Let K be a nonempty closed convex and bounded subset of a reflexive Banach space X. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{1}, A_{2},\ldots,A_{N}$\end{document}A1,A2,…,AN be N-variables monotone demi-continuous mappings from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K^{N}$\end{document}KN into X. Then: (1) the system of multivariate variational inequalities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textstyle\begin{cases} \langle A_{1}(x_{1},x_{2},\ldots,x_{N}), y_{1}-x_{1} \rangle\geq0, &\forall y_{1} \in K,\\ \langle A_{2}(x_{1},x_{2},\ldots,x_{N}), y_{2}-x_{2} \rangle\geq0, &\forall y_{2} \in K,\\ \cdots\\ \langle A_{N}(x_{1},x_{2},\ldots,x_{N}), y_{N}-x_{N} \rangle\geq0, &\forall y_{N} \in K,\\ \end{cases} $$\end{document}{〈A1(x1,x2,…,xN),y1−x1〉≥0,∀y1∈K,〈A2(x1,x2,…,xN),y2−x2〉≥0,∀y2∈K,⋯〈AN(x1,x2,…,xN),yN−xN〉≥0,∀yN∈K, has a solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x_{1}^{*},x_{2}^{*},\ldots,x_{N}^{*}) \in K^{N}$\end{document}(x1∗,x2∗,…,xN∗)∈KN; (2) the set of solutions of this system of multivariate variational inequalities is closed convex in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K^{N}$\end{document}KN; (3) if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{1}, A_{2},\ldots,A_{N}$\end{document}A1,A2,…,AN are also strictly monotone, this system of multivariate variational inequalities has a unique solution.