1. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle
- Author
-
Hendriks, Frank C., Mohammadian, Sajjad, Ristanovic, Zoran, Kalirai, Samanbir, Meirer, Florian, Vogt, Eelco T. C., Bruijnincx, Pieter C. A., Gerritsen, Hans, Weckhuysen, Bert M., Sub Inorganic Chemistry and Catalysis, Sub Molecular Biophysics, Inorganic Chemistry and Catalysis, Sub Inorganic Chemistry and Catalysis, Sub Molecular Biophysics, and Inorganic Chemistry and Catalysis
- Subjects
Materials science ,zeolites ,010402 general chemistry ,01 natural sciences ,Catalysis ,Nanomaterials ,Microscopy ,single-molecule microscopy ,Reactivity (chemistry) ,Zeolite ,Heterogeneous Catalysis | Very Important Paper ,electron microscopy ,010405 organic chemistry ,Communication ,General Medicine ,General Chemistry ,Single-molecule experiment ,Communications ,0104 chemical sciences ,Amorphous solid ,Crystallography ,heterogeneous catalysis ,Chemical engineering ,Transmission electron microscopy ,Particle ,structure–activity relationships - Abstract
Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single‐molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a single FCC catalyst particle using this novel SMF‐TEM high‐resolution combination. High reactivity in a thiophene oligomerization probe reaction correlated well with TEM‐derived zeolite locations, while matrix components, such as clay and amorphous binder material, were found not to display activity. Differences in fluorescence intensity were also observed within and between distinct zeolite aggregate domains, indicating that not all zeolite domains are equally active.
- Published
- 2017
- Full Text
- View/download PDF