kymographs. Based on mechanical models of tissue formation, we propose a variational formulation that is based on the nonhomogenous continuity equation and investigate the solution of this ill-posed inverse problem using convective regularisation. We show existence of a minimiser of the minimisation problem, derive the associated Euler–Lagrange equations, and numerically solve them using a finite element discretisation together with Newton’s method. Based on synthetic data, we demonstrate that source estimation can be crucial whenever signal variations can not be explained by advection alone. Furthermore, we perform an extensive evaluation and comparison of various models, including standard optical flow, based on manually annotated kymographs that measure velocities of visible features. Finally, we present results for data generated by a mechanical model of tissue formation and demonstrate that our approach reliably estimates both a velocity and a source.
- Published
- 2021
4. From pulsatile apicomedial contractility to effective epithelial mechanics
- Author
-
Guy B. Blanchard, Jocelyn Etienne, Nicole Gorfinkiel, Dept of Physiology, Development and Neurosciences, Anatomy building, University of Cambridge, Anatomy building, University of Cambridge, LIPHY-DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centro de Biología Molecular Severo Ochoa [Madrid] (CBMSO), Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Blanchard, Guy [0000-0002-3689-0522], Apollo - University of Cambridge Repository, and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Pulsatile flow ,Context (language use) ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,macromolecular substances ,Myosins ,Biology ,Epithelium ,Biomechanical Phenomena ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,Contractility ,03 medical and health sciences ,0302 clinical medicine ,Células ,Myosin ,Genetics ,Humans ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,ComputingMilieux_MISCELLANEOUS ,Actin ,Biología celular ,Biomechanics ,[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis ,Histología ,Actomyosin ,Mechanics ,Actins ,030104 developmental biology ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
We review recent developments in the understanding of the biomechanics of apicomedial actomyosin and how its contractility can tense and deform tissue. Myosin pulses are driven by a biochemical oscillator but how they are modulated by the mechanical context remains unclear. On the other hand, the emergence of tissue behaviour is highly dependent on the material properties of actin, on how strongly components are connected and on the influence of neighbouring tissues. We further review the use of constitutive equations in exploring the mechanics of epithelial apices dominated by apicomedial Myosin contractility. Sin financiación 5.288 JCR (2018) Q1, 22/174 Genetics & Heredity, 47/193 Cell Biology 3.954 SJR (2018) Q1, 5/87 Developmental Biology, 18/351 Genetics No data IDR 2018 UEM
- Published
- 2018
5. Simultaneous regulation of cytokinetic furrow and nucleus positions by cortical tension contributes to proper DNA segregation during late mitosis
- Author
-
Grégoire Michaux, Anne Pacquelet, Jocelyn Etienne, Matthieu Jousseaume, Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique, Université de Rennes 1, ANR-15-IDEX-02, Agence Nationale de la Recherche, Ligue Régionale contre le Cancer – Grand Ouest, ANR-11-LABX-0030, Tec21, ANR-11-LABX-0030,TEC XXI,Ingénierie de la Complexité : la mécanique et ses interfaces au service des enjeux sociétaux du 21iè(2011), ANR-15-IDEX-0002,UGA,IDEX UGA(2015), LIPHY-DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
0301 basic medicine ,animal structures ,furrow positioning ,Mitosis ,cytokinesis ,Spindle Apparatus ,myosin ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Biology ,Microtubules ,General Biochemistry, Genetics and Molecular Biology ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Microtubule ,Chromosome Segregation ,medicine ,Animals ,Caenorhabditis elegans ,Caenorhabditis elegans Proteins ,Process (anatomy) ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,030304 developmental biology ,Cell Nucleus ,0303 health sciences ,Chemistry ,[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis ,DNA ,Cell biology ,Spindle apparatus ,Biomechanical Phenomena ,030104 developmental biology ,medicine.anatomical_structure ,Cytoplasm ,cortical tension ,embryonic structures ,cytoplasmic flow ,General Agricultural and Biological Sciences ,Nucleus ,cortical blebbing ,030217 neurology & neurosurgery ,Cytokinesis - Abstract
Coordinating mitotic spindle and cytokinetic furrow positioning is essential to ensure proper DNA segregation. Here we present a novel mechanism, which corrects DNA segregation defects due to cytokinetic furrow mispositioning. We show that DNA segregation defects following the abnormal displacement of the cytokinetic furrow towards the anterior side of C. elegans one-cell embryos are unexpectedly corrected at the end of cytokinesis. This correction relies on the concomitant displacement of the furrow and of the anterior nucleus towards the posterior and anterior poles, respectively. It also coincides with cortical blebbing and an anteriorly directed flow of cytoplasmic particles. While microtubules contribute to nuclear displacement, relaxation of an excessive tension at the anterior cortex plays a central role in the correction process and simultaneously regulates cytoplasmic flow as well as nuclear and furrow displacements. This work thus reveals the existence of a so far uncharacterized correction mechanism, which is critical to correct DNA segregation defects due to cytokinetic furrow mispositioning.
- Published
- 2019
6. Crawling in a Fluid
- Author
-
Alexander Farutin, Jocelyn Etienne, Chaouqi Misbah, Pierre Recho, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), LIPHY-DYFCOM, Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Mécanique du Vivant, Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Polarity (physics) ,[SDV]Life Sciences [q-bio] ,Quantitative Biology::Tissues and Organs ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,Motility ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Crawling ,Condensed Matter - Soft Condensed Matter ,01 natural sciences ,Quantitative Biology::Cell Behavior ,Quantitative Biology::Subcellular Processes ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,symbols.namesake ,0103 physical sciences ,Myosin ,Fluid dynamics ,Physics - Biological Physics ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,010306 general physics ,Suspension (vehicle) ,ComputingMilieux_MISCELLANEOUS ,Hopf bifurcation ,Physics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis ,Mechanics ,Swimming speed ,Biological Physics (physics.bio-ph) ,symbols ,Soft Condensed Matter (cond-mat.soft) - Abstract
International audience; There is increasing evidence that mammalian cells not only crawl on substrates but can also swim in fluids. To elucidate the mechanisms of the onset of motility of cells in suspension, a model which couples actin and myosin kinetics to fluid flow is proposed and solved for a spherical shape. The swimming speed is extracted in terms of key parameters. We analytically find super-and subcritical bifurcations from a non-motile to a motile state and also spontaneous polarity oscillations that arise from a Hopf bifurcation. Relaxing the spherical assumption, the obtained shapes show appealing trends.
- Published
- 2019
7. Mathematical framework for traction force microscopy
- Author
-
Guido Vitale, Claude Verdier, Valentina Peschetola, Jocelyn Etienne, Alain Duperray, Luigi Preziosi, Richard Michel, Davide Carlo Ambrosi, DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), DYnamique des Fluides COmplexes et Morphogénèse [Grenoble] (DYFCOM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), INSERM U823, équipe 8 (Immunologie Analytique des Pathologies Chroniques), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), MOX, Milano, MOX-Dipartimento di Matematica (MOX), Politecnico di Milano [Milan] (POLIMI)-Politecnico di Milano [Milan] (POLIMI), Matematica, Politecnico di Torino, Dipartimento di Matematica 'Giuseppe Peano' [Torino], and Università degli studi di Torino (UNITO)-Università degli studi di Torino (UNITO)
- Subjects
Surface (mathematics) ,Inverse problems ,Mathematical optimization ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Traction (engineering) ,Living cell ,Cell motility ,01 natural sciences ,Traction force microscopy ,Quantitative Biology::Cell Behavior ,Tikhonov regularization ,03 medical and health sciences ,symbols.namesake ,Adjoint Method (AM) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,QA1-939 ,0101 mathematics ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,030304 developmental biology ,Mathematics ,0303 health sciences ,T57-57.97 ,Applied mathematics. Quantitative methods ,Mathematical analysis ,Minimization problem ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Inverse problem ,010101 applied mathematics ,Fourier transform ,symbols ,L -curve ,Fourier Transform Traction Cytometry (FTTC) - Abstract
This paper deals with the Traction Force Microscopy (TFM) problem. It consists in obtaining stresses by solving an inverse problem in an elastic medium, from known experimentally measured displacements. In this article, the application is the determination of the stresses exerted by a living cell at the surface of an elastic gel. We propose an abstract framework which formulates this inverse problem as a constrained minimization one. The mathematical constraints express the biomechanical conditions that the stress field must satisfy. From this framework, two methods currently used can be derived, the adjoint method (AM) and the Fourier Transform Traction Cytometry (FTTC) method. An improvement of the FTTC method is also derived using this framework. The numerical results are compared and show the advantage of the AM, in particular its ability to capture details more accurately. Cet article est consacré au problème de la Microscopie à Force de Traction (TFM). Ce problème consiste à déterminer les contraintes exercées par une cellule lors de sa migration sur un substrat élastique à partir d’une mesure expérimentale des déplacements induits dans ce substrat. Mathématiquement, il s’agit de résoudre un problème inverse pour lequel nous proposons une formulation abstraite de type optimisation sous contraintes. Les contraintes mathématiques expriment les constraintes biomécaniques que doit satisfaire le champ de contraintes exercé par la cellule. Ce cadre abstrait permet de retrouver deux des méthodes de résolution utilisées en pratique, à savoir la méthode adjointe (AM) et la méthode de Cytométrie de Traction par Transformée de Fourier (FTTC). Il permet aussi d’ameliorer la méthode FTTC. Les résultats numériques obtenus sont ensuite comparés et démontrent l’avantage de la méthode adjointe, en particulier par sa capacité à capturer des détails avec une meilleure précision.
- Published
- 2013
8. Prediction of traction forces of motile cells
- Author
-
Alain Duperray, Richard Michel, Claude Verdier, Jocelyn Etienne, Clément Roux, Valentina Peschetola, Valérie M. Laurent, Etienne, Jocelyn, BLANC - Migration transendothéliale de cellules cancéreuses - - TRANSMIG2012 - ANR-12-BS09-0020 - BLANC - VALID, DYnamique des Fluides COmplexes et Morphogénèse [Grenoble] (DYFCOM-LIPhy), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), INSERM U823, équipe 8 (Immunologie Analytique des Pathologies Chroniques), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR-12-BS09-0020,TRANSMIG,Migration transendothéliale de cellules cancéreuses(2012), LIPHY-DYFCOM, Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Santé et de la Recherche Médicale (INSERM)-EFS-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-EFS-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
0301 basic medicine ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Traction (engineering) ,Biomedical Engineering ,Biophysics ,Bioengineering ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Biochemistry ,Single frame ,Traction force microscopy ,Biomaterials ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,03 medical and health sciences ,Rheology ,[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,[PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Simulation ,Physics ,Tractive force ,[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Mechanics ,Articles ,Finite element method ,030104 developmental biology ,Adhesive ,Biotechnology - Abstract
When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell ‘footprint’ is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only.
- Published
- 2016
9. Review: Rheological properties of biological materials
- Author
-
Alain Duperray, Claude Verdier, Luigi Preziosi, and Jocelyn Etienne
- Subjects
Multicellular organism ,Materials science ,Rheology ,Macroscopic scale ,General Engineering ,Energy Engineering and Power Technology ,Cell behaviour ,Context (language use) ,Nanotechnology ,Adhesion ,Biological system ,Biological materials ,Viscoelasticity - Abstract
Eucaryotic cells and biological materials are described from a rheological point of view. Single cell properties give rise to typical microrheological properties which can a ect cell behaviour, in close connection with their adhesion properties. Single cell properties are also important in the context of multicellular systems, i.e. in biological tissues. Results from experiments are analyzed and models proposed both at the cellular scale and the macroscopic scale.
- Published
- 2009
10. Emergent material properties of developing epithelial tissues
- Author
-
Julia Duque, Jocelyn Etienne, Nicole Gorfinkiel, Pedro F. Machado, Guy B. Blanchard, Alfonso Martinez-Arias, University of Cambridge, Ministerio de Ciencia e Innovación (España), European Commission, Biotechnology and Biological Sciences Research Council (UK), Martinez-Arias, Alfonso [0000-0002-1781-564X], Blanchard, Guy [0000-0002-3689-0522], Apollo - University of Cambridge Repository, Department of Genetics [Cambridge], University of Cambridge [UK] (CAM), Centro de Biología Molecular Severo Ochoa [Madrid] (CBMSO), Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), LIPHY-DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Dept of Physiology, Development and Neurosciences, Anatomy building, University of Cambridge, Anatomy building, University of Cambridge, and Institut rhonalpin des systèmes complexes (IXXI)
- Subjects
Contraction (grammar) ,Embryo, Nonmammalian ,Physiology ,Mechanical properties ,Plant Science ,Apical contraction ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,0302 clinical medicine ,Structural Biology ,Myosin ,[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0303 health sciences ,Agricultural and Biological Sciences(all) ,Anatomy ,Actomyosin ,3. Good health ,Biomechanical Phenomena ,medicine.anatomical_structure ,Drosophila melanogaster ,General Agricultural and Biological Sciences ,Biotechnology ,Research Article ,Oscillations ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Morphogenesis ,Context (language use) ,Biology ,Myosins ,General Biochemistry, Genetics and Molecular Biology ,Viscoelasticity ,Fluorescence ,Stress (mechanics) ,03 medical and health sciences ,Viscoelastic fluid ,medicine ,Animals ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,Biochemistry, Genetics and Molecular Biology(all) ,visco-elastic fluid ,Hysteresis ,[SDV.BDD.MOR]Life Sciences [q-bio]/Development Biology/Morphogenesis ,Epithelial Cells ,Cell Biology ,Dorsal closure ,Epithelium ,Biophysics ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
[Background] Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5–6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge., [Results] We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures., [Conclusions] Our results show that in an epithelial tissue undergoing net contraction, stiffness and stress are coupled. Dorsal closure cell apical contraction is driven by the medial region where the relative increase in stress is greater than that of stiffness. At junctions, by contrast, the relative increase in the mechanical properties is the same, so the junctional contribution to tissue deformation is constant over time. An increase in myosin activity is likely to underlie, at least in part, the change in medioapical properties and we suggest that its greater effect on stress relative to stiffness is fundamental to actomyosin systems and confers on tissues the ability to regulate contraction rates in response to changes in external mechanics., We thank the following funding bodies for their support: Herchel Smith Fund (PFM), Ministerio de Ciencia e Innovación (NG and JD, BFU2011-25828 and Ramón y Cajal fellowship award), Marie Curie Career Integration Grant (NG, PCIG09-GA-2011-293479), Biotechnology and Biological Sciences Research Council (GBB, grant BB/J010278/1) and Rhône-Alpes Complex System Institute (JE).
- Published
- 2015
11. Cells as liquid motors: Mechanosensitivity emerges from collective dynamics of actomyosin cortex
- Author
-
Pauline Durand-Smet, Démosthène Mitrossilis, Nathalie Bufi, Atef Asnacios, Jonathan Fouchard, Jocelyn Etienne, LIPHY-DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), CNRS UMR 7057 - Laboratoire Matières et Systèmes Complexes (MSC) (MSC), Centre National de la Recherche Scientifique (CNRS), Région Rhône-Alpes (Complex Systems Institute IXXI and Cible),Agence Nationale de la Recherche (ANR-12-BS09-0020-01 'Transmig') andLaboratory of Excellence The Engineering of Complexity 'Tec21' (ANR-11-LABX-0030). The experimental work was supported, in part, by AgenceNationale de la Recherche (ANR-12-BSV5-0007-01 'ImmunoMeca')., ANR-12-BS09-0020,TRANSMIG,Migration transendothéliale de cellules cancéreuses(2012), ANR-12-BSV5-0007,ImmunoMeca,Caractérisation du rôle de la mécanique dans l'immunité: vers un modèle intégré de l'activation des cellules T(2012), and ANR-11-LABX-0030,TEC XXI,Ingénierie de la Complexité : la mécanique et ses interfaces au service des enjeux sociétaux du 21iè(2011)
- Subjects
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,macromolecular substances ,Biology ,Myosins ,Mechanotransduction, Cellular ,Models, Biological ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Cell Line ,Cytoskeleton contractility ,Focal adhesion ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Mechanosensing ,Myosin ,medicine ,Animals ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Muscle Strength ,Mechanotransduction ,Retrograde flow ,Cytoskeleton ,Actin ,Rigidity sensing ,030304 developmental biology ,0303 health sciences ,Multidisciplinary ,Cell spreading ,Stiffness ,Actomyosin ,Biological Sciences ,Actin cytoskeleton ,Cell biology ,Rats ,Actin Cytoskeleton ,Smart Materials ,medicine.symptom ,030217 neurology & neurosurgery ,Muscle contraction ,Muscle Contraction - Abstract
International audience; Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force–velocity relationship.; Parmi les nombreuses énigmes posées par les cellules vivantes, leurcapacité à se déplacer et à changer de forme a attiré notre attention entant que physiciens. Une double approche de modélisation et d'expériencesnous conduit à expliquer deux observations troublantes : premièrement, lacellule adapte l'intensité des forces avec lesquelles elle tire sur sonenvironnement selon la rigidité de celui-ci. Et deuxièmement, pendantqu'une cellule progresse dans une direction en développant uneprotrusion, son squelette interne s'écoule en fait dans l'autre direction,dans un mouvement apparemment contre-productif, appelé écoulementrétrograde. Nous montrons que ces deux phénomènes émanent d'une mêmepropriété paradoxale du squelette interne de la cellule, qui est fait defilaments d'actine assemblés en un réseau. Cet assemblage est bâtipar des liens dont la durée de vie est très courte, ce qui en fait enréalité un liquide qui va lentement s'écouler. À première vue, cela paraîtincompatible avec l'observation, puisque la forme d'un liquide est dictéepar son environnement, alors que les cellules déforment activement leurmilieu. Cependant, parmi les liens formant le réseau d'actine se trouventdes moteurs moléculaires, appelés myosines, capables de tirer sur lesfilaments d'actine et ainsi d'engendrer un écoulement de l'intérieur. Nousmontrons que c'est l'interaction de ces myosines avec la rigidité del'extérieur qui détermine la forme que la cellule prendra. Cela impliqueune consommation continuelle d'énergie par les myosines même lorsque lacellule est globalement immobile, mais nous montrons que ce fonctionnementdote le squelette cellulaire de deux avantages cruciaux : l'agilité d'unliquide pour s'adapter et accomplir les multiples rôles physiologiques dela cellule, et simultanément la résistance d'un solide élastique qui répondinstantanément à des sollicitations mécaniques.
- Published
- 2015
12. Modelling and simulation of powder-snow avalanches
- Author
-
Jocelyn Etienne, Emil J. Hopfinger, Marie Rastello, LMC, IMAG, Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Erosion torrentielle neige et avalanches (UR ETGR (ETNA)), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Érosion torrentielle, neige et avalanches (UR ETGR (ETNA)), and Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF)
- Subjects
Marketing ,Gravity (chemistry) ,Finite volume method ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,010504 meteorology & atmospheric sciences ,Strategy and Management ,Flow (psychology) ,Reynolds number ,Mechanics ,Snow ,01 natural sciences ,Aspect ratio (image) ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,010305 fluids & plasmas ,symbols.namesake ,Closure (computer programming) ,0103 physical sciences ,Media Technology ,symbols ,General Materials Science ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Statistical physics ,Density contrast ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; Finite volume release gravity currents of large density contrast on steep slopes, representing powder-snow avalanches, are simulated numerically using a dynamic mesh adaptation technique. This technique allows one to treat large Reynolds numbers and large density contrast flows, but it is (presently) restricted to two dimensions. Comparison of numerical results with experiments in the Boussinesq limit shows that 2D simulations capture the essential dynamics. The physics of powder-snow avalanches is analysed on hand of the similarity model developed by Rastello and Hopfinger (2004) and briefly reproduced here. The numerical simulations provide the closure parameters required in this model and give access to the flow structure. The non-Boussinesq effect is to decrease substantially the spatial growth in height and to increase the aspect ratio, hence the overall flow structure.
- Published
- 2006
13. A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material
- Author
-
Jie Li, E. J. Hinch, and Jocelyn Etienne
- Subjects
Physics ,Computer simulation ,Discretization ,Applied Mathematics ,Mechanical Engineering ,General Chemical Engineering ,Numerical analysis ,Mechanics ,Condensed Matter Physics ,Finite element method ,Physics::Fluid Dynamics ,Euler–Lagrange equation ,Classical mechanics ,Flow (mathematics) ,Drag ,Free surface ,General Materials Science - Abstract
A new numerical method specially adapted to the free-surface flow of viscoelastic material is proposed. It is based on a Lagrangian discretisation of the material and objective derivatives, which accounts well for the hyperbolic nature of these terms and goes well with a Lagrangian tracking of a time-evolving domain. Through the Arbitrary Lagrangian–Eulerian (ALE) formulation, the method can also be applied efficiently to solid-boundary problems, and is tested on the benchmark problem of the drag on a cylinder in a channel. The collapse of a column of Oldroyd-B fluid is then considered: under the action of surface tension, the column undergoes large deformation leading to the “beads-on-string” structure. Asymptotic results on the evolution of this structure are recovered in numerical simulations, and further features of this flow are exhibited.
- Published
- 2006
14. Estimations d'erreur a priori de la méthode de Lagrange–Galerkin pour les systèmes de type Kazhikhov–Smagulov
- Author
-
Pierre Saramito and Jocelyn Etienne
- Subjects
Combinatorics ,Euler scheme ,General Medicine ,Mathematics - Abstract
Resume Les systemes de type Kazhikhov–Smagulov correspondent aux equations de Navier–Stokes non-homogenes et incompressibles lorsque la densite obeit a une loi de diffusion, comme dans les melanges de gaz de densites differentes. Nous proposons un algorithme pour ces systemes qui s'appuie sur la discretisation en temps par un schema d'Euler retrograde de la methode des caracteristiques, et sur une methode d'elements finis mixtes ( P k , P k , P k − 1 ) pour la discretisation en espace dans R d , d = 2 , 3 , des densites–vitesses–pressions. Sous la contrainte k > d − 1 et Δ t = C h r , avec r ∈ ] d , 2 k + 2 − d [ , nous donnons une estimation d'erreur optimale O ( Δ t + h k ) pour le pas de temps Δt et le pas de maillage h. Pour citer cet article : J. Etienne, P. Saramito, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
- Published
- 2005
15. Inverse problems for the determination of traction forces by cells on a substrate: a comparison of two methods
- Author
-
Alain Duperray, Richard Michel, Claude Verdier, Jocelyn Etienne, Baptiste Bedessem, Valentina Peschetola, Davide Carlo Ambrosi, DYFCOM, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), MOX, MOX-Dipartimento di Matematica (MOX), Politecnico di Milano [Milan] (POLIMI)-Politecnico di Milano [Milan] (POLIMI), INSERM U823, équipe 8 (Immunologie Analytique des Pathologies Chroniques), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), and Institut National de la Santé et de la Recherche Médicale (INSERM)-EFS-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-EFS-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Materials science ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Traction (engineering) ,Biomedical Engineering ,Bioengineering ,migration ,01 natural sciences ,Zero force ,03 medical and health sciences ,symbols.namesake ,Cell Movement ,Cell Line, Tumor ,Humans ,0101 mathematics ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,030304 developmental biology ,Cell invasion ,0303 health sciences ,Fourier Analysis ,[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,General Medicine ,Mechanics ,Inverse problem ,Traction forces ,eye diseases ,Computer Science Applications ,010101 applied mathematics ,Human-Computer Interaction ,Stress field ,regularization ,Fourier transform ,Urinary Bladder Neoplasms ,Fourier analysis ,displacement field ,Displacement field ,symbols - Abstract
International audience; Traction forces exerted by cells on soft elastic substrates are important for characterizing the types of mechanisms used for cell migration. Classical tools for the determination of traction forces include the knowledge of the displacement field thanks to fluorescent beads embedded into the substrate. Then, from the discrete beads displacements, an inverse problem is solved to obtain the stress field. Two currently used methods in the literature are the well-known Fourier Transform Traction Cytometry (FTTC) method and the adjoint method (AM), which are compared here. A real case is presented where the displacement field is known from cancer cell migration study. The two methods allow the recovery of the traction stresses and their results are compared. Similar results are seen as long as an adequate projection technique is used (zero force imposed outside the cell). It is found that the AM allows a finer resolution of the traction forces, in particular at the cell edge. This is a strong incentive to use this method for the investigation of cancer cell migration on soft substrates.
- Published
- 2012
16. Initial Dynamics of Cell Spreading Are Governed by Dissipation in the Actin Cortex
- Author
-
Alain Duperray, Jocelyn Etienne, Etienne, Jocelyn, DYnamique des Fluides COmplexes et Morphogénèse [Grenoble] (DYFCOM), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), INSERM U823, équipe 8 (Immunologie Analytique des Pathologies Chroniques), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), Experiments were performed at the microscopy facility of the Institut Albert Bonniot. This equipment was partly funded by the Association pour la Recherche sur le Cancer (Villejuif, France) and the Nanobio program., DYFCOM, Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), and Institut National de la Santé et de la Recherche Médicale (INSERM)-EFS-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-EFS-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Finite elements ,Biophysics ,01 natural sciences ,Models, Biological ,Modelling ,03 medical and health sciences ,Cell Line, Tumor ,0103 physical sciences ,Cell cortex ,Humans ,Cellular Biophysics and Electrophysiology ,010306 general physics ,Cell adhesion ,Cytoskeleton ,Cell Shape ,Actin ,030304 developmental biology ,0303 health sciences ,Deformation (mechanics) ,[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Chemistry ,Viscosity ,Adhesion ,Actomyosin ,Dissipation ,Actins ,Cell biology ,Biomechanical Phenomena ,Spectrometry, Fluorescence ,Dissipative system ,Cell biophysics - Abstract
11 pages; International audience; The initial stages of spreading of a suspended cell onto a substrate under the effect of (specific or nonspecific) adhesion exhibit a universal behavior, which is cell-type independent. We show that this behavior is governed only by cell-scale phenomena. This can be understood if the main retarding force that opposes cell adhesion is of mechanical origin, that is, dissipation occurring during the spreading. By comparing several naive models that generate different patterns of dissipation, we show by numerical simulation that only dissipation due to the deformation of the actin cortex is compatible with the experimental observations. This viscous-like dissipation corresponds to the energetic cost of rearranging the cytoskeleton, and is the trace of all dissipative events occurring in the cell cortex during the early spreading, such as the binding and unbinding of cross-linkers and molecular friction.
- Published
- 2011
17. Topography associated with crustal flow in continental collisions, with application to Tibet
- Author
-
Jocelyn Etienne, Rebecca Bendick, Dan McKenzie, University of Montana, Bullard Laboratories, University of Cambridge [UK] (CAM), Laboratoire de Spectrométrie Physique (LSP), and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Body force ,geography ,Plateau ,geography.geographical_feature_category ,Asia ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Continental tectonics: compressional ,Flow (psychology) ,Crust ,Geometry ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Geophysics ,Numerical solutions ,Symmetry (physics) ,Physics::Geophysics ,Physics::Fluid Dynamics ,Viscosity ,Dynamics of lithosphere and mantle ,Geochemistry and Petrology ,Lithosphere ,Geology ,Dimensionless quantity - Abstract
International audience; Collision between an undeformable indenter and a viscous region generates isostatically compensated topography by solid-state flow. We model this process numerically, using a finite element scheme. The slope, amplitude and symmetry of the topographic signal depend on the indenter size and the Argand number of the viscous region, a dimensionless ratio of gravitational body forces to viscous forces. When applied to convergent continental settings, these scaling rules provide estimates of the position of an indenter at depth and the mechanical properties of the viscous region, especially effective viscosity. In Tibet, forward modelling suggests that some elevated, low relief topography within the northern plateau may be attributed to lower crustal flow, stimulated by a crustal indenter, possibly Indian lithosphere. The best-fit model constrains the northernmost limit of this indenter to 33.7°N and the maximum effective viscosity of Eurasian middle and lower crust to 1 × 10^20± 0.3 × 10^20 Pa s.
- Published
- 2008
18. Numerical simulations of high density ratio lock-exchange flows
- Author
-
Pierre Saramito, Jocelyn Etienne, Emil J. Hopfinger, Laboratoire de Modélisation et Calcul (LMC - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Isothermal flow ,Computational Mechanics ,01 natural sciences ,010305 fluids & plasmas ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Physics::Fluid Dynamics ,symbols.namesake ,0103 physical sciences ,Froude number ,Statistical physics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0101 mathematics ,Fluid Flow and Transfer Processes ,Physics ,Mechanical Engineering ,Numerical analysis ,Particle-laden flows ,Mechanics ,Condensed Matter Physics ,Gravity current ,010101 applied mathematics ,Continuity equation ,Mechanics of Materials ,Mesh generation ,symbols ,Two-phase flow - Abstract
International audience; In this paper direct numerical simulations of exchange flows of large density ratios are presented and are compared with experiments by Gröbelbauer et al. [J. Fluid Mech. 250, 669 (1993)]. These simulations, which make use of a dynamic mesh adaptation technique, cover the whole density ratio range of the experiments and very good agreement with the experimental front velocities and the Froude number variations is obtained. Moreover, in order to establish more definitely the Froude number dependency on density ratio, the simulations were carried up to ratios of 100 compared with 21.6 accessible in experiments. An empirical law for the dense front Froude number as a function of the density parameter is proposed. The mathematical difficulty of the problem is discussed. This difficulty arises because, when the density ratio is large, the existence of a solution is dependent on a compatibility condition between the diffusion and viscous terms model. Moreover, a specific numerical technique is required to treat the finite, nonuniform divergence of the mass-averaged velocity field described by the continuity equation.
- Published
- 2005
19. Numerical simulation of dense clouds on steep slopes: application to powder-snow avalanches
- Author
-
Jocelyn Etienne, Emil J. Hopfinger, Pierre Saramito, Laboratoire de Modélisation et Calcul (LMC - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,010506 paleontology ,010504 meteorology & atmospheric sciences ,Flow (psychology) ,Growth rate ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,Snow ,Atmospheric sciences ,01 natural sciences ,Geology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
In this paper, two-dimensional direct numerical simulations (DNS) of dense clouds moving down steep slopes are presented for the first time. The results obtained are in good agreement with the overall characteristics, i.e. the spatial growth rate and velocity variations, of clouds studied in the laboratory. In addition to the overall flow structure, DNS provide local density and velocity variations inside the cloud, not easily accessible in experiments. The validity of two-dimensional simulations as a first approach is confirmed by the dynamics of the flow and by comparison with experimental results. The interest of the results for powder-snow avalanches is discussed; it is concluded that two-dimensionality is acceptable and that large density differences need to be taken into account in future simulations.
- Published
- 2005
20. Surface Charge and Ion Sorption Properties Influencing the Fouling and Flow Characteristics of Ceramic Membranes
- Author
-
Russell Paterson, Louis Cot, Stephen Gallagher, Jocelyn Etienne, and André Larbot
- Subjects
chemistry.chemical_classification ,Materials science ,Chromatography ,Fouling ,Ion exchange ,Sorption ,Membrane ,Ceramic membrane ,chemistry ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,Ceramic ,Surface charge ,Counterion - Abstract
Ion exchange and sorption characteristics of a range of calcined oxides which constitute the active layers of ceramic membranes have been determined using new automated titration methods employing ion selective electrodes. The effects of pH and salt concentration on exchange capacities have been evaluated and explained mechanistically. These were shown to be consistent with the exchange mechanisms of non-calcined oxides determined previously (1-6). The sign of the surface charge and the exchange capacities for each counterion may be altered in a predictive way, by changing the pH and the activity of the sorbing ion. The effects of altering pH and salt concentration on the flow characteristics of whole ceramic membranes have been determined. Studies on the minimisation of fouling by charged substrates on ceramic membranes have been initiated, with promising results.
- Published
- 1992
21. Biomécanique du développement par l'analyse d'images : La dynamique de l'actomyosine pulsatile pendant la fermeture dorsale de la Drosophile
- Author
-
Dutta, Nilankur, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes, Jocelyn Etienne, and Pierre Recho
- Subjects
Continuum mechanics ,Complex fluids ,Developmental biology ,Fluides complexes ,Biologie du développement ,Mécanique des milieux continus ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] - Abstract
Mechanics has emerged as a necessary discipline to understand embryogenesis. The effect of mechanical forces in tissue development and cell fate determination has been demonstrated, showing that cells respond to forces and mechanical cues.The Drosophila melanogaster is a model organism to study mechanics, with studies showing the mechanical control of cell shape and morphogenesis. Recently, the actomyosin cortex has attracted attention as a key regulator of cell mechanics. In this work, the morphogenetic process of dorsal closure is chosen to study the mechanical effect of actomyosin pulsations during development.Dorsal closure involves the closing of an epidermal gap in the embryo by the contraction of the amnioserosa, the extra-embryonic tissue covering the gap. During this time, cells delaminate from the amnioserosa, but there are no intercalations, migrations or divisions, making it an ideal system to study pulsatile actomyosin, or foci. Biophysical modelling suggests various modes of focus' motion such as advection or diffusion, but the kinetics of these foci are poorly understood. Thus, this work offers the mechanistical quantification of focus behaviour with a stress on kinetic properties.To that end, we use image analysis to create a tracking algorithm for travelling Myosin pulses. In four chapters, the thesis describes data processing tools which characterize focus behaviour, analysing a set of amnioserosa time-lapse movies.In chapter 1, the dataset of two channel (E-cadherin and Myosin II) time-lapse movies of the amnioserosa are described. Using the first channel, the cell membranes are identified. On the second channel, a method of pre-processing is defined, necessary for uniform focus identification over the whole dataset. Through this, the focus static properties, such as characteristic sizes and distribution on cell surface, are quantified.In chapter 2, the introduction of tracking algorithm enables temporal linkages among the identified foci. Merging and splitting behaviour of foci is seen. Under a point-particle ansatz, focus' kinematic properties, such as speeds, durations and angles of deviations between subsequent steps, are described. It is noted that the angles of deviation are non-isotropic, indicating directional motion. It is observed that foci always have non-zero speed between frames, suggesting motion that is not purely diffusive.In chapter 3, through further point-particle analysis of the trajectories of foci, their mean-squared-distances are quantified. Fitting a power-law, the median exponent is found to be in the super-diffusive regime of motion. Though impeded by the small duration of trajectories, this is consistent with the hypothesis of a self-avoiding motion. Measuring the mean direction of trajectory, it is seen that the orientation of the individual steps is preferentially aligned according to this direction. This is found to be linked to cellular confinement due to anisotropy in cell shapes.In chapter 4, the continuous Myosin signal is analysed, and the apical features of florescence in the known spatio-temporal neighbourhoods of foci are visualized through kymographs. These are then averaged to look at the properties of the apical Myosin signal in the regions where a focus has been, and will be. We find the average kinetics of a focus is followed by the phenomenon of Myosin depletion around it. We also note the presence of high Myosin signal across cell-membranes from foci.The work posits a model of self-avoidance due to substrate refractoriness as a mechanism for focus propagation and death. High myosin concentration at a sub-cellular region would be followed by a local refractor; Il est maintenant établi que les aspects mécaniques de l'embryogenèse sont indispensables à sa compréhension. L'effet des forces mécaniques dans le développement des tissus et la différenciation cellulaire a été démontré tant pour la compation de la morula, la gastrulation que l'organogenèse. On sait également que les cellules répondent à des stimuli mécaniques. La Drosophile melanogaster a été établie en tant qu'organisme modèlepour l'étude du rôle de la mécanique dans le développement grâce à desétudes démontrant un contrôle mécanique de la forme cellulaire, desmotifs tissulaires et de la morphogenèse dans différents contextes, telsque la formation du sillon ventral ainsi que l'extension et larétraction de la bande germinale. Les contraintes mécaniques généréesdans le cytosquelette et répercutées dans les interactionscellule-cellule ou cellule-matrice produisent des effets globaux dans ledéveloppement. Plus précisément, le rôle clé du cortex d'actomyosine aété mis en lumière ces dernières années en ce qui concerne la mécaniquecellulaire et leur changement de forme.La fermeture dorsale consiste en la fermeture d'un gap de l'épidermeembryonaire par la contraction de l'amniosereuse, un tissuextra-embryonaire qui le recouvre. Au cours de cette fermeture, on notela délamination des cellules de l'amnioséreuse mais pasd'intercalations, de migration ou de divisions. Cette simplicité en faitun système idéal pour l'étude des pulsations d'actomyosine, ou foci.Les modèles biophysiques suggèrent que les mouvements des foci peuventêtre liés à l'advection due à la contraction de leur substrat d'actine,ou à la diffusion suite à la dissociation de l'actine. Cependant lacinématique des foci reste mal comprise, et nous tentons donc de lacomprendre par une approche de quantification mécanistique etparticulièrement de leur cinématique.Pour ceci, nous utilisons l'analyse d'image et un algorithme nouveau desuivi en temps des pulses propagatifs de myosine. Les quatre chapitresde la thêse dévirvent une gamme d'outils de traitement de données etd'analyse d'image permettant la caractérisation du comportement des focidans des séries temporelles d'images de microscopie de l'amnioséreuse.Au chapitre 1, des films de l'amnioséreuse imageant deux canaux(E-cadhérine et Myosine II) sont décrits. Avec le premier canal, lesmembranes cellulaires sont identifiées. Pour le second, nous définissonsune méthode de pré-traitement nécessaire à la détection uniforme desfoci sur l'ensemble du jeu de données. De cette manière, nousquantifions les propriétés statiques des foci, telles que leur taille etleur distribution à la surface des cellules.Au chapitre 2, un algorithme de suivi nous permet d'établir des lienstemporels entre les foci identifiés. Des phénomèmes de coalescence etdécoalescence sont observés. Avec une approche de particule ponctuelle,des propriétés cinématiques des foci, telles que leur vitesse, durée etl'angle de déviation entre des pas consécutifs sont décrits. On observeque ces angles ne sont pas isotropes, ce qui indique une directionalitédu mouvement. La vitesse entre deux images est toujours non-nulle,suggérant que le mouvement n'est pas purement diffusif.faible durée des trajectoires soientproblématiques, cette observation est en cohérence avec l'hypothèse d'unmouvement auto-évitant. On observe également que chaque pas destrajectoires est préférentiellement aligné avec la direction moyenne decelles-ci, et l'on montre que cela est lié au confinement dans descellules de forme anisotrope.Au chapitre 4, le signal continu de myosine est analysé, et sescaractéristiques dans le voisinage spatio-temporel des foci au moyen de
- Published
- 2019
22. Developmental Biomechanics Through Image Analysis : The Dynamics of Pulsatile Actomyosin During Drosophila Dorsal Closure
- Author
-
Dutta, Nilankur, STAR, ABES, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes, Jocelyn Etienne, and Pierre Recho
- Subjects
Continuum mechanics ,Complex fluids ,Developmental biology ,Fluides complexes ,Biologie du développement ,[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Mécanique des milieux continus ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] - Abstract
Mechanics has emerged as a necessary discipline to understand embryogenesis. The effect of mechanical forces in tissue development and cell fate determination has been demonstrated, showing that cells respond to forces and mechanical cues.The Drosophila melanogaster is a model organism to study mechanics, with studies showing the mechanical control of cell shape and morphogenesis. Recently, the actomyosin cortex has attracted attention as a key regulator of cell mechanics. In this work, the morphogenetic process of dorsal closure is chosen to study the mechanical effect of actomyosin pulsations during development.Dorsal closure involves the closing of an epidermal gap in the embryo by the contraction of the amnioserosa, the extra-embryonic tissue covering the gap. During this time, cells delaminate from the amnioserosa, but there are no intercalations, migrations or divisions, making it an ideal system to study pulsatile actomyosin, or foci. Biophysical modelling suggests various modes of focus' motion such as advection or diffusion, but the kinetics of these foci are poorly understood. Thus, this work offers the mechanistical quantification of focus behaviour with a stress on kinetic properties.To that end, we use image analysis to create a tracking algorithm for travelling Myosin pulses. In four chapters, the thesis describes data processing tools which characterize focus behaviour, analysing a set of amnioserosa time-lapse movies.In chapter 1, the dataset of two channel (E-cadherin and Myosin II) time-lapse movies of the amnioserosa are described. Using the first channel, the cell membranes are identified. On the second channel, a method of pre-processing is defined, necessary for uniform focus identification over the whole dataset. Through this, the focus static properties, such as characteristic sizes and distribution on cell surface, are quantified.In chapter 2, the introduction of tracking algorithm enables temporal linkages among the identified foci. Merging and splitting behaviour of foci is seen. Under a point-particle ansatz, focus' kinematic properties, such as speeds, durations and angles of deviations between subsequent steps, are described. It is noted that the angles of deviation are non-isotropic, indicating directional motion. It is observed that foci always have non-zero speed between frames, suggesting motion that is not purely diffusive.In chapter 3, through further point-particle analysis of the trajectories of foci, their mean-squared-distances are quantified. Fitting a power-law, the median exponent is found to be in the super-diffusive regime of motion. Though impeded by the small duration of trajectories, this is consistent with the hypothesis of a self-avoiding motion. Measuring the mean direction of trajectory, it is seen that the orientation of the individual steps is preferentially aligned according to this direction. This is found to be linked to cellular confinement due to anisotropy in cell shapes.In chapter 4, the continuous Myosin signal is analysed, and the apical features of florescence in the known spatio-temporal neighbourhoods of foci are visualized through kymographs. These are then averaged to look at the properties of the apical Myosin signal in the regions where a focus has been, and will be. We find the average kinetics of a focus is followed by the phenomenon of Myosin depletion around it. We also note the presence of high Myosin signal across cell-membranes from foci.The work posits a model of self-avoidance due to substrate refractoriness as a mechanism for focus propagation and death. High myosin concentration at a sub-cellular region would be followed by a local refractor, Il est maintenant établi que les aspects mécaniques de l'embryogenèse sont indispensables à sa compréhension. L'effet des forces mécaniques dans le développement des tissus et la différenciation cellulaire a été démontré tant pour la compation de la morula, la gastrulation que l'organogenèse. On sait également que les cellules répondent à des stimuli mécaniques. La Drosophile melanogaster a été établie en tant qu'organisme modèlepour l'étude du rôle de la mécanique dans le développement grâce à desétudes démontrant un contrôle mécanique de la forme cellulaire, desmotifs tissulaires et de la morphogenèse dans différents contextes, telsque la formation du sillon ventral ainsi que l'extension et larétraction de la bande germinale. Les contraintes mécaniques généréesdans le cytosquelette et répercutées dans les interactionscellule-cellule ou cellule-matrice produisent des effets globaux dans ledéveloppement. Plus précisément, le rôle clé du cortex d'actomyosine aété mis en lumière ces dernières années en ce qui concerne la mécaniquecellulaire et leur changement de forme.La fermeture dorsale consiste en la fermeture d'un gap de l'épidermeembryonaire par la contraction de l'amniosereuse, un tissuextra-embryonaire qui le recouvre. Au cours de cette fermeture, on notela délamination des cellules de l'amnioséreuse mais pasd'intercalations, de migration ou de divisions. Cette simplicité en faitun système idéal pour l'étude des pulsations d'actomyosine, ou foci.Les modèles biophysiques suggèrent que les mouvements des foci peuventêtre liés à l'advection due à la contraction de leur substrat d'actine,ou à la diffusion suite à la dissociation de l'actine. Cependant lacinématique des foci reste mal comprise, et nous tentons donc de lacomprendre par une approche de quantification mécanistique etparticulièrement de leur cinématique.Pour ceci, nous utilisons l'analyse d'image et un algorithme nouveau desuivi en temps des pulses propagatifs de myosine. Les quatre chapitresde la thêse dévirvent une gamme d'outils de traitement de données etd'analyse d'image permettant la caractérisation du comportement des focidans des séries temporelles d'images de microscopie de l'amnioséreuse.Au chapitre 1, des films de l'amnioséreuse imageant deux canaux(E-cadhérine et Myosine II) sont décrits. Avec le premier canal, lesmembranes cellulaires sont identifiées. Pour le second, nous définissonsune méthode de pré-traitement nécessaire à la détection uniforme desfoci sur l'ensemble du jeu de données. De cette manière, nousquantifions les propriétés statiques des foci, telles que leur taille etleur distribution à la surface des cellules.Au chapitre 2, un algorithme de suivi nous permet d'établir des lienstemporels entre les foci identifiés. Des phénomèmes de coalescence etdécoalescence sont observés. Avec une approche de particule ponctuelle,des propriétés cinématiques des foci, telles que leur vitesse, durée etl'angle de déviation entre des pas consécutifs sont décrits. On observeque ces angles ne sont pas isotropes, ce qui indique une directionalitédu mouvement. La vitesse entre deux images est toujours non-nulle,suggérant que le mouvement n'est pas purement diffusif.faible durée des trajectoires soientproblématiques, cette observation est en cohérence avec l'hypothèse d'unmouvement auto-évitant. On observe également que chaque pas destrajectoires est préférentiellement aligné avec la direction moyenne decelles-ci, et l'on montre que cela est lié au confinement dans descellules de forme anisotrope.Au chapitre 4, le signal continu de myosine est analysé, et sescaractéristiques dans le voisinage spatio-temporel des foci au moyen de
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.