1. Axion optical induction of antiferromagnetic order
- Author
-
Jian-Xiang Qiu, Christian Tzschaschel, Junyeong Ahn, Anyuan Gao, Houchen Li, Xin-Yue Zhang, Barun Ghosh, Chaowei Hu, Yu-Xuan Wang, Yu-Fei Liu, Damien Bérubé, Thao Dinh, Zhenhao Gong, Shang-Wei Lien, Sheng-Chin Ho, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, David C. Bell, Hai-Zhou Lu, Arun Bansil, Hsin Lin, Tay-Rong Chang, Brian B. Zhou, Qiong Ma, Ashvin Vishwanath, Ni Ni, and Su-Yang Xu
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mechanics of Materials ,Mechanical Engineering ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Materials Science ,General Chemistry ,Condensed Matter Physics - Abstract
Using circularly-polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of spatial chirality and magnetization $M$. The former is central for asymmetric synthesis in chemistry and homochirality in bio-molecules, while the latter is of great interest for ferromagnetic spintronics. In this paper, we report the surprising observation of helicity-dependent optical control of fully-compensated antiferromagnetic (AFM) order in 2D even-layered MnBi$_2$Te$_4$, a topological Axion insulator with neither chirality nor $M$. We further demonstrate helicity-dependent optical creation of AFM domain walls by double induction beams and the direct reversal of AFM domains by ultrafast pulses. The control and reversal of AFM domains and domain walls by light helicity have never been achieved in any fully-compensated AFM. To understand this optical control, we study a novel type of circular dichroism (CD) proportional to the AFM order, which only appears in reflection but is absent in transmission. We show that the optical control and CD both arise from the optical Axion electrodynamics, which can be visualized as a Berry curvature real space dipole. Our Axion induction provides the possibility to optically control a family of $\mathcal{PT}$-symmetric AFMs such as Cr$_2$O$_3$, CrI$_3$ and possibly novel states in cuprates. In MnBi$_2$Te$_4$, this further opens the door for optical writing of dissipationless circuit formed by topological edge states.
- Published
- 2023