252 results on '"High Contrast Imaging"'
Search Results
2. Artificial Intelligence for Astronomical Imaging
- Author
-
Wong, Alison
- Subjects
high contrast imaging ,deep learning ,wavefront sensors ,neural networks ,adaptive optics - Abstract
Astronomy is the ultimate observational science. Objects outside our solar system are beyond our reach, so we are limited to acquiring knowledge at a distance. This motivates the need to advance astrophysical imaging technologies, particularly for the field of high contrast imaging, where some of the most highly prized science goals require high fidelity imagery of exoplanets and of the circumstellar structures associated with stellar and planetary birth. Such technical capabilities address questions of both the birth and death of stars which in turn informs the grand recycling of matter in the chemical evolution of the galaxy and universe itself. Ground-based astronomical observation primarily relies on extreme adaptive optics systems in order to extract signals arising from faint structures within the immediate vicinity of luminous host stars. These systems are distinguished from standard adaptive optics systems in performing faster and more precise wavefront correction which leads to better imaging performance. The overall theme of this thesis therefore ties together advanced topics in artificial intelligence with techniques and technologies required for the field of high contrast imaging. This is accomplished with demonstrations of deep learning methods used to improve the performance of extreme adaptive optics systems and is deployed and benchmarked with data obtained at the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system operating at the observatory on the summit of Mauna Kea in Hawaii. Solutions encompass both hardware and software, with optimal recovery of scientific outcomes delivered by model fitting of high contrast imaging data with modern machine learning techniques. This broad-ranging study subjecting acquisition, analysis and modelling of data hopes to yield more accurate and higher fidelity observables which in turn delivers improved interpretation and scientific delivery.
- Published
- 2023
3. Inverse problem approach in Extreme Adaptive Optics: analytical model of the fitting error and lowering of the aliasing
- Author
-
Berdeu, Anthony, Tallon, Michel, Thiébaut, Éric, Alagao, Mary Angelie, Sukpholtham, Sitthichat, Langlois, Maud, Kawinkij, Adithep, Kongkaew, Puttiwat, National Astronomical Research Institute of Thailand (NARIT), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laura Schreiber, Dirk Schmidt, and Elise Vernet
- Subjects
Simulations ,High contrast imaging ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Shack-Hartmann wavefront sensor ,Inverse problem approach ,FOS: Physical sciences ,Extreme Adaptive Optics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High resolution imaging - Abstract
International audience; We present the results obtained with an end-to-end simulator of an Extreme Adaptive Optics (XAO) system control loop. It is used to predict its on-sky performances and to optimise the AO loop algorithms. It was first used to validate a novel analytical model of the fitting error, a limit due to the Deformable Mirror (DM) shape. Standard analytical models assume a sharp correction under the DM cutoff frequency, disregarding the transition between the AO corrected and turbulence dominated domains. Our model account for the influence function shape in this smooth transition. Then, it is well-known that Shack-Hartmann wavefront sensors (SH-WFS) have a limited spatial bandwidth, the high frequencies of the wavefront being seen as low frequencies. We show that this aliasing error can be partially compensated (both in terms of Strehl ratio and contrast) by adding priors on the turbulence statistics in the framework of an inverse problem approach. This represents an alternative to the standard additional optical filter used in XAO systems. In parallel to this numerical work, a bench was aligned to experimentally test the AO system and these new algorithms comprising a DM192 ALPAO deformable mirror and a 15x15 SH-WFS. We present the predicted performances of the AO loop based on end-to-end simulations.
- Published
- 2022
- Full Text
- View/download PDF
4. Upgrading the high contrast imaging facility SPHERE: science drivers and instrument choices
- Author
-
Boccaletti, A., Chauvin, G., Wildi, F., Milli, J., Stadler, E., Diolaiti, E., Gratton, R., Vidal, F., Loupias, M., Langlois, M., Cantalloube, F., N'Diaye, M., Gratadour, D., Ferreira, F., Tallon, M., Mazoyer, J., Segransan, D., Mouillet, D., Beuzit, J.-L., Bonnefoy, M., Galicher, R., Vigan, A., Snellen, I.A.G., Feldt, M., Desidera, S., Rousseau, S., Baruffolo, A., Goulas, C., Baudoz, P., Bechet, C., Benisty, M., Bianco, A., Carry, B., Cascone, E., Charnay, B., Choquet, E., Christiaens, V., Cortecchia, F., Di Capprio, V., De Rosa, A., Desgrange, C., D'Orazi, V., Douté, S., Frangiamore, M., Gendron, E., Ginski, C., Huby, E., Keller, C.U., Kulcsár, C., Landman, R., Lagarde, S., Lagadec, E., Lagrange, A.-M., Lombini, M., Kasper, M., Ménard, F., Magnard, Y., Malaguti, G., Maurel, D., Mesa, D., Morgante, G., Pantin, E., Pichon, T., Potier, A., Rabou, P., Rochat, S., Terenzi, . l ., Thiébaut, E., Tallon-Bosc, I., Raynaud, H.-F., Rouan, D., Sevin, A., Schiavone, F., Schrieber, L., Zanutta, A., Evans, C.J., Bryant, J.J., Motohara, K., Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Haute résolution angulaire en astrophysique, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Universidad de Chile = University of Chile [Santiago] (UCHILE), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), European Southern Observatory (ESO), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, INAF - Osservatorio Astronomico di Bologna (OABO), Istituto Nazionale di Astrofisica (INAF), INAF - Osservatorio Astronomico di Padova (OAPD), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL), Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,High Contrast Imaging ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Exoplanets ,FOS: Physical sciences ,Adaptive Optics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Earth and Planetary Astrophysics ,Coronagraphy - Abstract
SPHERE+ is a proposed upgrade of the SPHERE instrument at the VLT, which is intended to boost the current performances of detection and characterization for exoplanets and disks. SPHERE+ will also serve as a demonstrator for the future planet finder (PCS) of the European ELT. The main science drivers for SPHERE+ are 1/ to access the bulk of the young giant planet population down to the snow line ($3-10$ au), to bridge the gap with complementary techniques (radial velocity, astrometry); 2/ to observe fainter and redder targets in the youngest ($1-10$\,Myr) associations compared to those observed with SPHERE to directly study the formation of giant planets in their birth environment; 3/ to improve the level of characterization of exoplanetary atmospheres by increasing the spectral resolution in order to break degeneracies in giant planet atmosphere models. Achieving these objectives requires to increase the bandwidth of the xAO system (from $\sim$1 to 3\,kHz) as well as the sensitivity in the infrared (2 to 3\,mag). These features will be brought by a second stage AO system optimized in the infrared with a pyramid wavefront sensor. As a new science instrument, a medium resolution integral field spectrograph will provide a spectral resolution from 1000 to 5000 in the J and H bands. This paper gives an overview of the science drivers, requirements and key instrumental trade-off that were done for SPHERE+ to reach the final selected baseline concept., To appear in the Proceedings of the SPIE Astronomical Telescopes + Instrumentation (2022), 13 pages, 6 figure
- Published
- 2022
- Full Text
- View/download PDF
5. L-band nulling interferometry at the VLTI with Asgard/Hi-5: status and plans
- Author
-
Denis Defrère, Azzurra Bigioli, Colin Dandumont, Germain Garreau, Romain Laugier, Marc-Antoine Martinod, Olivier Absil, Jean-Philippe Berger, Emilie Bouzerand, Benjamin Courtney-Barrer, Alexandre Emsenhuber, Steve Ertel, Jonathan Gagne, Adrian M. Glauser, Simon Gross, Michael J. Ireland, Harry-Dean Kenchington Goldsmith, Jacques Kluska, Stefan Kraus, Lucas Labadie, Victor Laborde, Alain Léger, Jarron Leisenring, Jérôme Loicq, Guillermo Martin, Johan Morren, Alexis Matter, Alexandra Mazzoli, Kwinten Missiaen, Salman Muhammad, Marc Ollivier, Gert Raskin, Hélène Rousseau, Ahmed Sanny, Simon Verlinden, Bart Vandenbussche, Julien Woillez, Merand, A, Sallum, S, and Sanchez-Bermudez, J
- Subjects
Technology ,Science & Technology ,high contrast imaging ,optical fibers ,exozodiacal disks ,FOS: Physical sciences ,CONSTRAINTS ,Optics ,DUST ,Astronomy & Astrophysics ,VLTI ,long baseline interferometry ,exoplanets ,Physical Sciences ,Nulling interferometry ,DISCS ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instruments & Instrumentation ,high angular resolution - Abstract
Hi-5 is the L'-band (3.5-4.0 $\mu$m) high-contrast imager of Asgard, an instrument suite in preparation for the visitor focus of the VLTI. The system is optimized for high-contrast and high-sensitivity imaging within the diffraction limit of a single UT/AT telescope. It is designed as a double-Bracewell nulling instrument producing spectrally-dispersed (R=20, 400, or 2000) complementary nulling outputs and simultaneous photometric outputs for self-calibration purposes. In this paper, we present an update of the project with a particular focus on the overall architecture, opto-mechanical design of the warm and cold optics, injection system, and development of the photonic beam combiner. The key science projects are to survey (i) nearby young planetary systems near the snow line, where most giant planets are expected to be formed, and (ii) nearby main sequence stars near the habitable zone where exozodiacal dust that may hinder the detection of Earth-like planets. We present an update of the expected instrumental performance based on full end-to-end simulations using the new GRAVITY+ specifications of the VLTI and the latest planet formation models., Comment: 16 pages, 9 figures, SPIE 2022 "Astronomical Telescopes and Instrumentation" manuscript 12183-16
- Published
- 2022
- Full Text
- View/download PDF
6. Two-mirror system for tunable apodization
- Author
-
Rafael G. González-Acuña
- Subjects
Physics ,business.industry ,Plane wave ,High contrast imaging ,Atomic and Molecular Physics, and Optics ,Optics ,Numerical approximation ,Apodization ,Chromatic aberration ,Ray tracing (graphics) ,Electrical and Electronic Engineering ,business ,Engineering (miscellaneous) ,Mirror neuron - Abstract
Here we present an optical system composed of two mirrors such that at the input/output, the light is a plane wave but with a user-defined apodization factor. The model presented is an analytic closed form with no numerical approximations or iterations. We test the model with illustrative scenarios, and the results are as expected; the system is stigmatic with the desired apodization factor. Thus, this system has several potential applications in high contrast imaging.
- Published
- 2022
7. Photonic circuits for exoplanet detection
- Author
-
Klinner-Teo, Teresa Deyi Maria
- Subjects
nulling interferometry ,high contrast imaging ,photonics ,fringe tracking ,integrated-optics ,tricoupler - Abstract
The compelling scientific rewards for exoplanet detection in astronomy necessitates the development of imaging techniques able to explore parts of the parameter space unreachable by indirect methods: isolating planetary light for further investigation. Nulling interferometry is one of the most promising technologies for imaging exoplanets within stellar habitable zones. The Guided-Light Interferometric Nulling Technology (GLINT) instrument, the first multi-baseline photonic nulling interferometer, has explored the potential for photonics to deliver the performance to reach the realms of contrast and separation required for exoplanet detection in the near-infrared. GLINT highlights two key issues that limit current-generation photonic nullers: residual phase variations and chromaticity within the beam combiner. Both limitations are addressed by the use of tricouplers, which can deliver a broadband, achromatic null together with phase measurements for fringe tracking. This thesis gives a derivation of the interactions of the tricoupler as the nuller’s core element, and presents designs for two devices to cancel on-axis light achromatically. A fully symmetric tricoupler is introduced, allowing a null signal to be delivered together with baseline-phase-dependent splitting into a pair of bright channels. Within some design trade space, the science signal or the fringe tracking ability can be prioritised. A phase shifter is also presented here, which can induce a phase shift of 180° with a variation of 0.6° in the 1.4-1.7μm band, producing a near-achromatic differential phase between beams. This functionality is required for optimal operation of the tricoupler nulling stage. Both devices can be integrated and replicated on a single photonic chip using ultrafast laser inscription, and can deliver a deep, broadband null together with a real-time fringe phase metrology signal.
- Published
- 2022
8. Keck/OSIRIS Paβ High-contrast Imaging and Updated Constraints on PDS 70b
- Author
-
Dimitri Mawet, Taichi Uyama, Masahiro Ikoma, Charles A. Beichman, Ruobing Dong, Chen Xie, Yuhiko Aoyama, Jason J. Wang, Yasuhiro Hasegawa, Michael W. McElwain, Jun Hashimoto, Yifan Zhou, Jean-Baptiste Ruffio, and Kevin Wagner
- Subjects
Physics ,Photosphere ,biology ,Flux ,Astronomy and Astrophysics ,High contrast imaging ,Astrophysics ,biology.organism_classification ,Space and Planetary Science ,Planet ,Beta (velocity) ,Osiris ,Protoplanet ,Astrophysics - Earth and Planetary Astrophysics ,Line (formation) - Abstract
We present a high-contrast imaging search for Pa$\beta$ line emission from protoplanets in the PDS~70 system with Keck/OSIRIS integral field spectroscopy. We applied the high-resolution spectral differential imaging technique to the OSIRIS $J$-band data but did not detect the Pa$\beta$ line at the level predicted using the parameters of \cite{Hashimoto2020}. This lack of Pa$\beta$ emission suggests the MUSE-based study may have overestimated the line width of H$\alpha$. We compared our Pa$\beta$ detection limits with the previous H$\alpha$ flux and H$\beta$ limits and estimated $A_{\rm V}$ to be $\sim0.9$ and 2.0 for PDS~70~b and c respectively. In particular, PDS~70~b's $A_{\rm V}$ is much smaller than implied by high-contrast near-infrared studies, which suggests the infrared-continuum photosphere and the hydrogen-emitting regions exist at different heights above the forming planet., Comment: 8pages, 5 figs, accepted for publication in AJ
- Published
- 2021
9. Three-sided pyramid wavefront sensor, part 1: simulations and analysis for astronomical adaptive optics
- Author
-
Jared R. Males, Joseph Long, Lauren Schatz, Johanan L. Codona, Michael Hart, Thierry Fusco, Pierre Janin-Potiron, Robert Johnson, Olivier Fauvarque, Jean-François Sauvage, Vincent Chambouleyron, Carlos Correia, Benoit Neichel, Mala Mateen, Wyant College of Optical Sciences [University of Arizona], University of Arizona, Steward Observatory, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, Hart Scientific Consulting International LLC, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Air Force Research Laboratory (AFRL), United States Air Force (USAF), ANR-18-CE31-0018,WOLF,Analyseurs de surface d'onde à filtrage de Fourier pour les optiques adaptatives des télescopes géants(2018), and Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES)
- Subjects
High contrast imaging ,high contrast imaging ,Computer science ,Segmented mirror ,01 natural sciences ,Deformable mirror ,adaptive optics ,010309 optics ,[SPI]Engineering Sciences [physics] ,Giant Magellan Telescope ,Optics ,0103 physical sciences ,Adaptive optics ,010303 astronomy & astrophysics ,Instrumentation ,Wavefront sensing ,Wavefront ,instrumentation ,[PHYS]Physics [physics] ,business.industry ,Mechanical Engineering ,Strehl ratio ,Astronomy and Astrophysics ,Wavefront sensor ,simulation ,Electronic, Optical and Magnetic Materials ,Space and Planetary Science ,Control and Systems Engineering ,wavefront sensing ,business ,Thirty Meter Telescope ,Simulation - Abstract
International audience; The Giant Segmented Mirror Telescopes (GSMTs) including the Giant Magellan Telescope (GMT), the Thirty Meter Telescope (TMT), and the European Extremely Large Telescope (E-ELT), all have extreme adaptive optics (ExAO) instruments planned that will use pyramid wavefront sensors (PWFS). The ExAO instruments all have common features: a high-actuator-count deformable mirror running at extreme speeds (>1 kHz); a high-performance wavefront sensor (WFS); and a high-contrast coronagraph. ExAO WFS performance is currently limited by the need for high spatial sampling of the wavefront which requires large detectors. For ExAO instruments for the next generation of telescopes, alternative architectures of WFS are under consideration because there is a trade-off between detector size, speed, and noise that reduces the performance of GSMT-ExAO wavefront control. One option under consideration for a GSMT-ExAO wavefront sensor is a three-sided PWFS (3PWFS). The 3PWFS creates three copies of the telescope pupil for wavefront sensing, compared to the conventional four-sided PWFS (4PWFS), which uses four pupils. The 3PWFS uses fewer detector pixels than the 4PWFS and should therefore be less sensitive to read noise. Here we develop a mathematical formalism based on the diffraction theory description of the Foucault knife-edge test that predicts the intensity pattern after the PWFS. Our formalism allows us to calculate the intensity in the pupil images formed by the PWFS in the presence of phase errors corresponding to arbitrary Fourier modes. We use these results to motivate how we process signals from a 3PWFS. We compare the raw intensity (RI) method, and derive the Slopes Maps (SM) calculation for the 3PWFS, which combines the three pupil images of the 3PWFS to obtain the X and Y slopes of the wavefront. We then use the Object Oriented MATLAB Adaptive Optics toolbox (OOMAO) to simulate an end-to-end model of an AO system using a PWFS with modulation and compare the performance of the 3PWFS to the 4PWFS. In the case of a low read noise detector, the Strehl ratios of the 3PWFS and 4PWFS are within 0.01. When we included higher read noise in the simulation, we found a Strehl ratio gain of 0.036 for the 3PWFS using RI over the 4PWFS using SM at a stellar magnitude of 10. At the same magnitude, the 4PWFS RI also outperformed the 4PWFS SM, but the gain was only 0.012 Strehl. This is significant because 4PWFS using SM is how the PWFS is conventionally used for AO wavefront sensing. We have found that the 3PWFS is a viable WFS that can fully reconstruct a wavefront and produce a stable closed-loop with correction comparable to that of a 4PWFS, with modestly better performance for high read-noise detectors.
- Published
- 2021
- Full Text
- View/download PDF
10. Detecting life outside our solar system with a large high-contrast-imaging mission
- Author
-
Ignasi Ribas, Th. Henning, P. Baudoz, M. Kasper, Pieter J. de Visser, Simon Albrecht, A.-M. Lagrange, Kevin Heng, Enric Palle, Didier Queloz, Nathan J. Mayne, Isabella Pagano, B.-O. Demory, Michiel Min, Olivier Guyon, R. van Boekel, Manuel López-Puertas, Ignas Snellen, Matthew A. Kenworthy, Guillem Anglada-Escudé, Daphne Stam, Julien Milli, Nikku Madhusudhan, Timothy M. Lenton, Garreth Ruane, John Lee Grenfell, Willy Benz, Christopher C. Stark, Valentina D'Orazi, Silvano Desidera, Mamadou N'Diaye, David Mouillet, E. J. W. de Mooij, Mark Claire, Christoph U. Keller, R. G. Gratton, Franck Selsis, A. L. Maire, Elsa Huby, Giampaolo Piotto, Alessandro Sozzetti, Jean-Luc Beuzit, Michaël Gillon, Anthony Boccaletti, Jayne Birkby, Matteo Brogi, Yamila Miguel, Arthur Vigan, Frans Snik, Beth Biller, B. S. Gaudi, Giuseppina Micela, Christiane Helling, Isabelle Baraffe, Oliver Krause, J. de Boer, Laura Kreidberg, Heike Rauer, Jean-Michel Desert, Markus Janson, Riccardo Claudi, Victoria S. Meadows, Ralf Launhardt, L. Carone, Lars A. Buchhave, Sasha Hinkley, Bertrand Mennesson, Leiden Observatory [Leiden], Universiteit Leiden, Sterrewacht Leiden, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institute for Astronomy [Edinburgh] (IfA), University of Edinburgh, Universiteit Leiden [Leiden], École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Universität Bern [Bern], Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Low Energy Astrophysics (API, FNWI), University of St Andrews. School of Earth & Environmental Sciences, University of St Andrews. St Andrews Centre for Exoplanet Science, University of St Andrews. St Andrews Isotope Geochemistry, University of St Andrews. School of Physics and Astronomy, European Commission, European Research Council, Science and Technology Facilities Council (UK), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Agenzia Spaziale Italiana, Istituto Nazionale di Astrofisica, Netherlands Organization for Scientific Research, Knut and Alice Wallenberg Foundation, Snellen, IAG [0000-0003-1624-3667], and Apollo - University of Cambridge Repository
- Subjects
Solar System ,life ,Computer science ,01 natural sciences ,010309 optics ,White paper ,Spitzer Space Telescope ,Planet ,0103 physical sciences ,Agency (sociology) ,QB Astronomy ,010303 astronomy & astrophysics ,QC ,QB ,[PHYS]Physics [physics] ,520 Astronomy ,imaging ,Astronomy and Astrophysics ,High contrast imaging ,3rd-DAS ,620 Engineering ,QC Physics ,mission ,Space and Planetary Science ,5101 Astronomical Sciences ,[SDU]Sciences of the Universe [physics] ,Extraterrestrial life ,Systems engineering ,Circumstellar habitable zone ,51 Physical Sciences - Abstract
Snellen, I.A.G. et al., In this White Paper, which was submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we recommend the ESA plays a proactive role in developing a global collaborative effort to construct a large high-contrast imaging space telescope, e.g. as currently under study by NASA. Such a mission will be needed to characterize a sizable sample of temperate Earth-like planets in the habitable zones of nearby Sun-like stars and to search for extraterrestrial biological activity. We provide an overview of relevant European expertise, and advocate ESA to start a technology development program towards detecting life outside the Solar System., I.S. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No 694513. A.L.M. acknowledges the financial support of the F.R.S.-FNRS through a postdoctoral researcher grant. MB acknowledges support from the UK Science and Technology Facilities Council (STFC) research grant ST/S000631/1. I.R. acknowledges support from the Spanish Ministry of Science and Innovation and the European Regional Development Fund through grant PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya/CERCA programme. E.P. acknowledges support from the Spanish Ministry of Science through grant PGC2018-098153-B-C31. J.M.D. acknowledges funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement no. 679633; Exo-Atmos) Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge financial support from the ASI-INAF agreement n.2018-16-HH.0 We acknowledge financial support from Spanish MCIU SEV-2017-0709 and PID2019-110689RB-I00 awards. We acknowledge financial support from the ASI-INAF agreement n.2018-16-HH.0 AV acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 757561). KH acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 771620). NJM acknowledges funding from the Leverhulme Trust, and a Science and Technology Facilities Council Consolidated Grant (ST/R000395/1). PdV acknowledges funding from the Netherlands Organisation for Scientific Research NWO (Veni Grant No. 639.041.750). IP acknowledges financial support from the ASI-INAF agreements 2019-29-HH.06-HH.0 and 2015-019-R.1-2018. FS acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 678194; FALCONER). MJ acknowledges support from the Knut and Alice Wallenberg foundation (KAW). JLB acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No 805445. T.H. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 83 24 28. JLG acknowledges ISSI Team 464 for useful discussion.
- Published
- 2021
- Full Text
- View/download PDF
11. Simulating JWST high contrast observations with PanCAKE
- Author
-
Camilla Danielski, Marshall D. Perrin, B. York, Jason J. Wang, Sasha Hinkley, Jarron Leisenring, Beth Biller, Julien H. Girard, Kyle Van Gorkom, Laurent Pueyo, Bryony Nickson, Andrew J. Skemer, Jea Adams, Aarynn L. Carter, Shaklan, Stuart B., Ruane, Garreth J., Ministerio de Economía y Competitividad (España), European Commission, and Space Telescope Science Institute (US)
- Subjects
Wavefront ,High contrast imaging ,Simulations ,JWST ,business.industry ,Computer science ,Exoplanets ,James Webb Space Telescope ,MIRI ,Target acquisition ,Exoplanet ,law.invention ,Telescope ,Stars ,Software ,law ,User support ,business ,Host (network) ,NIRCam ,Remote sensing ,Coronagraphy - Abstract
Techniques and Instrumentation for Detection of Exoplanets X (2021) San Diego1 August 2021 through 5 August 2021, Code 172620.--Proceedings of SPIE - The International Society for Optical Engineering vol. 118232021 Article number 118230H, The James Webb Space Telescope (JWST) and its suite of instruments will offer significant capabilities towards the high contrast imaging of objects such as exoplanets, protoplanetary disks, and debris disks at short angular separations from their considerably brighter host stars. For the JWST user community to simulate and predict these capabilities for a given science case, the JWST Exposure Time Calculator (ETC) is the most readily available and widely used simulation tool. However, the ETC is not capable of simulating a range of observational features that can significantly impact the performance of JWST's high contrast imaging modes (e.g.Target acquisition offsets, temporal wavefront drifts, small grid dithers, and telescope rolls) and therefore does not produce realistic contrast curves. Despite the development of a range of more advanced software that includes some or all of these features, these instead lack in either a) instrument diversity, or b) accessibility for novice users, This project was supported by a grant from STScI (JWST-ERS-01386) under NASA contract NAS5-03127, With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709
- Published
- 2021
12. The Twin decadal survey testbeds in the high contrast imaging testbed facility at NASA’s jet propulsion laboratory
- Author
-
B. P. Crill, Garreth Ruane, A. J. Eldorado Riggs, Wesley Baxter, Seth R. Meeker, Phillip K. Poon, Camilo Mejia Prada, Eduardo Bendek, Hong Tang, Nicholas Siegler, and Matthew Noyes
- Subjects
High contrast ,Integration testing ,Computer science ,Testbed ,Systems engineering ,Direct imaging ,High contrast imaging ,Jet propulsion - Abstract
Following the success of the Decadal Survey Testbed (DST), the HCIT team at JPL has developed a companion testbed, the Decadal Survey Testbed 2 (DST2), that further implements lessons learned from DST and from recent modeling work at JPL in support of the HabEx concept. Commissioning for DST2 is currently targeted for Fall 2021. Here we report on the detailed design of DST2 and status of integration and testing highlighting comparisons/changes from the original DST. Expected performance is summarized here, with details of the modeling effort provided in Noyes et al. also in these proceedings.
- Published
- 2021
- Full Text
- View/download PDF
13. Self-optimizing adaptive optics control with reinforcement learning for high-contrast imaging
- Author
-
Vikram Mark Radhakrishnan, Christoph U. Keller, Rico Landman, and Sebastiaan Y. Haffert
- Subjects
High contrast imaging ,Astrophysics - instrumentation and methods for astrophysics ,Adaptive control ,Computer science ,Astrophysics - Earth and planetary astrophysics ,01 natural sciences ,Deformable mirror ,010309 optics ,Control theory ,0103 physical sciences ,Reinforcement learning ,Machine learning ,Predictive control ,Adaptive optics ,010303 astronomy & astrophysics ,Instrumentation ,Mechanical Engineering ,Astronomy and Astrophysics ,Computer science - machine learning ,Electronic, Optical and Magnetic Materials ,Model predictive control ,Space and Planetary Science ,Control and Systems Engineering ,Control system ,Integrator - Abstract
Current and future high-contrast imaging instruments require extreme adaptive optics systems to reach contrasts necessary to directly imaged exoplanets. Telescope vibrations and the temporal error induced by the latency of the control loop limit the performance of these systems. One way to reduce these effects is to use predictive control. We describe how model-free reinforcement learning can be used to optimize a recurrent neural network controller for closed-loop predictive control. First, we verify our proposed approach for tip–tilt control in simulations and a lab setup. The results show that this algorithm can effectively learn to mitigate vibrations and reduce the residuals for power-law input turbulence as compared to an optimal gain integrator. We also show that the controller can learn to minimize random vibrations without requiring online updating of the control law. Next, we show in simulations that our algorithm can also be applied to the control of a high-order deformable mirror. We demonstrate that our controller can provide two orders of magnitude improvement in contrast at small separations under stationary turbulence. Furthermore, we show more than an order of magnitude improvement in contrast for different wind velocities and directions without requiring online updating of the control law.
- Published
- 2021
14. Nonlinear optical probes of nucleation and crystal growth: recent progress and future prospects
- Author
-
Ahmet R. Dok, Stijn Van Cleuvenbergen, Thierry Verbiest, Yovan de Coene, Thibaut Legat, and M. A. van der Veen
- Subjects
Technology ,Materials science ,3RD-HARMONIC SCATTERING ,Materials Science ,Nucleation ,Nanotechnology ,Crystal growth ,Materials Science, Multidisciplinary ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,Physics, Applied ,Nonlinear optical ,law ,STOKES-RAMAN SCATTERING ,Materials Chemistry ,Crystallization ,LASER-INDUCED NUCLEATION ,FLUORESCENCE ,Science & Technology ,SPECTROSCOPY ,Physics ,MICROSCOPY ,General Chemistry ,High contrast imaging ,021001 nanoscience & nanotechnology ,LIGHT-SCATTERING ,0104 chemical sciences ,Physical Sciences ,HYPER-RAYLEIGH-SCATTERING ,CRYSTALLIZATION ,0210 nano-technology ,SITU 2ND-HARMONIC GENERATION - Abstract
In situexperimental studies have been key in uncovering the often elusive pathways of nucleation and crystal growth. In the field of material science and medicine this offers the prospect of controlling crystallization processes to fight disease or tailor materials towards specific applications. To further advance this quest there is a need for flexible techniques mapping the different stages of crystallization with maximal sensitivity. This article reviews the benefits of nonlinear optical techniques to take on this challenge. We provide a perspective on various nucleation and crystal growth studies that were carried out by nonlinear optical probing techniques. A theoretical background is established, different relevant nonlinear optical phenomena are defined, and optical setups that have been used by various authors are summarized. A primary focus is demonstrating the benefits of nonlinear optical techniques for thein situstudy of crystallization. These benefits include low detection limits, complementary information by combining second- and third-order techniques, as well as relatively simple bench-top setups. Through microscopy, high contrast imaging of concomitant formations can moreover be achieved. The discussion outlines several studies involving ionic compounds, noble metal nanoparticles, polymers, metal organic frameworks and pharmaceutical compounds. Finally, we discuss future evolutions in nonlinear optical probing that are expected to further advance the field.
- Published
- 2021
15. Design, performance, and potential scientific applications of the evanescent wave coronagraph with an adjustable inner working angle
- Author
-
Michel Tallon, Apirat Prasit, Boonrucksar Soonthornthum, Eugene Semenko, Yves Rabbia, David Mkrtichian, Anthony Berdeu, Pakakaew Rittipruk, Christophe Buisset, Thierry Lépine, Saran Poshyachinda, Supachai Awiphan, Éric Thiébaut, Maud Langlois, Adithep Kawinkij, Mary Angelie Alagao, National Astronomical Research Institute of Thailand (NARIT), Laboratoire Hubert Curien (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hippolyte Fizeau (FIZEAU), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Chulalongkorn University [Bangkok], Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Bruno Cugny, Zoran Sodnik, Nikos Karafolas, Laboratoire Hubert Curien [Saint Etienne] (LHC), Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Laboratoire Hubert Curien / Eris, Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS), Université Nice Sophia Antipolis (... - 2019) (UNS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Physics ,Evanescent wave ,high contrast imaging ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,business.industry ,coronagraph ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,law.invention ,adaptive optics ,010309 optics ,Telescope ,Optics ,Cardinal point ,law ,Achromatic lens ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Photonics ,business ,Adaptive optics ,Coronagraph ,Quantum tunnelling - Abstract
International audience; The Center for Optics and Photonics of the National Astronomical Research Institute of Thailand, together with the Institut d'Optique Graduate School and the Centre de Recherche Astrohpysique de Lyon (CRAL), is currently developing the Evanescent Wave Coronagraph (EvWaCo). The coronagraph relies on the tunneling effect to produce a fully achromatic focal plane mask (FPM) with an adjustable size. The full instrument comprises a coronagraph and adaptive optics system that will be mounted on the Thai National Telescope and is specified to reach a raw contrast of 10−4 at an inner working angle of 3 Airy radii. The coronagraph will be used to perform high contrast observations of stellar systems during on-sky observations over the spectral domain [600 nm, 900 nm]. In this paper, we present the opto-mechanical design of the EvWaCo prototype and the performance measured in laboratory conditions. We also discuss the potential applications for space-based observations and the development plan under this project in the next five years.
- Published
- 2021
- Full Text
- View/download PDF
16. NASA’s starshade technology development activity
- Author
-
Phil Willems and Doug Lisman
- Subjects
business.industry ,Computer science ,Mechanical Engineering ,Rendezvous ,Space operations ,Astronomy and Astrophysics ,Technology readiness level ,High contrast imaging ,Technology development ,01 natural sciences ,Exoplanet ,Electronic, Optical and Magnetic Materials ,010309 optics ,Space and Planetary Science ,Control and Systems Engineering ,0103 physical sciences ,Special section ,Aerospace engineering ,business ,010303 astronomy & astrophysics ,Instrumentation - Abstract
NASA is developing starshade technology to Technology Readiness Level 5 within a directed activity called S5. The objective of S5 is to mature starshade technology to the level that exoplanet imaging missions, such as Starshade Rendezvous and HabEx, can begin the formulation phase. This paper outlines the S5 activity as a whole, to show how it closes all starshade technology gaps in a mutually consistent way. It serves as a companion paper to several other papers in this special section that report progress in specific starshade technologies.
- Published
- 2021
- Full Text
- View/download PDF
17. Demonstration of deployment repeatability of key subsystems of a furled starshade architecture
- Author
-
Larry Adams, Tayler Thomas, Andrei Iskra, David Webb, Samuel C. Bradford, Kassi Butler, Doug Lisman, Dana Turse, Neal Beidleman, Craig Hazelton, Kamron A. Medina, Mike Pulford, Eric R. Kelso, David Hepper, Amanda Swain, John Steeves, Gregg Freebury, Andrew Tomchek, Flora S. Mechentel, Stuart Shaklan, Kenzo Neff, John D. Stienmier, and Manan Arya
- Subjects
business.product_category ,Computer science ,business.industry ,Mechanical Engineering ,Astronomy and Astrophysics ,High contrast imaging ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Starlight ,010309 optics ,Rocket ,Space and Planetary Science ,Control and Systems Engineering ,Software deployment ,Error analysis ,0103 physical sciences ,Key (cryptography) ,Statistical analysis ,Architecture ,Aerospace engineering ,business ,010303 astronomy & astrophysics ,Instrumentation - Abstract
Starshade concepts must be stowed within rocket fairings for launch and then deployed in space. The in-plane deployment accuracy must be on the order of hundreds of micrometers for sufficient starlight suppression to enable the detection and study of Earth-like exoplanets around nearby Sun-like stars. We describe tests conducted to demonstrate deployment repeatability of two key structural subsystems of the “furled” starshade architecture—the petal and the inner disk. Together, the petals and the inner disk create the in-plane shape of a starshade. Test articles to represent the petal and inner disk subsystems were constructed at relevant scales for a 26-m-diameter starshade. These test articles were subjected to stowage-and-deployment cycles and their shapes were measured. The measured performance—tens of parts per million of petal strain after deployment, and hundreds of micrometers of inner disk deployment accuracy—was found to be within required allocations.
- Published
- 2021
- Full Text
- View/download PDF
18. Tolérancement des télescopes spatiaux fondé sur le contraste pour l'imagerie d'exoTerres
- Author
-
Laginja, Iva, STAR, ABES, DOTA, ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Space Telescope Science Institute (STSci), Université Paris sciences et lettres, Laurent Mugnier, Rémi Soummer, Observatoire de Paris, Université Paris Sciences et Lettres (PSL), Office National d'Études et de Recherches Aérospatiales (ONERA), Space Telescope Science Institute (STScI), Jean-François Sauvage, and Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES)
- Subjects
High contrast imaging ,Imagerie à haut contraste ,Télescopes segmentés ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,ExoEarth ,Tolerancement des erreurs du front d'onde ,Coronagraphie ,ExoTerres ,Imagerie haute contraste ,Segmented telescopes ,High-contrast imaging ,Telescopes segmentés ,Wavefront error tolerancing ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Cophasage ,Cophasing ,Coronagraphy - Abstract
High contrast imaging of exoplanets is currently an upsurging science. Images of exoplanets carry information about its atmosphere, which can show traces of biomarkers. Since the first exoplanet was directly imaged in 2004 (2M1207), new instruments dedicated to high contrast imaging have been installed on the biggest ground based observatories on Earth (Paranal, Gemini). The exoplanets that are targeted by these instruments are giant gaseous bodies known as Hot Jupiters.The next goal is to image exoplanets smaller in size, which will also make them less luminous, and closer to their host star.Future systems dedicated to this kind of imaging hence have to be capable of imaging a planet closer than 0.1 arc seconds to its host star and up to 10^10 times dimmer than the star. These capabilities, unachievable today, can only be reached with a space based giant telescope that will necessarily have to be segmented. The optical quality of such an imaging system will require a perfect wavefront control on levels smaller than a nanometer.This thesis is addressing methods trying to understand, sense and control these aberrations with wavefront sensing and control techniques. Considering that the ultimate goal is to image an Exo-Earth at a flux ratio of 10-10, the wavefront in these systems needs to be controlled on the picometer level.Strategies for the creation and maintenance of deep contrasts on segmented aperture telescopes like the Large UV/Optical/IR Surveyor (LUVOIR) telescope, one of the NASA flagship designs, are being developed. Further, laboratory demonstrations of these methods are being performed on the High-contrast imager for Complex Aperture Telescopes (HiCAT) testbed, a system-level demonstrator for segmented coronagraphy., L'imagerie directe d'exoplanètes est une science en plein essor aujourd'hui. Les photos émis par l'exoplanète sont porteurs d'information sur la composition de son atmosphère, et témoins de biomarqueurs. Depuis la première planète imagée en 2004 (2M1207), des instruments dédiés à l'imagerie directe ont été mis en opération sur les plus grands observatoires au sol (Paranal, Gemini). Les planètes visées par ces systèmes sont des géantes gazeuses de type jupiters chauds.Le prochain défi est d'imager des planètes de plus petite taille, donc moins lumineuses, et proches de leur étoile hôte.Les futurs systèmes dédiés à ce type d'imagerie devront donc imager une planète plus proche que 0.1 arcseconde de son étoile, et jusqu'à 10^10 fois plus ténue. Ces performances, inatteignables aujourd'hui, ne pourront être atteintes que dans l'espace à bord de télescopes géants qui seront forcément segmentés. La qualité optique nécessaire à une telle imagerie nécessitera par ailleurs une maîtrise parfaite du front d'onde, à des niveaux plus petits que le nanomètre.Cette thèse aborde des méthodes essayant de comprendre, détecter et contrôler ces aberrations avec des techniques de détection et de contrôle de front d'onde. Considérant que le but ultime est d'imager une Exo-Terre à un rapport de flux de 10-10, le front d'onde dans ces systèmes doit être contrôlé au niveau du picomètre.Des stratégies pour la création et le maintien de contrastes profonds sur des télescopes à ouverture segmentée comme le télescope Large UV/Optical/IR Surveyor (LUVOIR), l'un des modèles phares de la NASA, sont en cours de développement. En outre, des démonstrations en laboratoire de ces méthodes sont effectuées sur le banc optique High-contrast imager for Complex Aperture Telescopes (HiCAT), un démonstrateur au niveau du système pour la coronagraphie segmentée.
- Published
- 2021
19. The SPHERE infrared survey for exoplanets (SHINE). I. Sample definition and target characterization
- Author
-
E. L. Rickman, Julien Charton, Stéphane Udry, A. Roux, S. Rochat, Alice Zurlo, O. Möller-Nilsson, Riccardo Claudi, D. Fantinel, A. Pavlov, E. Covino, Christian Soenke, M. Kasper, Valentina D'Orazi, Anne-Lise Maire, Joshua E. Schlieder, J. Pragt, Enrico Cascone, Markus Janson, Mariangela Bonavita, T. Kopytova, C. Petit, P. Martinez, Mickael Bonnefoy, A. Deboulbe, Joany Andreina Manjarres Ramos, Franz-Josef Hambsch, L. Weber, Francois Menard, Thibaut Moulin, A. Bazzon, Yves Magnard, Norbert Hubin, F. Rigal, Thiam-Guan Tan, Eric Stadler, J.-F. Sauvage, T. O. B. Schmidt, Emmanuel Hugot, L. Gluck, Th. Henning, S. Benatti, Michael Meyer, Raphaël Galicher, Anne-Marie Lagrange, M. Feldt, M. Carle, Carsten Dominik, G. Rousset, Matthias Samland, Tristan Buey, Janis Hagelberg, H. M. Schmid, Philippe Feautrier, D. Le Mignant, Arnaud Sevin, H. LeCoroller, Pierre Baudoz, J. Antichi, Arthur Vigan, Wolfgang Brandner, Massimo Turatto, Gael Chauvin, Alain Origne, R. Ligi, P. Gigan, Bernardo Salasnich, C. Lazzoni, V. De Caprio, M. Jaquet, D. Gisler, Pascal Puget, Philippe Delorme, D. Perret, T. Fusco, Dino Mesa, E. Sissa, Francois Wildi, Silvano Desidera, D. Maurel, F. Madec, Joseph C. Carson, J. M. Alcalá, E. Rigliaco, S. Messina, J. Baudrand, Anne Costille, R. G. Gratton, M. Millward, André Müller, Beth Biller, Enrico Giro, Andrea Baruffolo, Faustine Cantalloube, Jean-Luc Beuzit, Ronald Roelfsema, Marcel Carbillet, Eric Lagadec, Kjetil Dohlen, R. Asensio-Torres, Anthony Cheetham, P. Rabou, M. Llored, Maud Langlois, P. Blanchard, Anthony Boccaletti, C. Fontanive, Marcos Suarez, L. Abe, and Low Energy Astrophysics (API, FNWI)
- Subjects
PRE-MAIN SEQUENCE [STARS] ,HIGH CONTRAST IMAGING ,STATISTICAL CONSTRAINTS ,PLANET DETECTION ,FOS: Physical sciences ,Sample (statistics) ,Context (language use) ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,ROTATION [STARS] ,ROTATION PERIOD ,01 natural sciences ,7. Clean energy ,FUNDAMENTAL PARAMETERS [STARS] ,Planet ,0103 physical sciences ,GENERAL [PLANETS AND SATELLITES] ,DETECTION LIMITS ,Astrophysics::Solar and Stellar Astrophysics ,KINEMATICS AND DYNAMICS [STARS] ,ACTIVITY [STARS] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,TARGET CHARACTERIZATION ,Light curve ,Exoplanet ,Characterization (materials science) ,SPHERES ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,ORIGINAL SAMPLE ,STATISTICAL SAMPLES ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Rotation (mathematics) ,SURVEYS ,STARS ,EXTRASOLAR PLANETS ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys. Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE. Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations. Results. The properties of individual targets and of the sample as a whole are presented. © ESO 2021. SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF – Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zürich (Switzerland), NOVA (Netherlands), ONERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004–2008), grant number 226 604 for FP7 (2009–2012) and grant number 312430 for FP7 (2013–2016). This research has made use of the SIMBAD database and Vizier services, operated at CDS, Strasbourg, France and of the Washington Double Star Catalog maintained at the US Naval Observatory. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This paper includes data collected with the TESS mission, obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by the NASA Explorer Program. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. This paper has made use of data products available in ESO archive. Program ID: 60.A-9036(A); 072.C-0488(E) (PI Mayor), 074.C-0364(A) (PI Robichon), 074.C-0037(A) (PI Gunther), 075.C-0202(A) (PI Gunther), 075.C-0689(A) (PI Galland), 076.C-0010(A) (PI Gunther), 077.C-0012(A) (PI Gunther), 077.C-0295(D) (PI Galland), 078.D-0245(C) (PI Dall), 079.C-0046(A) (PI Gunther), 080.D-0151(A) (PI Hatzes), 080.C-0712(A) (PI Desort), 180.C-0886(A) (PI Bonfils), 082.C-0718(B) (PI Bonfils), 082.C-0427(A) (PI Doellinger), 082.C-0390(A) (PI Weise), 183.C-0437(A) (PI Bonfils), 083.C-0794(A) (PI Chauvin), 084.C-1039(A) (PI Chauvin), 184.C-0815(B) (PI Desort), 089.C-0732(A) (PI Lo Curto), 191.C-0873(D) (PI Bonfils), 192.C-0224(A) (PI Lagrange), 097.C-0864(B) (PI Lannier), 098.C-0739(A) (PI Lagrange), 099.C-0205(A) (PI Lagrange), 099.C-0458(A) (PI Lo Curto), 1101.C-0557(A) (PI Lagrange). We have used data from the WASP public archive in this research. The WASP consortium comprises of the University of Cambridge, Keele University, University of Leicester, The Open University, The Queen’s University Belfast, St. Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK’s Science and Technology Facilities Council. Based on data retrieved from the SOPHIE archive at Observatoire de Haute-Provence (OHP), available at http://atlas.obs-hp.fr/sophie/. We thank the anonymous referee for useful comments. S.D., V.D., D.M. and R.G. acknowledge the support by INAF/Frontiera through the “Progetti Premiali” funding scheme of the Italian Ministry of Education, University, and Research, the PRIN-INAF 2019 “Planetary systems at young ages” (PLATEA) and the ASI-INAF agreement n.2018-16-HH.0. AV acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 757561). A.M.L. acknowledges funding from Agence Nationale de la Recherche (France) under contract number ANR-14-CE33-0018. J.C. was supported by SC Space Grant and Fulbright Colombia. M.B. acknowledges funding by the UK Science and Technology Facilities Council (STFC) grant no. ST/M001229.
- Published
- 2021
20. Imagerie des exoplanètes : du système optique à la fréquence des géantes gazeuses
- Author
-
Galicher, Raphaël, Observatoire de Paris, Université Paris sciences et lettres (PSL), Université Paris Diderot - Paris 7 - UFR Physique (UPD7 UFR Physique), Université Paris Diderot - Paris 7 (UPD7), Daniel Rouan(daniel.rouan@obspm.fr), and Galicher, Raphaël
- Subjects
circumstellar disks ,high contrast imaging ,post-processing imaging ,analyseur de surface d'onde ,coronagraph ,haute résolution angulaire ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,adaptive optics ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,wavefront sensor ,[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,optique adaptative ,exoplanets ,imagerie haute dynamique ,coronographie ,traitement d'images ,disques circumstellaires ,exoplanètes ,high angular resolution - Published
- 2020
21. An N-band test bench for the METIS coronagraphic masks
- Author
-
Michel Lortholary, Derek Ives, Salima Mouzali, Olivier Absil, Luc Dumaye, Thierry Orduna, Jean Christophe Barrière, Pascal Gallais, Eric Pantin, Christian Delacroix, Samuel Ronayette, and Mikael Karlsson
- Subjects
Test bench ,business.industry ,Computer science ,Phase mask ,High contrast imaging ,01 natural sciences ,Circumstellar disk ,Exoplanet ,law.invention ,010309 optics ,Telescope ,Phase plate ,law ,0103 physical sciences ,Metis ,Aerospace engineering ,business ,010303 astronomy & astrophysics - Abstract
METIS is one of the first three instruments for the ELT, Europe’s next-generation ground-based telescope. It will offer imaging, coronagraphy and spectroscopy in the L, M and N bands for general-purpose science in astrophysics. Among its main science drivers are circumstellar disks and extrasolar planets observations, which requires demanding high contrast imaging techniques. In that framework, METIS will be equipped with state-of-the-art phase mask coronagraphs: Apodizing Phase Plate (APP) and Annular Grooves Phase Mask (AGPM). Manufacturing the AGPM coronagraphs is a complex process that requires performance assessment with specific testing before implementation into the instrument. At Department of Astrophysics (CEA Saclay, France), responsible for the testing of the N-band AGPMs, a previously available test bench with a telescope simulator and cryogenic facility has been upgraded to comply with the AGPM tests requirements. This paper presents these requirements and describes the test bench design adopted. Then, based on preliminary results, we discuss the original solutions that permitted to reach our goals.
- Published
- 2020
- Full Text
- View/download PDF
22. Focal plane wavefront sensing on SUBARU/SCExAO
- Author
-
Aurélie Montmerle-Bonnefois, Frédéric Cassaing, Nemanja Jovanovic, Laurent M. Mugnier, Alison Wong, Vincent Deo, Frans Snik, Sébastien Vievard, Coline Lopez, Michael J. Wilby, Barnaby Norris, Steven P. Bos, Thayne Currie, Christoph U. Keller, Mamadou N'Diaye, Jean-François Sauvage, Nour Skaf, Frantz Martinache, Olivier Guyon, Masen Lamb, Ananya Sahoo, Kelsey Miller, Julien Lozi, National Astronomical Observatory of Japan (NAOJ), Astrobiology Center of Nins, DTIS, ONERA, Université Paris Saclay [Palaiseau], ONERA-Université Paris-Saclay, California Institute of Technology (CALTECH), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], DOTA, ONERA, Université Paris Saclay [Châtillon], Schreiber, Laura, Schmidt, Dirk, and Vernet, Elise
- Subjects
High contrast imaging ,LOW WIND EFFECT ,FOS: Physical sciences ,01 natural sciences ,010309 optics ,[SPI]Engineering Sciences [physics] ,Optics ,Wind effect ,0103 physical sciences ,Adaptive optics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Focal plane wavefront sensing ,Physics ,Wavefront ,[PHYS]Physics [physics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,business.industry ,CORONOGRAPHY ,Detector ,Spiders ,SCEXAO ,Cardinal point ,CORONAGRAPHY ,Adaptive optics systems ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Focal plane wavefront sensing is an elegant solution for wavefront sensing since near-focal images of any source taken by a detector show distortions in the presence of aberrations. Non-Common Path Aberrations and the Low Wind Effect both have the ability to limit the achievable contrast of the finest coronagraphs coupled with the best extreme adaptive optics systems. To correct for these aberrations, the Subaru Coronagraphic Extreme Adaptive Optics instrument hosts many focal plane wavefront sensors using detectors as close to the science detector as possible. We present seven of them and compare their implementation and efficiency on SCExAO. This work will be critical for wavefront sensing on next generation of extremely large telescopes that might present similar limitations., Comment: SPIE proceeding : Astronomical Telescopes + Instrumentation 2020. arXiv admin note: text overlap with arXiv:1912.10179
- Published
- 2020
- Full Text
- View/download PDF
23. Vers une exploration complète de la population des planètes géantes dans les systèmes planétaires extra solaires
- Author
-
Grandjean, Antoine, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Université Grenoble Alpes [2020-....], and Anne-Marie Lagrange
- Subjects
High contrast imaging ,Imagerie haut contraste ,Formation des systèmes planétaires ,Astrometry ,Radial veocity ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Évolution des systèmes planétaires ,Evolution of planetary systems ,Vitesses radiales - Abstract
The study of the more than 4000 exoplanets known to date allowed to start constraining theoretical models on their formation, migration and dynamical evolution. However, theses models are yet poorly constrained at young ages, because only few young planets were studied to date.A complete study of exoplanets just after their formation must be done for all separations, in order to give constraint on these models.Giant planets are important in this study, because they dynamically dominate their systems and therefore dominate their architecture.The goal of my PhD thesis was to prepare this exhaustive study of the giant planets after their formation for all the separations, by coupling three techniques that are complementary in the separations and in the planets' parameters they probe: the radial velocity method, the direct imaging method and the absolute astrometry method. During my PhD, I have studied the population of young giant planets from individual to statistical scale.First, I carried out a statistical analysis of 177 young stars from three radial velocity surveys with the HARPS instrument of the 3.6m at La Silla Observatory in Chile and with the SOPHIE instrument of the 1.93m at the Observatory of Haute-Provence in France.I computed the occurrence rate of young giant planets for periods lower than 1000 days.Then, I studied several individual systems coupling radial velocity, direct imaging and Hipparcos and Gaia absolute astrometry.To perform these analyzes, I developed a Bayesian analysis code, based on an MCMC, combining the data from these three techniques. These analyzes permit to constrain the dynamic mass of the companions of some of these systems and therefore to test the evolutionary models that are used in direct imaging.Finally, I participated in the improvement of the MESS II tool, which estimates the detection limits, combining radial velocity and direct imaging, so that it takes into account data from Hipparcos and Gaia. This will allow to obtain better detection limits at intermediate separations (2-5 au).; Les plus de 4000 exoplanètes connues à ce jour, ont permis d'apporter des contraintes sur les modèles théoriques de formation, de migration et d'évolution dynamique de ces dernières.Cependant, ces contraintes sont particulièrement limitées aux jeunes âges, par manque d'objets connus.Une étude des exoplanètes juste après leur formation et pour toutes les séparations est nécessaire pour poser des contraintes sur ces modèles. Les planètes géantes sont importantes dans cette étude, car celles-ci dominent dynamiquement leurs systèmes et dominent donc la formation de ces derniers.Le but de ma thèse a été de préparer cette étude exhaustive des planètes géantes juste après leur formation et pour toutes les séparations.Pour cela j'ai combiné trois techniques complémentaires dans les séparations et les paramètres des planètes qu'elles contraignent : la méthode des vitesses radiales, la méthode d'imagerie directe et la méthode d'astrométrie absolue. J'ai ainsi caractérisé la population des planètes jeunes de l'échelle individuelle à l'échelle statistique.J'ai d'abord effectué une analyse statistique de 177 étoiles jeunes, à partir de trois surveys en vitesses radiales menés avec l'instrument HARPS du 3.6m de l'observatoire de La Silla au Chili et l'instrument SOPHIE du 1.93m de l'observatoire de Haute-Provence en France.J'en ai déduit le taux d'occurrence des planètes géantes jeunes pour les périodes inférieures à 1000 jours.Ensuite, j'ai effectué l'analyse dynamique de plusieurs systèmes en combinant vitesses radiales, imagerie directe et astrométrie d'Hipparcos et Gaia. Pour effectuer ces analyses, j'ai élaboré un code d'analyse bayésienne, basé sur un MCMC, combinant les données de ces trois techniques. Ces analyses m'ont permis de contraindre la masse dynamique des compagnons de certains de ces systèmes, permettant ainsi de tester les modèles d'évolutions utilisés en imagerie directe.Enfin, j'ai participé à l'amélioration de l'outil MESS II, qui estime des limites de détection combinant vitesses radiales et imagerie directe, afin qu'il prenne en compte les données d'Hipparcos et Gaia. Cela permettra d'obtenir de meilleures limites de détection aux séparations intermédiaires (2-5 au).
- Published
- 2020
24. Gearing up the SPEED wavefront shaping strategy
- Author
-
Lyu Abe, Guillaume Doyen, Mathilde Beaulieu, Patrice Martinez, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Wavefront ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Aperture ,Computer science ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,High contrast imaging ,01 natural sciences ,Deformable mirror ,law.invention ,010309 optics ,Telescope ,Speckle pattern ,Optics ,law ,0103 physical sciences ,Calibration ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS - Abstract
The SPEED project aims at developing and testing key recipes for high-contrast imaging at small angular separations with unfriendly telescope apertures. SPEED combines optimized segmented aperture coronagraphy, dual-deformable mirrors wavefront control and shaping architecture for creating a dark hole in the scientific image by deformable mirror (DM) actuation. The challenge is to overcome the various fundamental limitations for quasi-static speckle calibration at very small angular separations. We report on the progress made in elaborating an accurate simulated model of our instrument in preparation for the wavefront control and wavefront shaping strategy with a multi-DM setup.
- Published
- 2020
- Full Text
- View/download PDF
25. Optical design and preliminary results of NEW EARTH, first Canadian high-contrast imaging laboratory test bench
- Author
-
Benjamin L. Gerard, Christian Marois, Celia Blain, Qiang Fu, William Thompson, Wolfgang Heidrich, Jean-Pierre Veran, and Olivier Lardière
- Subjects
Wavefront ,Lyot stop ,Cardinal point ,Optics ,business.industry ,Computer science ,Astrophysics::Instrumentation and Methods for Astrophysics ,Context (language use) ,High contrast imaging ,Adaptive optics ,business ,Deformable mirror ,Exoplanet - Abstract
The NEW EARTH Laboratory (NRC Extreme Wavefront control for Exoplanet Adaptive optics Research Topics at Herzberg) has recently been completed at NRC in Victoria. NEW EARTH is the first Canadian test-bed dedicated to high-contrast imaging. The bench optical design allows a wide range of applications that could require turbulent phase screens, segmented pupils, or custom coronagraphic masks. Super-polished off-axis parabolas are implemented to minimize optical aberrations, in addition to a 468-actuator ALPAO deformable mirror and a Shack Hartmann WFS. The laboratory’s immediate goal is to validate the Fast Atmospheric Self-coherent camera Technique (FAST). The first results of this technique obtained in the NEW EARTH laboratory with a Tilt-Gaussian-Vortex focal plane mask, a reflective Lyot stop and Coherent Differential Imaging are encouraging. Future work will be aimed at expanding this technique to broader wavebands in the context of extremely large telescopes and at visible bands for space-based observatories.
- Published
- 2020
- Full Text
- View/download PDF
26. Predicting the future: Predictive control for astronomical adaptive optics
- Author
-
Kooten M.A.M. van, Doelman N., Kenworthy M., Röttgering H., Keller C., Brandl B.R., Witvoet G., Kendrew S., and Leiden University
- Subjects
High contrast imaging ,Astronomy instrumentation ,Non-stationary turbulence ,Adaptive optics - Abstract
The field of exoplanet research is rapidly advancing through the development of new technology, observing techniques, and post-processing methods. In the last 30 years, thousands of exoplanet candidates have been found through various methods. These discoveries have revealed a zoo of exoplanetary systems looking very different from our own Solar System. This dissertation contains two very distinctive parts, both related to the measurement of exoplanetary systems.The first part of this dissertation, Chapter 2, investigates 8 light curves found in the Kepler data archive. These light curves show periodic brightening events that look different from a normal exoplanet signal. The second part of this dissertation, focuses on high-contrast imaging (HCI). Current HCI instruments are more sensitive to exoplanets orbiting far out from their host star. To probe the regions close-in to the star, the extreme adaptive optics (XAO) subsystem needs to improve in performance. Specifically, the XAO does not correct well enough for the continuous evolution of turbulence during the time it takes the XAO to measure the phase and subsequently correct for the aberrations (resulting in the servo-lag error). This dissertation focuses on data-driven predictive control to address the servo-lag error.
- Published
- 2020
27. Comparaison des techniques d’analyse de surface d’onde en plan focal dédiées aux missions spatiales d’imagerie directe et de spectroscopie des planètes extrasolaires
- Author
-
Axel Potier, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres, Anthony Boccaletti, Pierre Baudoz, LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France, Paris Sciences et Lettres, Observatoire de Paris – LESIA, and Raphaël Galicher
- Subjects
High contrast imaging ,Exoplanètes ,Haute Résolution Angulaire ,Imagerie Haut Contraste - Haute Résolution Angulaire - Analyse de Surface d’Onde - Exoplanètes ,Exoplanets ,Imagerie Haut Contraste ,Analyse de Surface d’Onde ,High contrast imaging - High Angular Resolution - Wavefront sensing - Exoplanets ,High Angular Resolution ,Wavefront sensing ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
Understanding the formation, the evolution and the diversity of extrasolar planets is an important purpose in modern astrophysics. More than 4,000 objects have been discovered since the first discovery of an exoplanet orbiting a solar-type star in 1995. Knowledge about atmospheres of these planets is crucial to determine the conditions for the appearance of life. However, it remains unknown while direct imaging technique would be a powerfull technique to study their spectra.Exoplanet imaging is limited by the large contrast and the small distance which exists between exoplanets and stars. Techniques optimized for high-contrast imaging such as coronography are therefore essential. Coronographs attenuate the light of stars without affecting the fait signal of their circumstellar environments. However, atmospheric turbulence, as well as polishing defects, alignment errors and thermal expansions of telescopes which can vary over time still limit their performance. Techniques dedicated to active correction of aberrations relied on deformable mirrors and wavefront sensors will equip future high-contrast imaging facilities such as WFIRST, HaBEX or LUVOIR spacecrafts or the Extremely Large telescopes.The instrument Très Haute Dynamique 2 (THD2) located at Observatoire de Paris/LESIA is a testbed dedicated to such projects. During this PhD, several wavefront sensor and control algorithms, originally developed by different teams in Europe and the United-States, were tested and compared under the same environmental conditions on the THD2. During these tests, the pair-wise sensor combined with an electric field conjugation technique has also demonstrated excellent contrast performance under spatial conditions, without any modification of the instrument optical path. This method was then implemented on the high-contrast VLT/SPHERE instrument in which we performed improvements in contrast of several orders of magnitude with the calibration unit.; Comprendre la formation, l'évolution et la surprenante diversité des planètes extrasolaires est un des grands enjeux de l'astrophysique moderne. En deux décennies, de nombreuses découvertes ont déjà révélé la nature complexe de plus de 4000 objets. Pourtant, on connaît peu de choses sur l'atmosphère de ces planètes alors qu’il s’agit d’un point crucial pour déterminer les conditions d'apparition de la vie ailleurs que sur Terre. L'imagerie directe est une technique appropriée à l'étude spectrale des atmosphères d'exoplanètes similaires à celles du Système Solaire.L'imagerie des exoplanètes est cependant limitée par le très grand contraste et par la proximité entre exoplanètes et étoiles. Des techniques optimisées pour l'imagerie à très haute dynamique telles que la coronographie sont donc indispensables. Les coronographes atténuent la lumière des étoiles sans affecter le signal provenant de leurs environnements proches pour le révéler. Cependant, la turbulence atmosphérique, ainsi que les défauts de polissage, les erreurs d'alignement et les dilatations thermiques des télescopes qui peuvent varier avec le temps limitent encore leurs performances. Des techniques de correction active d'aberrations composées de miroirs déformables et d'analyseurs de front d'onde équiperont alors les futurs instruments haute-dynamiques tels que les projets spatiaux WFIRST, HaBEX ou LUVOIR ou encore les instruments aux foyers des Extremely Large telescopes.L'instrument Très Haute Dynamique 2 (THD2) situé à l'Observatoire de Paris/LESIA est un banc de test dédié à ce type d'activité. Durant cette thèse, plusieurs algorithmes d'analyse et de contrôle du front d'onde développés par différentes équipes en Europe et aux États-Unis ont été testés et comparés dans les mêmes conditions de stabilité sur le THD2. Lors de ces tests, la technique d'analyse pair-wise associée à une technique de conjugaison du champ électrique a d'ailleurs démontré d'excellentes performances en contraste dans des conditions spatiales, sans aucune modification du design optique de l'instrument. Fort de cette expérience, cette méthode a alors été implémentée sur l'instrument haute-dynamique VLT/SPHERE dont les résultats sur source interne laissent entrevoir des améliorations en contraste de plusieurs ordres de grandeur.
- Published
- 2020
28. Carina High-contrast Imaging Project for massive Stars (CHIPS). I. Methodology and proof of concept on QZ Car (HD93206)
- Author
-
J. Bodensteiner, C. A. Gomez-Gonzalez, Sylvestre Lacour, A. Rainot, Leonardo A. Almeida, Kaitlin M. Kratter, J. De Ridder, Laurent Pueyo, Saida M. Caballero-Nieves, Olivier Absil, Philippe Delorme, J.-B. Le Bouquin, Maddalena Reggiani, Valentin Christiaens, Hugues Sana, and Hans Zinnecker
- Subjects
Physics ,Horizon (archaeology) ,010308 nuclear & particles physics ,European research ,FOS: Physical sciences ,Astronomy and Astrophysics ,High contrast imaging ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Public administration ,01 natural sciences ,Early type ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Agency (sociology) ,media_common.cataloged_instance ,Astrophysics::Solar and Stellar Astrophysics ,Science policy ,Astrophysics::Earth and Planetary Astrophysics ,European union ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
Massive stars like company. However, low-mass companions have remained extremely difficult to detect at angular separations ($\rho$) smaller than 1" (~1000-3000 au considering typical distance to nearby massive stars) given the large brightness contrast between the companion and the central star. Constraints on the low-mass end of the companions mass-function for massive stars are however needed, for example to help distinguishing between various scenarios for the formation of massive stars. To obtain statistically significant constraint on the presence of low-mass companions beyond the typical detection limit of current surveys ($\Delta \mathrm{mag} \lesssim 5$ at $\rho \lesssim 1$"), we initiated a survey of O and Wolf-Rayet stars in the Carina region using the SPHERE coronagraphic instrument on the VLT. In this first paper, we aim to introduce the survey, to present the methodology and to demonstrate the capability of SPHERE for massive stars using the multiple system QZ~Car. High-contrast imaging techniques, such as angular- and spectral-differential imaging techniques as well as PSF-fitting, were applied to detect and measure the relative flux of companions in each spectral channel of the instrument. We detected 19 sources around the QZ~Car system with detection limits of 9~mag at $\rho > 200$~mas for IFS and as faint as 13~mag at $\rho$ > 1".8 for IRDIS (corresponding to sub-solar masses for potential companions). All but two are reported here for the first time. Based on this proof of concept, we showed that VLT/SPHERE allows us to reach the sub-solar mass regime of the companion mass function. This paves the way for this type of observation with a large sample of massive stars to provide novel constraints on the multiplicity of massive stars in a region of the parameter space that has remained inaccessible so far., Comment: Submitted and accepted by A&A. 17 pages, 10 figures
- Published
- 2020
29. Quantitative Phase Imaging (QPI) in Neuroscience
- Author
-
Chenfei Hu and Gabriel Popescu
- Subjects
Biological studies ,Computer science ,02 engineering and technology ,Brain tissue ,High contrast imaging ,Atomic and Molecular Physics, and Optics ,Optical pathlength ,Interferometry ,020210 optoelectronics & photonics ,Common path ,Phase imaging ,0202 electrical engineering, electronic engineering, information engineering ,Neural Growth ,Electrical and Electronic Engineering ,Neuroscience - Abstract
Quantitative phase imaging (QPI) is an emerging label-free modality that attracts significant interest in biomedicine in general and neuroscience in particular. Based on the principle of interferometry, QPI precisely maps the optical pathlength induced by the sample, and, thus, can visualize extremely transparent samples. The QPI field has grown rapidly in the past decade, and reliable instruments have been developed for in-depth biological studies. One particular figure of merit associated with QPI techniques describes the temporal phase sensitivity of instruments. Recently, several common path interferometry methods have been developed, which yield high stability and nanometer scale pathlength sensitivity. In neuroscience, QPI has shown unique capabilities in quantifying neural growth and dynamics in cell cultures, as well as high contrast imaging of brain tissue slices. In this paper, we review the principles of QPI, novel QPI technology, advances in data processing, and a number of exciting applications in neuroscience.
- Published
- 2019
- Full Text
- View/download PDF
30. Renal Clearable New NIR Probe: Precise Quantification of Albumin in Biofluids and Fatty Liver Disease State Identification through Tissue Specific High Contrast Imaging in Vivo
- Author
-
Debabrata Ghosh, Subrata Ghosh, Gourab Dey, Prosenjit Mondal, P. Vineeth Daniel, Jayant Dewangan, Vikash Singh, and Mohan Kamthan
- Subjects
02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Analytical Chemistry ,Mice ,Non-alcoholic Fatty Liver Disease ,In vivo ,Albumins ,Microscopy ,medicine ,Animals ,Humans ,Tissue specific ,Fluorescent Dyes ,chemistry.chemical_classification ,Mice, Inbred BALB C ,Microscopy, Confocal ,Spectroscopy, Near-Infrared ,Chemistry ,Biomolecule ,Fatty liver ,Near-infrared spectroscopy ,Albumin ,Hep G2 Cells ,High contrast imaging ,021001 nanoscience & nanotechnology ,medicine.disease ,Body Fluids ,0104 chemical sciences ,RAW 264.7 Cells ,Liver ,Biochemistry ,0210 nano-technology ,Biomedical engineering - Abstract
Development of a highly photostable, renal clearable, and nontoxic new NIR probe (CyG) for precise quantification of albumin in different biofluids and liver targeted in vivo albumin visualization is demonstrated. CyG’s inherent property to interact selectively with albumin among different biomolecules in intracellular environment with high degree of sensitivity helps CyG in targeted liver imaging. In addition to its long excitation/emission wavelengths (λex = 740 nm, λem = 804 nm), which are much above the biological tissue opaque window (400–700 nm) ensuring better photon penetration, diminished tissue autofluorescence and high contrasts, its molecular mass and size are far below the renal cutoff and hence, CyG qualifies as imaging material for clinical studies. We anticipate that CyG will provide new strategies to overcome the pitfall of present day albumin detection methods as well as accelerate the detection process at relatively lower costs without compromising the accuracy of detection. Moreover, t...
- Published
- 2017
- Full Text
- View/download PDF
31. Robustness of prediction for extreme adaptive optics systems under various observing conditions: An analysis using VLT/SPHERE adaptive optics data
- Author
-
Matthew A. Kenworthy, M.A.M. van Kooten, and Niek Doelman
- Subjects
High contrast imaging ,Mean squared error ,Wavefronts ,Signal receivers ,FOS: Physical sciences ,Linear prediction ,Astrophysics ,Residual ,01 natural sciences ,010309 optics ,Robustness (computer science) ,0103 physical sciences ,Linear minimum mean square errors ,Adaptive optics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Wavefront ,Physics ,Minimum mean square error ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Mean square error ,Turbomachinery ,Extreme adaptive optics ,Spatial informations ,Space and Planetary Science ,Frozen flow hypothesis ,Performance metrices ,Turbulence conditions ,Adaptive optics systems ,Astrophysics - Instrumentation and Methods for Astrophysics ,Algorithm ,Performance metric ,Forecasting - Abstract
Context. For high-contrast imaging systems, such as VLT/SPHERE, the performance of the system at small angular separations is contaminated by the wind-driven halo in the science image. This halo is a result of the servo-lag error in the adaptive optics (AO) system due to the finite time between measuring the wavefront phase and applying the phase correction. One approach to mitigating the servo-lag error is predictive control. Aims. We aim to estimate and understand the potential on-sky performance that linear data-driven prediction would provide for VLT/SPHERE under various turbulence conditions. Methods. We used a linear minimum mean square error predictor and applied it to 27 different AO telemetry data sets from VLT/SPHERE taken over many nights under various turbulence conditions. We evaluated the performance of the predictor using residual wavefront phase variance as a performance metric. Results. We show that prediction always results in a reduction in the temporal wavefront phase variance compared to the current VLT/SPHERE AO performance. We find an average improvement factor of 5.1 in phase variance for prediction compared to the VLT/SPHERE residuals. When comparing to an idealised VLT/SPHERE, we find an improvement factor of 2.0. Under our 27 different cases, we find the predictor results in a smaller spread of the residual temporal phase variance. Finally, we show there is no benefit to including spatial information in the predictor in contrast to what might have been expected from the frozen flow hypothesis. A purely temporal predictor is best suited for AO on VLT/SPHERE. Conclusions. Linear prediction leads to a significant reduction in phase variance for VLT/SPHERE under a variety of observing conditions and reduces the servo-lag error. Furthermore, prediction improves the reliability of the AO system performance, making it less sensitive to different conditions.
- Published
- 2020
32. orbitize!: a comprehensive orbit-fitting software package for the high-contrast imaging community
- Author
-
Sarah Blunt, Vighnesh Nagpal, Roberto Tejada, Jason J. Wang, Malena Rice, Henry Ngo, James R. Graham, Isabel Angelo, Robert J. De Rosa, Eric L. Nielsen, Lea A. Hirsch, Devin Cody, and Logan A. Pearce
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Source lines of code ,010504 meteorology & atmospheric sciences ,Programming language ,Computer science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Markov chain Monte Carlo ,High contrast imaging ,Python (programming language) ,computer.software_genre ,Software package ,01 natural sciences ,symbols.namesake ,Documentation ,Space and Planetary Science ,0103 physical sciences ,Central repository ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,computer ,0105 earth and related environmental sciences ,computer.programming_language ,Astrophysics - Earth and Planetary Astrophysics - Abstract
orbitize! is an open-source, object-oriented software package for fitting the orbits of directly-imaged objects. It packages the Orbits for the Impatient (OFTI) algorithm and a parallel-tempered Markov Chain Monte Carlo (MCMC) algorithm into a consistent and intuitive Python API. orbitize! makes it easy to run standard astrometric orbit fits; in less than 10 lines of code, users can read in data, perform one fit using OFTI and another using MCMC, and make two publication-ready figures. Extensive pedagogical tutorials, intended to be navigable by both orbit-fitting novices and seasoned experts, are available on our documentation page. We have designed the orbitize! API to be flexible and easy to use/modify for unique cases. orbitize! was designed by members of the exoplanet imaging community to be a central repository for algorithms, techniques, and know-how developed by this community. We intend for it to continue to expand and change as the field progresses and new techniques are developed, and call for community involvement in this process. Complete and up-to-date documentation is available at orbitize.info., Comment: 9 pages, 4 figures. Submitted to AAS Journals
- Published
- 2020
33. High-contrast imaging of massive stars: the example of QZ Car
- Author
-
Maddalena Reggiani, Hugues Sana, and A. Rainot
- Subjects
Physics ,Stars ,Science & Technology ,massive [stars] ,formation [stars] ,Physical Sciences ,binaries [stars] ,Astronomy and Astrophysics ,High contrast imaging ,Astrophysics ,Astronomy & Astrophysics - Abstract
ispartof: CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO vol:50 issue:2 pages:590-593 status: published
- Published
- 2020
34. Imaging atomizing sprays with high visibility using two-photon fluorescence laser sheet imaging
- Author
-
Berrocal, E., Conrad, C., Miranda, M., Püls, J., Arnold, C., Wensing, M., and Linne, M.
- Subjects
High contrast imaging ,Multiple light scattering ,Accelerator Physics and Instrumentation ,2-photon fluorescence - Abstract
Two-photon excitation laser induced fluorescence (2p-LIF) is used here for imaging through an optically dense spray system. The main advantage of the approach is that a low level of unwanted fluorescence signal originating from multiple-light scattering is generated. This leads to high visibility and image contrast even through scattering media, thus providing faithful descriptions of the imaged fluid structures. While 2p-LIF imaging is a well-known point measurement approach in the field of life science microscopy [1], it has, to the best of the authors' knowledge, never been tested for observing atomizing sprays. We take advantage of this process here, at a macroscopic scale, by imaging a light sheet of ~1cm height. To generate enough 2p-LIF signal at such large scale and for single-shot detection, ultra-short laser pulses of high pulse energy are needed. This is obtained by using a laser system providing 25 fs pulses centered at 800 nm wavelength and having 2.5 mJ pulse energy. The technique is demonstrated by imaging a single spray plume from a 6 hole commercial Gasoline Direct Injection (GDI) system running at 200 bar injection pressure. The injected liquid is water mixed with Fluorescein dye. We show the important image contrast improvement of 2p-LIF light sheet imaging in comparison with the traditional shadowgraphy, laser sheet Mie scattering and back-fluorescence imaging. The proposed approach is very promising as a future imaging tool for detailed analysis of the dynamics of atomizing spray in the spray formation region.
- Published
- 2020
35. Robustness of prediction for extreme adaptive optics systems under various observing conditions: an analysis using VLT/SPHERE adaptive optics data
- Subjects
High contrast imaging ,Wavefronts ,Signal receivers ,Astrophysics::Instrumentation and Methods for Astrophysics ,Mean square error ,Turbomachinery ,Extreme adaptive optics ,Spatial informations ,Frozen flow hypothesis ,Performance metrices ,Linear minimum mean square errors ,Turbulence conditions ,Adaptive optics systems ,Forecasting - Abstract
For high-contrast imaging systems, such as VLT/SPHERE, the performance of the system at small angular separations is contaminated by the wind-driven halo in the science image. This halo is a result of the servo-lag error in the adaptive optics (AO) system due to the finite time between measuring the wavefront phase and applying the phase correction. One approach to mitigating the servo-lag error is predictive control. Aims. We aim to estimate and understand the potential on-sky performance that linear data-driven prediction would provide for VLT/SPHERE under various turbulence conditions. Methods. We used a linear minimum mean square error predictor and applied it to 27 different AO telemetry data sets from VLT/SPHERE taken over many nights under various turbulence conditions. We evaluated the performance of the predictor using residual wavefront phase variance as a performance metric. Results. We show that prediction always results in a reduction in the temporal wavefront phase variance compared to the current VLT/SPHERE AO performance. We find an average improvement factor of 5.1 in phase variance for prediction compared to the VLT/SPHERE residuals. When comparing to an idealised VLT/SPHERE, we find an improvement factor of 2.0. Under our 27 different cases, we find the predictor results in a smaller spread of the residual temporal phase variance. Finally, we show there is no benefit to including spatial information in the predictor in contrast to what might have been expected from the frozen flow hypothesis. A purely temporal predictor is best suited for AO on VLT/SPHERE. Conclusions. Linear prediction leads to a significant reduction in phase variance for VLT/SPHERE under a variety of observing conditions and reduces the servo-lag error. Furthermore, prediction improves the reliability of the AO system performance, making it less sensitive to different conditions.
- Published
- 2020
36. DNN Beamforming for High Contrast Targets in the Presence of Reverberation Clutter
- Author
-
Brett Byram and Adam Luchies
- Subjects
Beamforming ,Physics ,High contrast ,Reverberation ,Training set ,Dynamic range ,Acoustics ,High contrast imaging ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,Clutter ,Contrast ratio ,010301 acoustics - Abstract
We evaluated training deep neural network (DNN) beamformers for the task of high contrast imaging in the presence of reverberation clutter. Training data was generated using simulated hypoechoic cysts and a pseudo nonlinear method for generating reverberation clutter. Performance was compared to standard delay-and-sum (DAS) beamforming on simulated hypoechoic cysts having a different size. For a hypoechoic cyst in the presence of reverberation clutter, when the intrinsic contrast ratio (CR) was -10 dB and -20 dB, the measured CR for DAS beamforming was -9.2±0.8 dB and -14.3±0.5 dB, respectively, and the measured CR for DNNs was -10.7±1.4 dB and -20.0±1.0 dB, respectively. For a hypoechoic cyst with -20 dB intrinsic CR, the contrast-to-noise ratio (CNR) was 3.4±0.3 dB and 4.3±0.3 dB for DAS and DNN beamforming, respectively. These results show that DNN beamforming was able to extend contrast ratio dynamic range (CRDR) by about 10 dB while also improving CNR.
- Published
- 2019
- Full Text
- View/download PDF
37. Development of Fluorogenic Probes for Rapid High-Contrast Imaging of Transient Nuclear Localization of Sirtuin 3
- Author
-
Kazuya Kikuchi, Yuichiro Hori, Mathieu Bordy, Jens Hasserodt, Takashi Shimomura, and Jingchi Gao
- Subjects
SIRT3 ,Biosensing Techniques ,010402 general chemistry ,Photoreceptors, Microbial ,01 natural sciences ,Biochemistry ,Fluorescence ,chemistry.chemical_compound ,Reaction rate constant ,Bacterial Proteins ,Coumarins ,Sirtuin 3 ,Humans ,Molecular Biology ,Fluorescent Dyes ,Cell Nucleus ,biology ,010405 organic chemistry ,Chemistry ,Organic Chemistry ,High contrast imaging ,Ligand (biochemistry) ,Coumarin ,0104 chemical sciences ,Mitochondria ,Sirtuin ,biology.protein ,Biophysics ,Molecular Medicine ,Single-Cell Analysis ,Nuclear localization sequence ,HeLa Cells - Abstract
Protein labeling using fluorogenic probes enables the facile visualization of proteins of interest. Herein, we report new fluorogenic probes consisting of a rationally designed coumarin ligand for the live-cell fluorogenic labeling of the photoactive yellow protein (PYP)-tag. On the basis of the photochemical mechanisms of coumarin and the probe-tag interactions, we introduced a hydroxy group into an environment-sensitive coumarin ligand to modulate its spectroscopic properties and increase the labeling reaction rate. The resulting probe had a higher labeling reaction rate constant and a greater fluorescence OFF-ON ratio than any previously developed PYP-tag labeling probe. The probe enabled the fluorogenic labeling of intracellular proteins within minutes. Furthermore, we used our probe to investigate the localization of sirtuin 3 (SIRT3), a mitochondrial deacetylase. Although the nuclear localization of SIRT3 has been controversial, this transient nuclear localization was clearly captured by the rapid, high-contrast imaging enabled by our probe.
- Published
- 2019
38. Shaped pupil coronagraph design for Subaru high-contrast imaging with reduction of the inner working angle for earth-like planet detection
- Author
-
Jessica Gersh-Range, Joane F. Joseph, N. Jeremy Kasdin, Robert J. Vanderbei, Christian Delacroix, and Thayne Currie
- Subjects
Physics ,Reduction (complexity) ,Optics ,business.industry ,law ,Planet ,High contrast imaging ,business ,Coronagraph ,Earth (classical element) ,Pupil ,law.invention - Published
- 2019
- Full Text
- View/download PDF
39. Impact of time-variant turbulence behavior on prediction for adaptive optics systems
- Author
-
Maaike van Kooten, Matthew A. Kenworthy, and Niek Doelman
- Subjects
Infrared devices ,Atmospheric turbulence effects ,High contrast imaging ,Mean squared error ,Wavefronts ,Stochastic modelling ,Time varying behavior ,Signal receivers ,FOS: Physical sciences ,Atmospheric disturbance ,High Tech Systems & Materials ,Atmospheric thermodynamics ,01 natural sciences ,Optimal performance ,Wind speed ,010309 optics ,Optics ,Control theory ,Linear minimum mean square errors ,0103 physical sciences ,Adaptive optics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics::Atmospheric and Oceanic Physics ,Mathematics ,Wavefront ,Stochastic systems ,Industrial Innovation ,Minimum mean square error ,business.industry ,Spectral density ,Mean square error ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Stochastic models ,Extreme adaptive optics ,Adaptive optics systems ,Computer Vision and Pattern Recognition ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Time delay ,Forecasting - Abstract
For high contrast imaging systems, the time delay is one of the major limiting factors for the performance of the extreme adaptive optics (AO) sub-system and, in turn, the final contrast. The time delay is due to the finite time needed to measure the incoming disturbance and then apply the correction. By predicting the behavior of the atmospheric disturbance over the time delay we can in principle achieve a better AO performance. Atmospheric turbulence parameters which determine the wavefront phase fluctuations have time-varying behavior. We present a stochastic model for wind speed and model time-variant atmospheric turbulence effects using varying wind speed. We test a low-order, data-driven predictor, the linear minimum mean square error predictor, for a near-infrared AO system under varying conditions. Our results show varying wind can have a significant impact on the performance of wavefront prediction, preventing it from reaching optimal performance. The impact depends on the strength of the wind fluctuations with the greatest loss in expected performance being for high wind speeds., 10 pages, 8 figures; Accepted to JOSA A March 2019
- Published
- 2019
40. Visible and Near-infrared Laboratory Demonstration of a Simplified Pyramid Wavefront Sensor
- Author
-
Shane Jacobson, Olivier Guyon, Frantz Martinache, Julien Lozi, Nemanja Jovanovic, Mark Chun, Sean Goebel, National Astronomical Observatory of Japan (NAOJ), Département Sciences de la Fabrication et Logistique (SFL-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-CMP-GC, Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Engineering ,010504 meteorology & atmospheric sciences ,business.industry ,FOS: Physical sciences ,Astronomy and Astrophysics ,High contrast imaging ,Wavefront sensor ,01 natural sciences ,Astronomical instrumentation ,Contingency Fund ,Space and Planetary Science ,0103 physical sciences ,Pyramid ,Astrophysics - Instrumentation and Methods for Astrophysics ,Adaptive optics ,Subaru Telescope ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Wavefront sensing and control are important for enabling one of the key advantages of using large apertures, namely higher angular resolutions. Pyramid wavefront sensors are becoming commonplace in new instrument designs owing to their superior sensitivity. However, one remaining roadblock to their widespread use is the fabrication of the pyramidal optic. This complex optic is challenging to fabricate due to the pyramid tip, where four planes need to intersect in a single point. Thus far, only a handful of these have been produced due to the low yields and long lead times. To address this, we present an alternative implementation of the pyramid wavefront sensor that relies on two roof prisms instead. Such prisms are easy and inexpensive to source. We demonstrate the successful operation of the roof prism pyramid wavefront sensor on a 8-m class telescope, at visible and near infrared wavelengths ---for the first time using a SAPHIRA HgCdTe detector without modulation for a laboratory demonstration---, and elucidate how this sensor can be used more widely on wavefront control test benches and instruments., Comment: Accepted for publication in PASP, 7 pages, 9 figures, 1 table
- Published
- 2019
- Full Text
- View/download PDF
41. ADI.jl: A Julia Package for High-Contrast Imaging
- Author
-
Michael Bottom and Miles Lucas
- Subjects
Physics ,Optics ,business.industry ,Direct imaging ,Image processing ,High contrast imaging ,business - Published
- 2020
- Full Text
- View/download PDF
42. SCExAO/CHARIS High-contrast Imaging of Spirals and Darkening Features in the HD 34700 A Protoplanetary Disk
- Author
-
Jeremy Kasdin, Tyler D. Groff, Thayne Currie, Masahiko Hayashi, Taichi Uyama, Takayuki Muto, John P. Wisniewski, Nemanja Jovanovic, Motohide Tamura, Yi Yang, Michael L. Sitko, Valentin Christiaens, Julien Lozi, Olivier Guyon, Sanemichi Z. Takahashi, Frantz Martinache, Jeffrey Chilcote, Carol A. Grady, Timothy D. Brandt, Charles A. Beichman, Marie Ygouf, Michihiro Takami, Eiji Akiyama, Kevin Wagner, Tomoyuki Kudo, Michael W. McElwain, Jungmi Kwon, Jaehan Bae, Gillian R. Knapp, Ryo Tazaki, Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France, The University of Tokyo (UTokyo), National Astronomical Observatory of Japan (NAOJ), Space Sciences, Technologies and Astrophysics Research Institute (STAR), Université de Liège, Carnegie Institution for Science, NASA ExoPlanet Science Institute (NExScI), California Institute of Technology (CALTECH), Princeton University, NASA, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, Department of Earth System Science and Technology [Fukuoka] (ESST), Kyushu University [Fukuoka], and National Astronomical Observatory of Japan, Subaru Telescope, 650 North A‘ohoku Place, Hilo, HI 96720, United States
- Subjects
010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Protoplanetary disk ,Ring (chemistry) ,01 natural sciences ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Surface brightness ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Spiral ,0105 earth and related environmental sciences ,Envelope (waves) ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Astronomy and Astrophysics ,Scale height ,High contrast imaging ,Position angle ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present Subaru/SCExAO+CHARIS broadband ($JHK$-band) integral field spectroscopy of HD 34700 A. CHARIS data recover HD 34700 A's disk ring and confirm multiple spirals discovered in Monnier et al. (2019). We set limits on substellar companions of $\sim12\ M_{\rm Jup}$ at $0\farcs3$ (in the ring gap) and $\sim5\ M_{\rm Jup}$ at $0\farcs75$ (outside the ring). The data reveal darkening effects on the ring and spiral, although we do not identify the origin of each feature such as shadows or physical features related to the outer spirals. Geometric albedoes converted from the surface brightness suggests a higher scale height and/or prominently abundant sub-micron dust at position angle between $\sim45^\circ$ and $90^\circ$. Spiral fitting resulted in very large pitch angles ($\sim30-50^\circ$) and a stellar flyby of HD 34700 B or infall from a possible envelope is perhaps a reasonable scenario to explain the large pitch angles., 17 pages, 14 figures, accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
43. Crosslinking catalytic hairpin assembly for high-contrast imaging of multiple mRNAs in living cells
- Author
-
Li-Juan Tang, Jian-Hui Jiang, Zhi-Mei Huang, Du-Juan Huang, Ting Cao, and Zhenkun Wu
- Subjects
Cell Survival ,Biosensing Techniques ,010402 general chemistry ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Optical imaging ,Cell Line, Tumor ,Materials Chemistry ,Humans ,RNA, Messenger ,Gene ,Cell survival ,010405 organic chemistry ,Chemistry ,Optical Imaging ,Metals and Alloys ,RNA ,General Chemistry ,High contrast imaging ,DNA ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Nanostructures ,Cross-Linking Reagents ,Cell culture ,Ceramics and Composites ,Biophysics - Abstract
A novel DNA nanotetrad mediated crosslinking catalytic hairpin assembly (CCHA) is reported to generate clumps of cross-linked mesh products for high-contrast and simultaneous imaging of multiple mRNAs in living cells.
- Published
- 2019
44. High-contrast imaging of magnetic domains by magneto-optical Kerr effect using plasmon filters
- Author
-
Takumi Hasegawa, Kenta Takagi, Mizue Mizoshiri, and Kimihiro Ozaki
- Subjects
Materials science ,Magneto-optic Kerr effect ,Magnetic domain ,business.industry ,Optoelectronics ,High contrast imaging ,business ,Plasmon - Published
- 2019
- Full Text
- View/download PDF
45. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis
- Author
-
Theo Lasser, Lorna Hodgson, Paul Verkade, Marco Raabe, Tanja Weil, Katharina Landfester, Judith Mantell, Ingo Lieberwirth, and Shen Han
- Subjects
Letter ,particle-cell interactions ,Nanoparticle ,Contrast Media ,nanodiamond ,Cell analysis ,02 engineering and technology ,localization ,law.invention ,law ,energy filtered transmission electron microscopy ,Microscopy ,General Materials Science ,Nanodiamond ,Instrumentation ,0303 health sciences ,Vesicle ,High contrast imaging ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Fluorescence ,nanoparticle quantification ,Cell Tracking ,Drug delivery ,delivery ,0210 nano-technology ,Correlative ,Materials science ,Bioengineering ,Nanotechnology ,Electrons ,Nanodiamonds ,03 medical and health sciences ,protein corona ,Energy filtered transmission electron microscopy ,Humans ,fluorescent nanodiamonds ,030304 developmental biology ,Fluorescent Dyes ,Organelles ,Mechanical Engineering ,Correlative light-electron microscopy ,General Chemistry ,energy-filtered transmission electron microscopy ,Nanostructures ,Microscopy, Electron ,Biophysics ,Correlative light electron microscopy ,Electron microscope ,probes ,Energy (signal processing) ,HeLa Cells - Abstract
Fluorescent nanodiamonds (fNDs) represent an emerging class of nanomaterials offering great opportunities for ultrahigh resolution imaging, sensing and drug delivery applications. Their biocompatibility, exceptional chemical and consistent photostability renders them particularly attractive for correlative light-electron microscopy studies providing unique insights into nanoparticle-cell interactions. Herein, we demonstrate a stringent procedure to image and quantify fNDs with a high contrast down to the single particle level in cells. Individual fNDs were directly visualized by energy-filtered transmission electron microscopy, that is, inside newly forming, early endosomal vesicles during their cellular uptake processes as well as inside cellular organelles such as a mitochondrion. Furthermore, we demonstrate the unequivocal identification, localization, and quantification of individual fNDs in larger fND clusters inside intracellular vesicles. Our studies are of great relevance to obtain quantitative information on nanoparticle trafficking and their various interactions with cells, membranes, and organelles, which will be crucial to design-improved sensors, imaging probes, and nanotherapeutics based on quantitative data.
- Published
- 2019
- Full Text
- View/download PDF
46. Impact of time-variant turbulence behavior on prediction for adaptive optics systems
- Subjects
Infrared devices ,Atmospheric turbulence effects ,High contrast imaging ,Stochastic systems ,Industrial Innovation ,Wavefronts ,Time varying behavior ,Signal receivers ,Atmospheric disturbance ,Mean square error ,High Tech Systems & Materials ,Atmospheric thermodynamics ,Optimal performance ,Stochastic models ,Extreme adaptive optics ,Linear minimum mean square errors ,Adaptive optics systems ,Time delay ,Forecasting - Abstract
For high-contrast imaging systems, the time delay is one of the major limiting factors for the performance of the extreme adaptive optics (AO) sub-system and, in turn, the final contrast. The time delay is due to the finite time needed to measure the incoming disturbance and then apply the correction. By predicting the behavior of the atmospheric disturbance over the time delay we can in principle achieve a better AO performance. Atmospheric turbulence parameters, which determine wavefront phase fluctuations, have time-varying behavior. We present a stochastic model for wind speed and model time-variant atmospheric turbulence effects using varying wind speeds. We test a low-order, data-driven predictor, the linear minimum mean square error predictor, for a near-infrared AO system under varying conditions. Our results show varying wind can have a significant impact on the performance of wavefront prediction, preventing it from reaching optimal performance. The impact depends on the strength of wind fluctuations with the greatest loss in expected performance being for high wind speeds.
- Published
- 2019
47. High-contrast Imaging Study on the Candidate Companions Around the Star AH Lep
- Author
-
Wolfgang Brandner, Valentina D'Orazi, Thomas Henning, R. Gratton, Gael Chauvin, Markus Feldt, Arthur Vigan, Matthias Samland, Maud Langlois, Joshua E. Schlieder, Miriam Keppler, Anne-Lise Maire, Dino Mesa, Faustine Cantalloube, Silvano Desidera, Samantha B. Brown Sevilla, A. Boccaletti, T. Schmidt, A. M. Lagrange, Michael Meyer, and Mickael Bonnefoy
- Subjects
Physics ,General Medicine ,High contrast imaging ,Astrophysics ,Star (graph theory) - Abstract
AH Lep (R.A._(J2000) = 05 34 09.16, decl._(J2000) = −15 17 03.18) is a young, nearby, solar-type star (G2V). Gaia DR2 and BANYAN Sigma provide a 99.9% probability of the star belonging to the Columba moving group (Zuckerman et al. 2011), yielding an estimated age of 42^(+6)_(-4) Myr (Bell et al. 2015). It has a parallax of p = 17.26 mas, corresponding to a distance of d = 57.9 pc (Gaia Collaboration et al. 2018). The star has been reported to have variable photospheric and X-ray emission (e.g., Burleigh et al. 1998; Cutispoto et al. 2003).
- Published
- 2019
48. VLT/SPHERE Multiwavelength High-contrast Imaging of the HD 115600 Debris Disk: New Constraints on the Dust Geometry and the Presence of Young Giant Planets
- Author
-
Mickael Bonnefoy, A. Gibbs, Attila Moór, Carey M. Lisse, Thayne Currie, Maud Langlois, Daniel Apai, Kevin Wagner, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,planets and satellites: detection ,Debris disk ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,High contrast imaging ,Planetary system ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Planet ,planetary systems ,planet–disk interactions ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Young and dynamically active planetary systems can form disks of debris that are easier to image than the planets themselves. The morphology and evolution of these disks can help to infer the properties of the putative planets responsible for generating and shaping the debris structures. We present integral field spectroscopy and dual-band imaging from VLT/SPHERE ($1.0 - 1.7 \mu m$) of the debris disk around the young F2V/F3V star HD 115600. We aim to 1) characterize the geometry and composition of the debris ring, 2) search for thermal emission of young giant planets, and 3) in the absence of detected planets, to refine the inferred properties of plausible planets around HD 115600 to prepare future attempts to detect them. Using a different dust scattering model (ZODIPIC) than in the discovery paper (Henyey-Greenstein) to model the disk geometry, we find $a_0 = 46 \pm 2$ au for the disk's central radius and offsets $\Delta \alpha$, $\Delta \delta$ = $ -1.0 \pm 0.5, 0.5 \pm 0.5$ au. This offset is smaller than previously found, suggesting that unseen planets of lower masses could be sculpting the disk. Spectroscopy of the disk in Y-J bands with SPHERE shows reddish color, which becomes neutral or slightly blue in H band seen with GPI, broadly consistent with a mixed bulk disk composition of processed organics and water ice. While our observed field contains numerous background objects at wide separations, no exoplanet has been directly observed to a mass sensitivity limit of $2-3(5-7) M_{\rm J}$ between a projected separation of 40 and 200 au for hot (cold)-start models., Comment: 7 figures
- Published
- 2019
- Full Text
- View/download PDF
49. Exoplanetary systems study with MICADO
- Author
-
Baudoz, P., Huby, E., Clénet, Y., Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
high contrast imaging ,[SDU]Sciences of the Universe [physics] ,coronagraph ,Astrophysics::Instrumentation and Methods for Astrophysics ,exoplanet ,Astrophysics::Earth and Planetary Astrophysics ,MICADO - Abstract
International audience; The observation and characterization of the exoplanets and planetary architectures are crucial to broaden and complete our vision of the formation and evolution of planetary systems but also of the physics of the atmospheres of the exoplanets. In this context, MICADO, the European Extremely Large Telescope first-light imager will be equipped with an imaging mode dedicated to exoplanets and a long slit spectroscopy mode (R = 20 000) with an unbeaten sensitivity. The 5-fold increase in the angular resolution between the current instruments like SPHERE or GPI and MICADO will allow a quantitative and qualitative jump on the study of these planetary systems. Among the promising scientific cases: the characterization of exoplanets in synergy with GAIA and radial velocity surveys (eg SPIRou), the study of disk-planet interactions, the high-resolution study of exoplanetary atmospheres.
- Published
- 2019
50. Overview of focal plane wavefront sensors to correct for the Low Wind Effect on SUBARU/SCExAO
- Author
-
Vievard, Sébastien, Bos, Steven, Cassaing, Frédéric, Ceau, Alban, Guyon, Olivier, Jovanovic, Nemanja, Keller, Christoph, Lozi, Julien, Martinache, Frantz, Mary, David, Montmerle-Bonnefois, Aurélie, Mugnier, Laurent, N'diaye, Mamadou, Norris, Barnaby, Sahoo, Ananya, Sauvage, Jean-François, Snik, Frans, Wilby, Michael, Wong, Alison, Guilissen, Gaëlle, National Astronomical Observatory of Japan (NAOJ), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), National Institutes of Natural Sciences [Tokyo] (NINS), Leiden University, DOTA, ONERA, Université Paris Saclay (COmUE) [Châtillon], ONERA-Université Paris Saclay (COmUE), Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA), Wyant College of Optical Sciences [University of Arizona], University of Arizona, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), California Institute of Technology (CALTECH), and The University of Sydney
- Subjects
[PHYS]Physics [physics] ,High contrast imaging ,SCExAO ,[SPI]Engineering Sciences [physics] ,[SPI] Engineering Sciences [physics] ,Low Wind Effect ,Coronography ,Spiders ,Focal plane wavefront sensing ,[PHYS] Physics [physics] - Abstract
International audience; The Low Wind Effect (LWE) refers to a phenomenon that occurs when the wind speed inside a telescope dome drops below 3m/s creating a temperature gradient near the telescope spider. This produces phase discontinuities in the pupil plane that are not detected by traditional Adaptive Optics (AO) systems such as the pyramid wavefront sensor or the Shack-Hartmann. Considering the pupil as divided in 4 quadrants by regular spiders, the phase discontinuities correspond to piston, tip and tilt aberrations in each quadrant of the pupil. Uncorrected, it strongly decreases the ability of high contrast imaging instruments utilizing coronagraphy to detect exoplanets at small angular separations. Multiple focal plane wavefront sensors are currently being developed and tested on the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument at Subaru Telescope: Among them, the Zernike Asymmetric Pupil (ZAP) wavefront sensor already showed on-sky that it could measure the LWE induced aberrations in focal plane images. The Fast and Furious algorithm, using previous deformable mirror commands as temporal phase diversity, showed in simulations its efficiency to improve the wavefront quality in the presence of LWE. A Neural Network algorithm trained with SCExAO telemetry showed promising PSF prediction on-sky. The Linearized Analytic Phase Diversity (LAPD) algorithm is a solution for multi-aperture cophasing and is studied to correct for the LWE aberrations by considering the Subaru Telescope as a 4 sub-aperture instrument. We present the different algorithms, show the latest results and compare their implementation on SCExAO/SUBARU as real-time wavefront sensors for the LWE compensation.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.