11 results on '"Hodge, Stephen A."'
Search Results
2. Three Transport Priorities for the 2022 Federal Election
- Author
-
Mclaughlin, Matthew, Hodge, Stephen, Bourke, Peter, Salmon, Jo, Reece, Lindsey, Thorby, Rebecca, Swelam, Brittany, Shilton, Trevor Robert, and Mccue, Peter
- Published
- 2022
- Full Text
- View/download PDF
3. Production and processing of graphene and related materials
- Author
-
Backes, Claudia, Abdelkader, Amr M., Andrieux-Ledier, Amandine, Arenal, Raul, Azpeitia, Jon, Balakrishnan, Nilanthy, Banszerus, Luca, Barjon, Julien, Bartali, Ruben, Bellani, Sebastiano, Berger, Claire, Berger, Reinhard, Ortega, M M Bernal, Bernard, Carlo, Beton, Peter H., Bianco, Alberto, Bonaccorso, Francesco, Barin, Gabriela Borin, Botas, Cristina, Bueno, Rebeca A, Carriazo, Daniel, Castellanos-Gomez, Andres, Christian, Meganne, Ciesielski, Artur, Ciuk, Tymoteusz, Cole, Matthew T., Coleman, Jonathan, Coletti, Camilla, Crema, Luigi, Cun, Huanyao, Dasler, Daniela, De Fazio, Domenico, Drieschner, Simon, Duesberg, Georg S., Fasel, Roman, Feng, Xinliang, Fina, Alberto, Forti, Stiven, Galiotis, Costas, Garberoglio, Giovanni, Garrido, Jose Antonio, Gibertini, Marco, Greber, Thomas, Hauke, Frank, Hemmi, Adrian, Hernandez-Rodriguez, Irene, Hirsch, Andreas, Hodge, Stephen A., Huttel, Yves, Jepsen, Peter U., Jimenez, Ignacio, Kaiser, Ute, Kaplas, Tommi, Kim, HoKwon, Kis, Andras, Papagelis, Konstantinos, Kostarelos, Kostas, Krajewska, Aleksandra, Lee, Kangho, Li, Changfeng, Lipsanen, Harri, Liscio, Andrea, Lohe, Martin R., Loiseau, Annick, Lombardi, Lucia, Martin, Oliver, Martin-Gago, Jose Angel, Marzari, Nicola, McManus, John, Melucci, Manuela, Merino, Cesar, Merino, Pablo, Meyer, Andreas P., Miniussi, Elisa, Miseikis, Vaidotas, Mishra, Neeraj, Morandi, Vittorio, Munuera, Carmen, Nolan, Hugo, Ortolani, Luca, Ott, Anna K., Palacio, Irene, Palermo, Vincenzo, Parthenios, John, Pasternak, Iwona, Patane, Amalia, Prato, Maurizio, Prevost, Henri, Prudkovskiy, Vladimir, Pugno, Nicola, Rossi, Antonio, Ruffieux, Pascal, Setijadi, Eki, Seyller, Thomas, Speranza, Giorgio, Stampfer, Christoph, Stenger, Ingrid, Strupinski, Wlodek, Svirko, Yuri, Taioli, Simone, Teo, Kenneth B.K., Testi, Matteo, Tomarchio, Flavia, Tortello, Mauro, Treossi, Emanuele, Turchanin, Andrey, Vazquez, Ester, Villaro, Elvira, Whelan, Patrick R, Xia, Zhenyuan, Yakimova, Rositza, Yang, Sheng, Yazdi, G Reza, Yim, Chanyoung, Yoon, Duhee, Zhang, Xianghui, Zhuang, Xiaodong, Colombo, Luigi, Ferrari, Andrea C, and Garcia-Hernandez, Mar
- Published
- 2020
4. Core-Shell Electrospun Polycrystalline ZnO Nanofibers for Ultra-Sensitive NO2 Gas Sensing
- Author
-
Aziz, Atif, Tiwale, Nikhil, Hodge, Stephen A, Attwood, Simon J, Divitini, Giorgio, Welland, Mark E, Aziz, Atif [0000-0003-3701-2008], Tiwale, Nikhil [0000-0001-8229-7108], Divitini, Giorgio [0000-0003-2775-610X], and Apollo - University of Cambridge Repository
- Subjects
NO2 gas sensing ,polycrystalline fibers ,ZnO nanofibers ,electrospinning - Abstract
This Research Article discusses the growth of polycrystalline, self-supporting ZnO nanofibers, which can detect nitrogen dioxide (NO2) gas down to 1 part per billion (ppb), one of the smallest detection limits reported for NO2 using ZnO. A new and innovative method has been developed for growing polycrystalline ZnO nanofibers. These nanofibers have been created using core-shell electrospinning of inorganic metal precursor zinc neodecanoate, where growth occurs at the core of the nanofibers. This process produces contamination-free, self-supporting, polycrystalline ZnO nanofibers of an average diameter and grain size 50 and 8 nm, respectively, which are ideal for gas sensing applications. This process opens up an exciting opportunity for creating nanofibers from a variety of metal oxides, facilitating many new applications especially in the areas of sensors and wearable technologies.
- Published
- 2018
5. Microfluidization of graphite and formulation of graphene-based conductive inks
- Author
-
Karagiannidis, Panagiotis, Hodge, Stephen A., Lombardi, Lucia, Tomarchio, Flavia, Decorde, Nicolas, Milana, Silvia, Goykhman, Ilya, Su, Yang, Mesite, Steven V., Johnstone, Duncan N., Leary, Rowan K., Midgley, Paul A., Pugno, Nicola M., Torrisi, Felice, Ferrari, Andrea C., Hodge, Stephen [0000-0002-5679-6568], Johnstone, Duncan [0000-0003-3663-3793], Midgley, Paul [0000-0002-6817-458X], Torrisi, Felice [0000-0002-6144-2916], Ferrari, Andrea [0000-0003-0907-9993], and Apollo - University of Cambridge Repository
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,conducting inks ,flexible electronics ,graphene ,solution processing ,Materials Science (all) ,Engineering (all) ,Physics and Astronomy (all) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Article ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Nanoscience & Nanotechnology ,sub_mechanicalengineering - Abstract
We report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 10$^{8}$ s$^{-1}$] turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to formulate conductive printable inks. The sheet resistance of blade coated films is below ∼2Ω/□. This is a simple and scalable production route for conductive inks for large-area printing in flexible electronics., We acknowledge funding from EU Graphene Flagship, ERCs grants Hetero2D, HiGRAPHINK, 3DIMAGEEPSRC, ESTEEM2, BIHSNAM, KNOTOUGH, and SILKENE, EPSRC grants EP/K01711X/1, EP/K017144/1, and EP/N010345/1, a Vice Chancellor award from the University of Cambridge, a Junior Research Fellowship from Clare College and the Cambridge NanoCDT and Graphene Technology CDT. We thank Chris Jones for useful discussions, and Imerys Graphite and Carbon for graphite powders.
- Published
- 2016
- Full Text
- View/download PDF
6. Electrochemical processing of single-walled carbon nanotubes and related materials
- Author
-
Hodge, Stephen Anthony, Shaffer, Milo, and LSI Logic Corporation
- Abstract
The remarkable properties of single-walled carbon nanotubes (SWNTs) and potential applications are hindered by current solution-phase processing strategies. The initial dissolution of SWNTs remains a fundamental challenge, reliant on aggressive chemistry or ultrasonication and lengthy ultracentrifugation. In this thesis, a simple non-aqueous electrochemical reduction process that leads to spontaneous dissolution of individualised SWNTs from raw, unprocessed powders is outlined. The intrinsic electrochemical stability and conductivity of these nanoparticles allows their electrochemical dissolution from a pure SWNT cathode to form solutions of well-defined nanoparticle anions with characteristic charge density. Other than a reversible change in redox/solvation state, there is no obvious chemical functionalisation of the structure, suggesting an analogy to conventional atomic electrochemical dissolution. The heterogeneity of as-synthesised SWNT samples leads to the sequential dissolution of distinct fractions over time. Initial preferential dissolution of defective nanotubes and carbonaceous debris provides a simple, non-destructive means to purify raw materials without recourse to the usual, damaging, competitive oxidation reactions. During early stage developments, the process showed remarkable affinity for dissolving metallic SWNTs, providing a potentially scalable route for separation by electronic character, vital for many applications. However, selectivity was lost with significantly increased process yields (complete dissolution) following several optimisations. Subsequently, the electrochemical deposition of SWNTs is proposed as a new route to selectively plate specific SWNT species and avoid unwanted functionalisations that occur when exposing reduced SWNTs to different atmospheres. Finally, the extension of electrochemical processing to related materials including activated and graphitic nanocarbons, metallic and metal chalcogenide nanomaterials was also investigated, with great promise for the development of new applications. Open Access
- Published
- 2012
- Full Text
- View/download PDF
7. Having an impact: ANET evaluation report
- Author
-
Hodge, Stephen, Slavin, Sean, and Bollen, Jonathan
- Subjects
Health ,Gay men ,Australia ,HIV ,Evaluation ,Education - Abstract
Monograph 3/2002
- Published
- 2002
- Full Text
- View/download PDF
8. Layered Materials And Methods For Their Processing
- Author
-
Panagiotis Karagiannidis, Hodge Stephen Anthony, Ferrari Andrea Carlo, and Torrisi Felice
9. Production and processing of graphene and related materials
- Author
-
Backes, Claudia, Abdelkader, Amr M., Alonso, Concepción, Andrieux-Ledier, Amandine, Arenal, Raul, Azpeitia, Jon, Balakrishnan, Nilanthy, Banszerus, Luca, Barjon, Julien, Bartali, Ruben, Bellani, Sebastiano, Berger, Claire, Berger, Reinhard, Ortega, M. M. Bernal, Bernard, Carlo, Beton, Peter H., Beyer, André, Bianco, Alberto, Bøggild, Peter, Bonaccorso, Francesco, Barin, Gabriela Borin, Botas, Cristina, Bueno, Rebeca A., Carriazo, Daniel, Castellanos-Gomez, Andres, Christian, Meganne, Ciesielski, Artur, Ciuk, Tymoteusz, Cole, Matthew T., Coleman, Jonathan, Coletti, Camilla, Crema, Luigi, Cun, Huanyao, Dasler, Daniela, De Fazio, Domenico, Díez, Noel, Drieschner, Simon, Duesberg, Georg S., Fasel, Roman, Feng, Xinliang, Fina, Alberto, Forti, Stiven, Galiotis, Costas, Garberoglio, Giovanni, García, Jorge M., Garrido, Jose Antonio, Gibertini, Marco, Gölzhäuser, Armin, Gómez, Julio, Greber, Thomas, Hauke, Frank, Hemmi, Adrian, Hernandez-Rodriguez, Irene, Hirsch, Andreas, Hodge, Stephen A., Huttel, Yves, Jepsen, Peter U., Jimenez, Ignacio, Kaiser, Ute, Kaplas, Tommi, Kim, HoKwon, Kis, Andras, Papagelis, Konstantinos, Kostarelos, Kostas, Krajewska, Aleksandra, Lee, Kangho, Li, Changfeng, Lipsanen, Harri, Liscio, Andrea, Lohe, Martin R., Loiseau, Annick, Lombardi, Lucia, Francisca López, Maria, Martin, Oliver, Martín, Cristina, Martínez, Lidia, Martin-Gago, Jose Angel, Ignacio Martínez, José, Marzari, Nicola, Mayoral, Álvaro, McManus, John, Melucci, Manuela, Méndez, Javier, Merino, Cesar, Merino, Pablo, Meyer, Andreas P., Miniussi, Elisa, Miseikis, Vaidotas, Mishra, Neeraj, Morandi, Vittorio, Munuera, Carmen, Muñoz, Roberto, Nolan, Hugo, Ortolani, Luca, Ott, Anna K., Palacio, Irene, Palermo, Vincenzo, Parthenios, John, Pasternak, Iwona, Patane, Amalia, Prato, Maurizio, Prevost, Henri, Prudkovskiy, Vladimir, Pugno, Nicola, Rojo, Teófilo, Rossi, Antonio, Ruffieux, Pascal, Samorì, Paolo, Schué, Léonard, Setijadi, Eki, Seyller, Thomas, Speranza, Giorgio, Stampfer, Christoph, Stenger, Ingrid, Strupinski, Wlodek, Svirko, Yuri, Taioli, Simone, Teo, Kenneth B. K., Testi, Matteo, Tomarchio, Flavia, Tortello, Mauro, Treossi, Emanuele, Turchanin, Andrey, Vazquez, Ester, Villaro, Elvira, Whelan, Patrick R., Xia, Zhenyuan, Yakimova, Rositza, Yang, Sheng, Yazdi, G. Reza, Yim, Chanyoung, Yoon, Duhee, Zhang, Xianghui, Zhuang, Xiaodong, Colombo, Luigi, Ferrari, Andrea C., and Garcia-Hernandez, Mar
- Subjects
7. Clean energy - Abstract
2D Materials 7(2), 022001 (2020). doi:10.1088/2053-1583/ab1e0a, Published by IOP Publ., Bristol
10. Treatment Of Polymer Particles
- Author
-
Ferrari Andrea Carlo, Hodge Stephen Anthony, Panagiotis Karagiannidis, and Lin Yue
11. Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets
- Author
-
Andrea C. Ferrari, Guangyin Jing, Fei Hui, Zhongchao Fan, Keith Gilmore, Enric Grustan-Gutierrez, Bingru Wang, Yuanyuan Shi, Lucia Lombardi, Mario Lanza, Stephen A. Hodge, Xiaoxue Song, Hodge, Stephen [0000-0002-5679-6568], Ferrari, Andrea [0000-0003-0907-9993], and Apollo - University of Cambridge Repository
- Subjects
Fabrication ,Materials science ,Nanotechnology ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,chemistry.chemical_compound ,General Materials Science ,0912 Materials Engineering ,Electrical conductor ,Nanoscopic scale ,Molybdenum disulfide ,Deposition (law) ,business.industry ,021001 nanoscience & nanotechnology ,Exfoliation joint ,Piezoelectricity ,Casting ,0104 chemical sciences ,chemistry ,Optoelectronics ,0210 nano-technology ,business - Abstract
The development of piezoelectric layered materials may be one of the key elements enabling expansion of nanotechnology, as they offer a solution for the construction of efficient transducers for a wide range of applications, including self-powered devices. Here, we investigate the piezoelectric effect in multilayer (ML) stepped MoS2 flakes obtained by liquid-phase exfoliation, which is especially interesting because it may allow the scalable fabrication of electronic devices using large area deposition techniques (e.g. solution casting, spray coating, inkjet printing). By using a conductive atomic force microscope we map the piezoelectricity of the MoS2 flakes at the nanoscale. Our experiments demonstrate the presence of electrical current densities above 100 A cm−2 when the flakes are strained in the absence of bias, and the current increases proportional to the bias. Simultaneously collected topographic and current maps demonstrate that the edges of stepped ML MoS2 flakes promote the piezoelectric effect, where the largest currents are observed. Density functional theory calculations are consistent with the ring-like piezoelectric potential generated when the flakes are strained, as well as the enhanced piezoelectric effect at edges. Our results pave the way to the design of piezoelectric devices using layered materials.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.