94 results on '"Giuseppe Ambrosino"'
Search Results
2. Custom-Made Implants in Ankle Bone Loss: A Retrospective Assessment of Reconstruction/Arthrodesis in Sequelae of Septic Non-Union of the Tibial Pilon
- Author
-
Silvio Caravelli, Giuseppe Ambrosino, Emanuele Vocale, Marco Di Ponte, Giulia Puccetti, Carlo Perisano, Tommaso Greco, Vito Gaetano Rinaldi, Giulio Maria Marcheggiani Muccioli, Stefano Zaffagnini, Massimiliano Mosca, Caravelli, Silvio, Ambrosino, Giuseppe, Vocale, Emanuele, Di Ponte, Marco, Puccetti, Giulia, Perisano, Carlo, Greco, Tommaso, Rinaldi, Vito Gaetano, Marcheggiani Muccioli, Giulio Maria, Zaffagnini, Stefano, and Mosca, Massimiliano
- Subjects
Arthrodesis ,Osteomyelitis ,General Medicine ,3D printing ,Ankle Fractures ,arthrodesi ,Tibial Fractures ,ankle ,Disease Progression ,custom-made ,Humans ,osteomyeliti ,osteomyelitis ,tibia ,arthrodesis ,Retrospective Studies - Abstract
Background and Objectives: Treating segmental tibial and ankle bone loss after radical surgery for chronic osteomyelitis is one of the most challenging problems encountered by orthopaedic surgeons. Open tibia and ankle fractures occur with an incidence of 3.4 per 100,000 and 1.6 per 100,000, respectively, and there is a high propensity of developing fracture-related infection with associated chronic osteomyelitis in patients. Segmental tibial and ankle bone loss have recently received new and improved treatments. Materials and Methods: Above all, 3D printing allows for the customization of implants based on the anatomy of each patient, using a personalized process through the layer-by-layer deposition of materials. Results: This article presents different cases from the authors’ experience. Specifically, four patients suffered tibia and ankle fractures and after radical surgery for chronic osteomyelitis combined with high-performance antibiotic therapy underwent ankle reconstruction/arthrodesis with custom-made tibial spacers. Conclusions: Thanks to 3D-printed patient-specific devices, it is possible to perform surgical procedures that, for anatomical reasons, would have been impossible otherwise. Moreover, an improvement in overall functionality and an important reduction in pain were shown in the last follow-up in all patients.
- Published
- 2022
3. Preliminary exception handling analysis for the ITER plasma control system
- Author
-
C. J. Rapson, Alfredo Pironti, P. Moreau, W. Treutterer, Sylvain Brémond, P. de Vries, M.L. Walker, A. Winter, G. Pautasso, Giuseppe Ambrosino, F. Rimini, Massimiliano Mattei, Gerhard Raupp, D.A. Humphreys, Joseph Snipes, Rémy Nouailletas, R. Felton, Marcello Cinque, G. De Tommasi, Raupp, G., Pautasso, G., Rapson, C., Treutterer, W., Snipes, J., de Vries, P., Winter, A., Humphreys, D., Walker, M., Ambrosino, G., Cinque, M., de Tommasi, G., Mattei, M., Pironti, A., Bremond, S., Moreau, P., Nouailletas, R., Felton, R., Rimini, F., and Vries, P. de
- Subjects
ITER control system ,Tokamak ,Mechanical Engineering ,Exception handling ,Process (computing) ,Architectural design ,Control engineering ,01 natural sciences ,Control function ,010305 fluids & plasmas ,law.invention ,Nuclear Energy and Engineering ,Conceptual design ,law ,Control system ,0103 physical sciences ,General Materials Science ,Use case ,Materials Science (all) ,Layer (object-oriented design) ,010306 general physics ,Civil and Structural Engineering - Abstract
Control of a Tokamak requires operating many sophisticated control loops in a dynamic sequence of activities. To take appropriate actions in case technical or physics conditions occur unexpectedly, the continuous control must be backed up by Exception Handling (EH) logic. To mature the Conceptual Design of the ITER Plasma Control System (PCS) with such logic for the Preliminary Design, we studied, in a formal process, how the plasma will be controlled during the 1 st plasma and early operation phases of ITER and analysed the required control and EH functions and dependencies: Three classes of Exception Handling were identified which cover all use cases: modification of the control behaviour of a single control function, modification of the control structure of connected controllers, and change of the control goal which modifies the overall control system. The three classes form a EH hierarchy from low to high impact responses that can be implemented as local EH in the Pulse Continuous Control layer and as central EH in the Pulse Supervision layer of the PCS.
- Published
- 2017
- Full Text
- View/download PDF
4. Management of the ITER PCS Design Using a System-Engineering Approach
- Author
-
Alfredo Pironti, Joseph Snipes, Rémy Nouailletas, Giuseppe Ambrosino, L. Zabeo, Fernanda G. Rimini, Damien Karkinsky, Igor Gomez, Sylvain Brémond, Francesco Fucci, W. Treutterer, Massimiliano Mattei, Gianmaria De Tommasi, Micheal L. Walker, Marcello Cinque, Peter De Vries, Cinque, Marcello, De Tommasi, Gianmaria, De Vries, Peter C., Fucci, Francesco, Zabeo, Luca, Ambrosino, Giuseppe, Bremond, Sylvain, Gomez, Igor, Karkinsky, Damien, Mattei, Massimiliano, Nouailletas, Remy, Pironti, Alfredo, Rimini, Fernanda G., Snipes, Joseph A., Treutterer, Wolfgang, and Walker, Micheal L.
- Subjects
Structure (mathematical logic) ,Requirements management ,Nuclear and High Energy Physics ,Tokamak ,Computer science ,Process (engineering) ,Enterprise architecture ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Systems Modeling Language ,law ,0103 physical sciences ,Systems engineering ,Actuator ,Verification and validation - Abstract
The plasma control system (PCS) in a tokamak device is in charge of controlling the evolution of plasma parameters according to prescribed models against uncertainties and disturbances. The PCS accomplishes its mission by receiving data from the diagnostics and by computing in real-time the commands to the actuators that affect the plasma behavior. The design of the ITER PCS includes many different aspects, which are not limited to the design of control algorithms, including the definition of the verification and validation tests for various components and commissioning procedures. Moreover, contributions come from different parties that adopt heterogeneous sources. To homogenize these contributions and to keep track of the PCS life-cycle throughout various design stages, a specific system-engineering approach has been adopted on top of the standard ITER life-cycle and the requirement management process. Such an approach relies on a database (DB) implemented using Enterprise Architect that allows modeling various aspects of the PCS design using SysML. This article gives an overview of the adopted approach and describes the structure and the current content of the PCS DB.
- Published
- 2020
5. ITER plasma control system final design and preparation for first plasma
- Author
-
D.A. Humphreys, A. A. Kavin, Alfredo Pironti, E. Lamzin, R. C. Felton, Massimiliano Mattei, S. Bremond, P. de Vries, G. De Tommasi, A. Mineev, Gerhard Raupp, M. A. Henderson, R.A. Pitts, V.E. Lukash, Sergey Konovalov, W. Treutterer, Y. Gribov, I. Nunes, Giuseppe Ambrosino, W.-R. Lee, P. Moreau, M. Cinque, Rémy Nouailletas, R. Hunt, R. R. Khayrutdinov, F. Rimini, A. Loarte, Joseph Snipes, M.L. Walker, L. Zabeo, J. Sinha, Snipes, J. A., De Vries, P. C., Gribov, Y., Henderson, M. A., Hunt, R., Loarte, A., Nunes, I., Pitts, R. A., Sinha, J., Zabeo, L., Lee, W. -R., Ambrosino, G., Cinque, M., De Tommasi, G., Mattei, M., Pironti, A., Bremond, S., Moreau, P., Nouailletas, R., Felton, R., Rimini, F., Humphreys, D., Walker, M. L., Kavin, A., Lamzin, E., Mineev, A., Khayrutdinov, R., Konovalov, S., Lukash, V., Raupp, G., and Treutterer, W.
- Subjects
Nuclear and High Energy Physics ,Materials science ,ITER ,plasma control ,Nuclear engineering ,Plasma control system ,commissioning ,Plasma ,Condensed Matter Physics ,plasma operations - Abstract
The ITER plasma control system (PCS) has successfully completed its final design for the first plasma (FP) and engineering operations (EOs) phase and plant system commissioning has begun as ITER prepares for this first operation phase. Commissioning of the essential plant systems will continue as each plant system is completed and made ready for operation. Tokamak assembly has begun with the base and lower cylinder of the cryostat and the lower most poloidal field (PF) coil installed in the tokamak pit. The first vacuum vessel (VV) sector and accompanying two toroidal field (TF) coils are being prepared for transfer to the pit. Once the tokamak is assembled, the cryostat top lid is closed and pump down begins, this will start approximately one year of integrated commissioning (IC) to prepare all of the relevant plant systems for FP operation. After a scheduled one month of plasma operation with the goal of achieving a plasma current > 100 kA for at least 100 ms, there will be about six months of EO to complete commissioning of the superconducting central solenoid, PF, and TF magnet systems to full current, without plasma, to complete this initial ITER operation phase. The PCS final design for FP will be described as well as the IC sequence of the main plant systems required for this operations phase. The plans for the FP operation campaign will be described, including specific challenges present on ITER due to large VV eddy currents, issues associated with electron cyclotron heating (ECH) assist, neutral pressure and impurities. This will be followed by the EO phase to commission full current operation of the superconducting magnets, possibly including plasma operation at full TF of 5.3 T to have improved conditions both for Ohmic plasma initiation and ECH absorption.
- Published
- 2021
- Full Text
- View/download PDF
6. Assessment of controllers and scenario control performance for ITER first plasma
- Author
-
Giuseppe Ambrosino, Sylvain Brémond, David Humphreys, Joseph Snipes, A.S. Welander, F.G. Rimini, Peter De Vries, Gianmaria De Tommasi, Michael L. Walker, W. Treutterer, Walker, M. L., Welander, A., Humphreys, D., Ambrosino, G., De Tommasi, G., Bremond, S., De Vries, P., Snipes, J., Rimini, F., and Treutterer, W.
- Subjects
Design ,Computer science ,Plasma breakdown ,Mechanical Engineering ,Nuclear engineering ,ITER PCS ,Control (management) ,Plasma ,Assessment ,01 natural sciences ,010305 fluids & plasmas ,Power (physics) ,Nuclear Energy and Engineering ,0103 physical sciences ,Plasma control system ,General Materials Science ,Plant system ,010306 general physics ,Civil and Structural Engineering ,Plasma control ,Plasma density - Abstract
The ITER Plasma Control System (PCS) will control ITER plasma operation, with performance requirements much more stringent than existing fusion devices. We report on assessment of control algorithms and control scenarios comprising the prototype ITER PCS design, which is the starting point for development of the final design for first plasma operation. The scenarios assessed include commissioning of magnetics and gas systems using the PCS and the first plasma scenario, which includes neutral gas prefill, plasma breakdown/burnthrough, and initial evolution of equilibrium and plasma density. Plant systems involved in first plasma control include ECH, PF and CS coils and power supplies, gas valves, and magnetic, neutral pressure, and electron density diagnostics. Assessment involves simulation of an ITER PCS model connected in feedback with an ITER plant model, both executing in the Plasma Control System Simulation Platform (PCSSP). PCSSP is presently undergoing upgrades as part of PCS development to provide support for algorithm development, PCS architecture evaluation, and control performance assessment. In particular, PCSSP provides general methods for extensive testing of performance in the face of multiple adverse events, such as plasma instabilities growth, disruptions, or plant system faults.
- Published
- 2019
7. Work-flow process from simulation to operation for the Plasma Control System for the ITER first plasma
- Author
-
Marcello Cinque, H. Anand, Joseph Snipes, F.G. Rimini, Giuseppe Ambrosino, M.L. Walker, L. Zabeo, G. De Tommasi, Isabel L. Nunes, W. Treutterer, Sylvain Brémond, W.-R. Lee, P. de Vries, B. Bauvier, A. Winter, Zabeo, L., de Vries, P. C., Snipes, J. A., Winter, A., Walker, M., Treutterer, W., De Tommasi, G., Ambrosino, G., Cinque, M., Rimini, F., Bremond, S., Anand, H., Lee, W. -R., Bauvier, B., and Nunes, I.
- Subjects
Computer science ,business.industry ,Design and commissioning ,Mechanical Engineering ,Interface (computing) ,Exception handling ,Process (computing) ,Consistency (database systems) ,Nuclear Energy and Engineering ,Software deployment ,Embedded system ,Component (UML) ,ITER ,Plasma Control System ,General Materials Science ,Code generation ,MATLAB ,business ,computer ,Civil and Structural Engineering ,computer.programming_language - Abstract
The ITER Plasma Control System (PCS) is an essential component for ITER operations. It will include multiple controls loops as well as a number of support functions dedicated to providing input control parameters and distributing commands to actuators. In addition, a supervisory system within the PCS architecture will manage the orchestration of the PCS control loops during the discharge as well as an Exception handling system to react to real-time changes in the plasma and/or in the plant systems. To investigate and develop controllers and supervisory techniques, a simulation platform is being developed to support the staged evolution of the PCS. The PCS Simulation Platform (PCSSP), based on Matlab/Simulink, is used to design and assess PCS control functions and verify the consistency of the PCS architecture. Moreover, the PCSSP will assist in implementing PCS algorithms, directly deploying PCS code on the ITER Real Time Framework (RTF). This paper will present the overall work-flow processes from control simulations, control assessment, code generation, interfaces and deployment into the RTF and PCS commissioning. This will include interface management and co-ordination with ITER investment protection, the pulse scheduling system, and the plant system configuration during operations. How the entire preparation process will be managed, for ITER first plasma operations will be reported here.
- Published
- 2019
8. Implementation strategy for the ITER plasma control system
- Author
-
Giuseppe Ambrosino, Massimiliano Mattei, G. De Tommasi, W. Treutterer, B. Bauvir, D.A. Humphreys, Joseph Snipes, Gerhard Raupp, A.V. Stephen, A. Winter, M.L. Walker, L. Zabeo, Andre Neto, Winter, A, Ambrosino, G., Bauvir, B., De Tommasi, G., Humphreys, D. A., Mattei, Massimiliano, Neto, A., Raupp, G., Snipes, J. A., Stephen, A. V., Treutterer, W., Walker, M. L., Zabeo, L., Winter, A., Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, Mattei, M., and Snipes, J.
- Subjects
Scope (project management) ,business.industry ,Computer science ,Event (computing) ,Mechanical Engineering ,Exception handling ,Control (management) ,Context (language use) ,Plasma control ,Automation ,Nuclear Energy and Engineering ,ITER ,Control system ,Systems engineering ,Nuclear fusion ,General Materials Science ,Materials Science (all) ,Orchestration (computing) ,business ,Civil and Structural Engineering - Abstract
This paper gives an overview of the scope and context of the CODAC high-level real-time applications (Supervision and Plasma Control) and presents the strategy and current state of design of the tools to support the implementation. A real-time framework, which is currently under development with strong support of the worldwide fusion community will not only support the implementation of plasma control strategies with the extensive exception handling and forecasting functionality foreseen for ITER, but also integrated commissioning, orchestration and supervision as well as the real-time needs of ITER plant system developers. A second cornerstone in the implementation strategy is the development of a powerful simulation environment (Plasma Control System Simulation Platform - PCSSP) to design and verify control strategies, event handling and orchestration and automation. The development of PCSSP is currently under contract and this paper will also give an overview of its current state of development. (C) 2015 ITER Organization. Published by Elsevier B.V. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
9. Overview of the preliminary design of the ITER plasma control system
- Author
-
Sergey Konovalov, C. J. Rapson, M.L. Walker, L. Zabeo, V.E. Lukash, G. Neu, T. C. Blanken, Marcello Cinque, P. Moreau, Sylvain Brémond, Alfredo Pironti, Alessandro Formisano, E. Lamzin, D.A. Humphreys, Joseph Snipes, M. Hosokawa, Michael Lehnen, Roberto Ambrosino, D. Kim, Fabio Villone, T. Ravensbergen, Raffaele Albanese, W. Treutterer, Rémy Nouailletas, F.G. Rimini, Giuseppe Ambrosino, G. De Tommasi, Faa Federico Felici, M. Schneider, P. de Vries, A. Winter, Massimiliano Mattei, G. Pautasso, V. Amoskov, Gerhard Raupp, R.R. Khayrutdinov, G.L. Jackson, P. J. Lomas, A.W. Hyatt, J.R. Ferron, A.S. Welander, A. Mineev, S.H. Kim, J.-M. Travere, R. C. Felton, A. A. Kavin, N.W. Eidietis, Y. Gribov, Snipes, J. A., Albanese, R., Ambrosino, G., Ambrosino, R., Amoskov, V., Blanken, T. C., Bremond, S., Cinque, M., De Tommasi, G., De Vries, P. C., Eidietis, N., Felici, F., Felton, R., Ferron, J., Formisano, A., Gribov, Y., Hosokawa, M., Hyatt, A., Humphreys, D., Jackson, G., Kavin, A., Khayrutdinov, R., Kim, D., Kim, S. H., Konovalov, S., Lamzin, E., Lehnen, M., Lukash, V., Lomas, P., Mattei, M., Mineev, A., Moreau, P., Neu, G., Nouailletas, R., Pautasso, G., Pironti, A., Rapson, C., Raupp, G., Ravensbergen, T., Rimini, F., Schneider, M., Travere, J. -. M., Treutterer, W., Villone, F., Walker, M., Welander, A., Winter, A., Zabeo, L., de Tommasi, G., de Vries, P. C., Travere, J. -M., Control Systems Technology, and Mechanical Engineering
- Subjects
Nuclear and High Energy Physics ,Computer science ,Divertor ,Nuclear engineering ,Exception handling ,Topology (electrical circuits) ,Plasma ,Condensed Matter Physics ,disruptions ,01 natural sciences ,Kinetic control ,disruption ,010305 fluids & plasmas ,Power (physics) ,ITER ,plasma control ,0103 physical sciences ,Plasma control system ,010306 general physics ,Plasma control ,Nuclear and High Energy Physic - Abstract
An overview of the preliminary design of the ITER plasma control system (PCS) is described here, which focusses on the needs for 1st plasma and early plasma operation in hydrogen/helium (H/He) up to a plasma current of 15 MA with moderate auxiliary heating power in low confinement mode (L-mode). Candidate control schemes for basic magnetic control, including divertor operation and kinetic control of the electron density with gas puffing and pellet injection, were developed. Commissioning of the auxiliary heating systems is included as well as support functions for stray field topology and real-time plasma boundary reconstruction. Initial exception handling schemes for faults of essential plant systems and for disruption protection were developed. The PCS architecture was also developed to be capable of handling basic control for early commissioning and the advanced control functions that will be needed for future high performance operation. A plasma control simulator is also being developed to test and validate control schemes. To handle the complexity of the ITER PCS, a systems engineering approach has been adopted with the development of a plasma control database to keep track of all control requirements.
- Published
- 2017
- Full Text
- View/download PDF
10. Preparation for the operation of ITER: EU study on the plasma control system
- Author
-
Gustavo Granucci, Y. Gribov, F. Koechl, Giuseppe Ambrosino, Massimiliano Mattei, L. Zabeo, R. Sartori, D. Ricci, Lorenzo Figini, G. Saibene, Mario Cavinato, Alfredo Pironti, Vassili Parail, Cavinato, M., Ambrosino, Giuseppe, Figini, L., Granucci, G., Gribov, Y., Koechl, F., Mattei, M., Parail, V., Pironti, Alfredo, Ricci, D., Saibene, G., Sartori, R., Zabeo, L., Cavinato, M, Ambrosino, G., Mattei, Massimiliano, and Pironti, A.
- Subjects
Tokamak control ,Computer science ,TOKAMAKS ,Mechanical Engineering ,Magnetic confinement fusion ,Control engineering ,ITER scenario ,ITER scenarios ,Power (physics) ,Pulse (physics) ,Controllability ,Nuclear Energy and Engineering ,Plasma Control ,Control theory ,Component (UML) ,Control system ,General Materials Science ,Materials Science (all) ,Scenario optimization ,Civil and Structural Engineering - Abstract
In view of the preparation for the operation of the ITER tokamak it is necessary to develop the plasmascenarios taking into account all engineering constraints coming from the plant and including a realisticcontrol system. It is important to consider that, due to the high energy of ITER plasmas, much morestringent requirements are posed on the control of transients in order to avoid machine damage.Several activities are performed in the EU focusing on one side on the scenario optimization from aphysics point of view and on the other side on the design and modeling of a realistic plasma controlsystem driving the plasma configuration throughout the whole pulse and suitable for implementationon a real machine.The issues related to the computation of the control feed-forward component are addressed. In par-ticular, the possibility to trigger a feed-forward component to solve controllability problems arising inthe transitions from plasma L to H and H to L modes is studied in detail with the support of linear andnon-linear simulations.A control strategy is designed and tested on non-linear simulations of the whole pulse, including linearand non-linear effects due to controller switching, plasma shape reconstruction and power supplies.The paper reports on the results of the studies performed and discuss the proposed design of the plasmacontrol system.© 2014 Published by Elsevier B.V.
- Published
- 2014
- Full Text
- View/download PDF
11. A simulation environment for ITER PCS development
- Author
-
Giuseppe Ambrosino, M.L. Walker, G. De Tommasi, David Humphreys, G. Neu, Gerhard Raupp, W. Treutterer, A. Winter, Massimiliano Mattei, Walker, M. L., Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, Humphreys, D. A., Mattei, M., Neu, G., Raupp, G., Treutterer, W., Winter, A., Walker, M. L, Ambrosino, G., De Tommasi, G., and Mattei, Massimiliano
- Subjects
Plasma control system ,Computer science ,Mechanical Engineering ,Control (management) ,Exception handling ,Schedule (project management) ,Task (project management) ,System requirements ,Nuclear Energy and Engineering ,Architecture ,Systems engineering ,General Materials Science ,Materials Science (all) ,Robust control ,Control logic ,Actuator ,Simulation ,Civil and Structural Engineering - Abstract
A simulation environment known as the Plasma Control System Simulation Platform (PCSSP), specifically designed to support development of the ITER Plasma Control System (PCS), is currently under construction by an international team encompassing a cross-section of expertise in simulation and exception handling for plasma control. The proposed design addresses the challenging requirements of supporting the PCS design. This paper provides an overview of the PCSSP project and a discussion of some of the major features of its design. Plasma control for the ITER tokamak will be significantly more challenging than for existing fusion devices. An order of magnitude greater performance (e.g. [1] , [2] ) is needed for some types of control, which together with limited actuator authority, implies that optimized individual controllers and nonlinear saturation logic are required. At the same time, consequences of control failure are significantly more severe, which implies a conflicting requirement for robust control. It also implies a requirement for comprehensive and robust exception handling. Coordinated control of multiple competing objectives with significant interactions, together with many shared uses of actuators to control multiple variables, implies that highly integrated control logic and shared actuator management will be required. It remains a challenge for the integrated technologies to simultaneously address these multiple and often competing requirements to be demonstrated on existing fusion devices and adapted for ITER in time to support its operational schedule. We describe ways in which the PCSSP will help address these challenges to support design of both the ITER PCS itself and the algorithms that will be implemented therein, and at the same time greatly reduce the cost of that development. We summarize the current status of the PCSSP design task, including system requirements and preliminary design documents already delivered as well as features of the ongoing detailed architectural design. The methods being incorporated in the detailed design are based on prior experience with control simulation environments in fusion and on standard practices prevalent in development of control-intensive industrial product designs.
- Published
- 2014
- Full Text
- View/download PDF
12. Concept, prototyping and application of a tensioning system for FRP ties into masonry structures
- Author
-
Giuseppe Ambrosino, Alessandro Mauro, Domenico Brigante, Antonio Formisano, La Manna Ambrosino, Giuseppe, Brigante, Domenico, Mauro, Alessandro, and Formisano, Antonio
- Subjects
Engineering ,FRP, tie, tensioning system, structural reinforcement, masonry structures ,business.industry ,Mechanical Engineering ,020101 civil engineering ,02 engineering and technology ,Structural engineering ,Masonry ,Fibre-reinforced plastic ,021001 nanoscience & nanotechnology ,0201 civil engineering ,Mechanics of Materials ,General Materials Science ,0210 nano-technology ,business - Abstract
The present paper deals with concept, prototyping and application of a tensioning system for FRP ties into masonry structures. The proposed system, based on the use of FRP strands instead of traditional steel ties, has the aim to produce a compression stress state on masonry walls where it is applied. Given the objective difficulty in tensioning a FRP strand, it was necessary to both characterize and prototype a suitable connection system between the strand and the pulling system. The experimental phase concerned both the manufacturing of the pulling system and the study of used materials, as well as the characterization of the impregnation technology of FRP ties. The above described system has been produced and used in the framework of the structural retrofitting of the “Real Albergo dei Poveri” building in Naples.
- Published
- 2017
13. Overview of the JET results in support to ITER
- Author
-
Alfredo Pironti, J. Simpson-Hutchinson, Sean Conroy, J. Uljanovs, D. Middleton-Gear, G. Possnert, C. Angioni, R. McAdams, Nicholas Watkins, E. Fortuna-Zalesna, A. Garcia-Carrasco, K. Gałązka, D. Nodwell, Pasquale Gaudio, R.A. Pitts, Svetlana V. Ratynskaia, Seppo Koivuranta, O. J. Kwon, C. Boyd, A. Boboc, M. Reinhart, Igor Lengar, Jarrod Leddy, Hiroyasu Utoh, J. H. Ahn, A. Stevens, J. Lönnroth, U. Kruezi, C. Guillemaut, N. Fonnesu, W. Studholme, Marek Rubel, P. Cahyna, O. McCormack, A. S. Jacobsen, D. Mazon, Gunta Kizane, N. Ashikawa, William Tang, J. Goff, F. Nespoli, Thomas Giegerich, G. Petravich, Angela Busse, Corneliu Porosnicu, M. Bigi, M. Wheatley, Christopher N. Bowman, J. Zacks, Ivan Calvo, U. Losada, H. Weisen, B. Bauvir, Stanislas Pamela, Sylvain Brémond, M.F. Stamp, Scott W. McIntosh, A. Rakha, S. Glöggler, V. Braic, C. Bottereau, S. Murphy, S. Knott, Luigi Fortuna, P. Bunting, N. Vora, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, Gabriele Croci, M. Nocente, A. Hollingsworth, S. Reynolds, D. J. Wilson, D. D. Brown, T.C. Luce, S. Zoletnik, E. Nilsson, L. Laguardia, O. Marchuk, F.P. Orsitto, E. Cecil, V. Huber, J. B. Girardo, Stylianos Varoutis, M. D. Axton, Hyun-Tae Kim, E. Safi, Ch. Day, S. Arshad, J. Rzadkiewicz, P. Prior, A. Meigs, S. Esquembri, P. Gohil, K. Purahoo, Torbjörn Hellsten, N. Tipton, R. Guirlet, E. Joffrin, V. Aldred, Calin Besliu, M. Valentinuzzi, G. T. Jones, J. Edwards, Giuseppe Ambrosino, Laurent Marot, N. Lam, F. Crisanti, G. Verona Rinati, R. Marshal, Michael L. Brown, D. Frigione, D. Chandra, Michaele Freisinger, R. Olney, Jari Varje, S. Whetham, F. Parra Diaz, M. R. Hough, P. Dinca, F. Salzedas, A. Goodyear, R. Gowland, J. A. Wilson, J. Horacek, D. King, K. Flinders, I. R. Merrigan, M. Ghate, R. Michling, F. Saint-Laurent, G. Kocsis, D. Van Eester, C. Young, R. O. Dendy, A. Meakins, N. Pace, C. L. Hunter, D. Alegre, S. Foster, V. Riccardo, M. Bulman, C. Jeong, Marek Szawlowski, B. D. Whitehead, Vasily Kiptily, James Harrison, Hiroshi Tojo, G. T. A. Huijsmans, J. W. Coenen, X. Litaudon, Justin Williams, C. Hidalgo, S. Lesnoj, I.E. Day, A. W. Morris, R. Mooney, Yann Corre, S. Brezinsek, B. Gonçalves, M. Kresina, D. Coombs, F. Köchl, J. L. Gardarein, W. Davis, Aqsa Shabbir, Kanti M. Aggarwal, L. Colas, A. B. Kukushkin, Seppo Sipilä, Elisabeth Rachlew, Leena Aho-Mantila, O. G. Pompilian, E. Viezzer, Shane Cooper, Fabio Villone, P. Blanchard, Patrick Tamain, P. Camp, T. Szabolics, C. Luna, Kalle Heinola, H. G. Esser, V. Bobkov, James Buchanan, Andrew West, Hajime Urano, Roberta Lima Gomes, J.P. Coad, Th. Pütterich, A. Sinha, S. Hollis, R. D. Wood, G. D. Ewart, F. S. Griph, T. Kobuchi, X. Lefebvre, S. Warder, A.J. Thornton, S. Peschanyi, B. Graham, Giuseppe Telesca, M. Kempenaars, J. Bernardo, M. Hughes, Eva Belonohy, S. Schmuck, Kai Nordlund, T. J. Smith, P. Hertout, K. D. Lawson, M. Brix, Matthew Sibbald, Grégoire Hornung, C. Tame, Matthew Carr, S. Wray, P. T. Doyle, A. Somers, Giuseppe Chitarin, D. C. Campling, Mitul Abhangi, I. Jepu, David A. Wood, J. Miettunen, A. Sopplesa, Raffaele Fresa, S. Saarelma, M. Bacharis, J. Pozzi, P. Vallejos Olivares, Teddy Craciunescu, Raffaele Albanese, S. Knipe, Jason P. Byrne, A. C. C. Sips, S. Hazel, V. Kazantzidis, G. Stankūnas, A. Kundu, J. Mailloux, C. Guerard, Pramit Dutta, J. E. Boom, Eduardo Alves, P. Grazier, Saskia Mordijck, V.S. Neverov, Kazuo Hoshino, A. P. Vadgama, P. D. Brennan, P. Innocente, Piergiorgio Sonato, M. Irishkin, M. Berry, D. W. Robson, Dieter Leichtle, Fabio Pisano, P. McCullen, T. M. Huddleston, Kensaku Kamiya, D. Pacella, Tommy Ahlgren, A. Kirschner, B. Magesh, A. Ash, J. Mlynář, C. Castaldo, C. Marchetto, D. L. Hillis, M. Incelli, B. Viola, R. J. Robins, E. Andersson Sundén, G. Ramogida, Matthew Reinke, Gerd Meisl, Yannis Kominis, R. Proudfoot, C. Noble, N. J. Conway, V. P. Lo Schiavo, Jorge Luis Rodriguez, Hugo Bufferand, C. H. A. Hogben, B. Evans, R. Sartori, H. Greuner, M. G. Dunne, K. Schöpf, M. I. K. Santala, E. Giovannozzi, A. E. Shevelev, C. Gil, P. Boulting, P. Sagar, A.E. Shumack, P. A. Coates, C. Ayres, R. Prakash, C. Giroud, M. Parsons, J. C. Giacalone, S. Meshchaninov, A. Peackoc, G. De Temmerman, A.C.A. Figueiredo, D. Gallart, P. Santa, Sergey Popovichev, Ivan Lupelli, M. Valovic, Thomas Johnson, Y. Martynova, M. Rack, Olivier Sauter, J. Garcia, P. Siren, I. Balboa, S. Lee, Hans Nordman, R. Roccella, M. Faitsch, Julien Hillairet, Patrick J. McCarthy, C. Reux, Irena Ivanova-Stanik, V. Coccorese, Ye. O. Kazakov, R. El-Jorf, C. Hamlyn-Harris, Matthias Weiszflog, C. F. Maggi, Panagiotis Tolias, N. C. Hawkes, E. Clark, Bruno Santos, B. Sieglin, R. Rodionov, Roch Kwiatkowski, P. Denner, C. Woodley, Hugh Summers, Francesco Pizzo, G. Pucella, D. Croft, F. Di Maio, M. Tomes, D. Molina, A. Fernades, L. Amicucci, Marco Cecconello, A. Bisoffi, Z. Ul-Abidin, J. Wilkinson, H. Maier, S. Rowe, M. Beckers, P.J. Knight, E. Pajuste, Choong-Seock Chang, K. Deakin, M. Enachescu, A. Cobalt, D. Tskhakaya Jun, Michela Gelfusa, Rémy Nouailletas, R. Ragona, N. Bonanomi, D. A. Homfray, K. Riddle, Yann Camenen, J. D. Thomas, R.P. Doerner, Timothy P. Robinson, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, D. Pulley, A. Bécoulet, E. Tholerus, O. Bogar, M. Peterka, R. Crowe, C. Sommariva, A. R. Talbot, N. K. Butler, N. Reid, R. Zagórski, Gerald Pintsuk, Juri Romazanov, Andre Neto, G. L. Ravera, Paolo Arena, A. Manning, F. Durodié, Maryna Chernyshova, D. Karkinsky, Štefan Matejčík, J. P. Thomas, A. Wilson, L. Joita, R. Naish, P. Strand, M. Balden, M. Kaufman, T. Powell, V. Schmidt, D. Barnes, José Vicente, S. Doswon, Daniel F. Valcarcel, Claudia Corradino, R. Warren, Annette M. Hynes, J. D. Strachan, A. M. Messiaen, M. Kovari, O. Omolayo, D. M. Witts, R. C. Felton, C. Fleming, C. A. Marren, Patrick Maget, J. Galdon-Quiroga, H. R. Koslowski, Bruce Lipschultz, Ana Elisa Bauer de Camargo Silva, J. Waterhouse, R. J. Dumont, M. Schneider, Sara Moradi, K. J. Nicholls, M. Beldishevski, Benedikt Geiger, A. Jardin, A. Ekedahl, A. Lyssoivan, C. Waldon, Davide Galassi, F. Jaulmes, A. Kirk, Yannick Marandet, F. Hasenbeck, Gabor Szepesi, R. C. Pereira, J. Juul Rasmussen, Nobuyuki Aiba, Michelle E. Walker, Gábor Cseh, Scott W. Mosher, R. Bastow, A. Di Siena, E. Lazzaro, M. Curuia, C. D. Challis, Z. Ghani, J. Deane, João M. C. Sousa, Henrik Sjöstrand, T. O'Gorman, H. R. Wilson, P. Devynck, M. Price, C. A. Thompson, Daniele Marocco, A. Cullen, M. Clark, M. Lennholm, D. Carralero, N. Balshaw, Roland Sabot, I. Stepanov, N. Petrella, Filippo Sartori, L. W. Packer, P. Thomas, M. Lungu, A. V. Krasilnikov, R. Young, Jonathan Graves, J. C. Hillesheim, Mǎdǎlina Vlad, Duccio Testa, Pierre Dumortier, Paulo Carvalho, M. Gosk, Yong-Su Na, M. Buckley, Carlos A. Silva, V. Fuchs, K. Vasava, P. A. Tigwell, B. Wakeling, M. Medland, M. Bellinger, K. Gal, Petter Ström, E. Veshchev, F. Nabais, A. Wynn, L. Lauro Taroni, B. Beckett, L. Gil, M. Towndrow, Brian Grierson, Harry M. Meyer, V. Philipps, A. de Castro, D. Kinna, D. Conka, Göran Ericsson, L. Piron, J. Hawkins, D. Cooper, Kenneth Hammond, V.V. Parail, Cristian Ruset, G.J. van Rooij, M. N. A. Beurskens, N. Fawlk, G. Evison, M. Van De Mortel, N. Marcenko, B. Slade, Th. Franke, Simone Peruzzo, N. den Harder, D. Baião, A. Martin de Aguilera, Frederic Imbeaux, Carlo Sozzi, J.L. de Pablos, J. Svensson, A. Withycombe, Ane Lasa, H. Sheikh, V.A. Yavorskij, Nick Walkden, E. Lerche, C. S. Gibson, Roberto Zanino, Y. Peysson, David Hatch, B. Bazylev, E. de la Cal, S. Hacquin, T. D. V. Haupt, S. A. Silburn, T.T.C. Jones, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, M. Zerbini, Ken W Bell, Marco Marinelli, Kyriakos Hizanidis, J. M. Fontdecaba, N. Teplova, K. K. Kirov, S. Vartanian, W. W. Pires de Sa, T. C. Hender, J. K. Blackburn, I. Monakhov, H. Patten, P. A. Simmons, Y. Austin, J. Regana, Stefano Coda, Amanda J. Page, D. Fuller, António J.N. Batista, A. Horton, P. Heesterman, S. Cramp, J. Hobirk, F. Clairet, A. Burckhart, M. Allinson, Larry R. Baylor, W. Leysen, D. B. Gin, P. Nielsen, A. Kantor, Yueqiang Liu, A.V. Stephen, Jose Ramon Martin-Solis, P. Mantica, B. C. Regan, Aleksander Drenik, A. Lukin, L. Thorne, G. Nemtsev, J. Denis, M. E. Graham, D. Rigamonti, W. Van Renterghem, M. Tardocchi, M. Koubiti, A. Malaquias, M. Tsalas, A. Cufar, Giuseppe Prestopino, D. Kogut, N. Pomaro, J. Keep, Jochen Linke, Shimpei Futatani, Boris Breizman, A. Sirinelli, M. Chandler, M. Fortune, F. Degli Agostini, I. Jenkins, T. Spelzini, G. Calabrò, O. N. Kent, A. Lunniss, Etienne Hodille, Z. Vizvary, Volker Naulin, T. Eich, F. Mink, A. Alkseev, P. W. Haydon, Massimo Angelone, Norberto Catarino, J. Lapins, Roberto Pasqualotto, R. Lawless, T. Schlummer, F. Bonelli, M. Wischmeier, Stéphane Devaux, G. Saibene, Dirk Reiser, Y. R. Martin, H. Bergsåker, Jon Godwin, Alessia Santucci, C. Lane, Justyna Grzonka, Ph. Mertens, Claudio Verona, David Moulton, E. Delabie, Anna Salmi, P. G. Smith, T. Bolzonella, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, M. A. Henderson, M. Marinucci, T. Suzuki, Jakub Bielecki, João Figueiredo, M. Afzal, J. Cane, Robert Hager, Luciano Bertalot, M. Firdaouss, G. Tvalashvili, D. Hepple, D. Esteve, M. De Bock, Y. Baranov, R. D'Inca, G. De Tommasi, Ch. Linsmeier, T. Nicolas, I. J. Pearson, P. Finburg, Ireneusz Książek, S. Talebzadeh, A. Czarnecka, A. Botrugno, M. Gethins, Bohdan Bieg, R. Baughan, I. Borodkina, B. Kos, A. Muraro, T. Vasilopoulou, G. Hermon, S.J. Wukitch, Jari Likonen, D. P. Coster, Guglielmo Rubinacci, I. H. Coffey, Justine M. Kent, S. E. Dorling, J. Dankowski, Geert Verdoolaege, Daisuke Nishijima, R. Clarkson, E. R. Solano, M. Stephen, A. Lescinskis, P. Staniec, Karl Schmid, M. Mayer, Peter Lang, T. Franklin, M.I. Williams, C. G. Elsmore, F. Maviglia, C. Di Troia, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, Yu Gao, Philipp Drews, E. Letellier, A. S. Thompson, L. Forsythe, I. Zychor, E. Khilkevich, A. Manzanares, T. Nakano, Paulo Rodrigues, J. Edmond, Sebastián Dormido-Canto, R. Dux, C. Appelbee, L. Moser, Angelo Cenedese, D. Fagan, N. Richardson, Giuseppe Gorini, V. Rohde, R. Paprok, João P. S. Bizarro, P. Aleynikov, M. Sertoli, Ł. Świderski, Simone Palazzo, O. W. Davies, D. Douai, N. Macdonald, M. Baruzzo, J. López-Razola, M. Lungaroni, D. Clatworthy, R. Bravanec, J. Lovell, Ambrogio Fasoli, S.-P. Pehkonen, M. E. Puiatti, P. Papp, G. Bodnar, V. Aslanyan, A. Weckmann, K. A. Taylor, R. Henriques, I. T. Chapman, Ewa Pawelec, Miles M. Turner, Steven J. Meitner, M. Bernert, Ph. Maquet, R. C. Meadows, A. Shaw, N. Vianello, L. Barrera Orte, Tomas Markovic, A. Fil, A. S. Couchman, Inessa Bolshakova, J. Fyvie, Konstantina Mergia, J. Gallagher, R.V. Budny, Frank Leipold, C. J. Rapson, R. C. Lobel, Gennady V. Miloshevsky, K.-D. Zastrow, Ph. Duckworth, Gianluca Rubino, G. Withenshaw, S. Maruyama, S. P. Hallworth Cook, M. Newman, Jérôme Bucalossi, P. Drewelow, Nuno Cruz, D. Iglesias, I. Nedzelski, T. Donne, P. Leichuer, R. Cesario, M. D. J. Bright, T. Boyce, N. Imazawa, Per Petersson, R. King, A. Loving, L. Garzotti, Jorge Ferreira, G. Corrigan, D. Sandiford, B. Tal, P. Puglia, Daniel Tegnered, J. Karhunen, James S. Wright, Tom Wauters, J. McKehon, K. Rathod, Olivier Février, Alessandro Formisano, Petra Bilkova, M. Groth, Ricardo Magnus Osorio Galvao, F. Medina, S. Collins, H. J. Boyer, Elena Bruno, Horacio Fernandes, M. J. Stead, R. Paccagnella, J. Kaniewski, Ion E. Stamatelatos, F. Causa, M. F. F. Nave, A. Patel, D. C. McDonald, L. Moreira, Mariano Ruiz, K. Dylst, Raymond A. Shaw, A. Brett, Jane Johnston, P. P. Pereira Puglia, J. Ongena, N. A. Benterman, V. N. Amosov, Christian Grisolia, J. Simpson, C. Perez von Thun, Jan Weiland, P. Tonner, F. Belli, T. Odupitan, T. Dittmar, Edmund Highcock, Taina Kurki-Suonio, I. Uytdenhouwen, Estelle Gauthier, M. Oberkofler, B. Alper, Iris D. Young, S. Soare, Yuji Hatano, D. Reece, D. Borodin, M. Moneti, W. Yanling, S. Mianowski, K. Fenton, Stephen J. Bailey, R. Coelho, Sandra C. Chapman, E. Łaszyńska, A. R. Field, F.J. Martínez, Anders Nielsen, M. Smithies, M. J. Mantsinen, A. J. Capel, N. D. Smith, A. Pires dos Reis, M.-L. Mayoral, T. Loarer, P. Carman, N. Grazier, S. Breton, J. M. A. Bradshaw, Alexandre C. Pereira, Fulvio Auriemma, Fulvio Militello, Barbara Cannas, D. Ulyatt, A. Kappatou, P. Blatchford, R. Scannell, B. I. Oswuigwe, Darren Price, Robert E. Grove, D. Guard, M. Leyland, G. Stubbs, J. W. Banks, V.V. Plyusnin, M. S. J. Rainford, Andrea Murari, Sanjeev Ranjan, A. Huber, V. Krasilnikov, C. Bower, H. Leggate, S. Abduallev, P. Tsavalas, G. Giruzzi, K. Maczewa, Colin Roach, P. Beaumont, R. P. Johnson, Anna Widdowson, L. A. Kogan, A. Baron Wiechec, Markus Airila, J. Morris, Robert Skilton, Katarzyna Słabkowska, M. A. Barnard, Jean-Paul Booth, Alessandro Pau, R. Price, R. Bament, M. Tokitani, I. Turner, T. Vu, P. Huynh, S.N. Gerasimov, D. I. Refy, Yunfeng Liang, Anders Hjalmarsson, S. Dalley, Roberto Ambrosino, O. Hemming, T. R. Blackman, Y. Zhou, Vasile Zoita, P. Vincenzi, A. Loarte, C. Rayner, Martin Imrisek, M. Tripsky, C. Mazzotta, A. Uccello, V. Basiuk, Lide Yao, V. Goloborod'ko, S. Villari, B. P. Duval, N. Bulmer, W. Zhang, L. Hackett, D. N. Borba, M. Halitovs, Mario Pillon, H. Arnichand, Alberto Alfier, A. Lawson, A. Masiello, T. Makkonen, A. Vitins, D. Rendell, D. Paton, L. Avotina, A. Krivska, M. Maslov, Richard Verhoeven, Marc Goniche, A. Broslawski, Marica Rebai, E. de la Luna, E. Militello-Asp, V. Cocilovo, L. Carraro, Michael Fitzgerald, Bernardo B. Carvalho, D. Young, C.G. Lowry, F. J. Casson, L.-G. Eriksson, T. M. Biewer, B. Esposito, F.G. Rimini, J. Fessey, G. Kaveney, S. Hall, Robin Barnsley, Michael Lehnen, N. Bekris, L. F. Ruchko, P. Batistoni, E. Alessi, M. G. O'Mullane, D. S. Darrow, C. N. Grundy, N. Hayter, Ivo S. Carvalho, M. Brombin, Enrico Zilli, M. Valisa, M. Reich, S. Panja, C. Gurl, Charles Harrington, Emmanuele Peluso, M. Porton, Michael Walsh, D. Falie, A. Reed, Jacob Eriksson, P. Macheta, J. M. Faustin, S. Cortes, S. Fietz, P. Piovesan, D. Ciric, Eric Nardon, R. Neu, Bojiang Ding, G.A. Rattá, F. Reimold, R. Craven, M. Cox, J. Orszagh, Aaro Järvinen, A. S. Thrysøe, A. Shepherd, I. Ďuran, Andrew M. Edwards, A. Kinch, J. Beal, M. Gherendi, Martin Köppen, D. Samaddar, P. Dalgliesh, I. Vinyar, J. Jansons, Nengchao Wang, J. Wu, John Wright, S. Wiesen, C. King, Alessandra Fanni, L. D. Horton, N. Krawczyk, J. Buch, K. Krieger, Václav Petržílka, D. Schworer, C. Watts, T. Keenan, Andrea Malizia, B. D. Stevens, P. Trimble, C. P. Lungu, V. Prajapati, Marco Ariola, C. Wellstood, S. Gilligan, Mirko Salewski, Michael Barnes, Florin Spineanu, H. Doerk, C. Kennedy, S. Jachmich, J. Caumont, Isabel L. Nunes, A. Petre, A. Kallenbach, M. Anghel, B. Lomanowski, Marco Riva, M. Romanelli, G. De Masi, T. May-Smith, T. Xu, A. Goussarov, S. Romanelli, M. Okabayashi, A. Baker, R. Salmon, T. Tala, Nicolas Fedorczak, S. Lanthaler, Giuliana Sias, J. Risner, Clarisse Bourdelle, M. E. Manso, Fabio Moro, R. Lucock, M. Bassan, M. T. Ogawa, V. Thompson, A. M. Whitehead, S. D. A. Reyes Cortes, Igor Bykov, Gennady Sergienko, E. Stefanikova, Mattia Frasca, H. Dabirikhah, Lorenzo Frassinetti, N. Dzysiuk, D. L. Keeling, Juan Manuel López, M. Turnyanskiy, Daniel Dunai, David Taylor, Arturo Buscarino, Carolina Björkas, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, M. Hill, Gwyndaf Evans, S. Minucci, Xiang Gao, A. V. Chankin, Francesco Romanelli, A. Lahtinen, L. Giacomelli, A. Owen, Jesús Vega, Jonathan Citrin, Antti Hakola, Petr Vondracek, Sehyun Kwak, P. Abreu, L. Meneses, S. S. Medley, G. Gervasini, Surya K. Pathak, Kristel Crombé, M. Cleverly, H.S. Kim, C. Stan-Sion, Nobuyuki Asakura, E. Wang, A. Cardinali, L. Fazendeiro, R. Cavazzana, P. J. Lomas, J. Hawes, G. Stables, Silvia Spagnolo, S. P. Hotchin, N. R. Green, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, Linwei Li, Rajnikant Makwana, Richard Goulding, I. Voitsekhovitch, M. Bowden, I. Kodeli, Peter Hawkins, S. S. Henderson, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, N. Ben Ayed, Mario Cavinato, M. Goodliffe, C. Clements, D. Kenny, Axel Klix, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, Min-Gu Yoo, S. Menmuir, K. Cave-Ayland, S. Potzel, D. Grist, K. Blackman, S. A. Robinson, Rodney Walker, David Pfefferlé, W. Broeckx, D. Harting, S. G. J. Tyrrell, F. Binda, L. Horvath, Davide Flammini, P. V. Edappala, Raul Moreno, G. M. D. Hogeweij, P. Card, A. Hagar, Ion Tiseanu, Rita Lorenzini, L. Appel, Jet Contributors, J. Flanagan, C. Paz Soldan, U. Samm, Otto Asunta, F. Eriksson, C. Taliercio, F. S. Zaitsev, G. F. Matthews, Tuomas Koskela, P. J. Howarth, D. Terranova, M. Skiba, Amanda Hubbard, R. Otin, K. G. McClements, M. Park, R. McKean, C. Christopher Klepper, I. Karnowska, Peter J. Pool, G. Ciraolo, Jennifer M. Lehmann, Institut de Mécanique des Fluides et des Solides (IMFS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), VTT Technical Research Centre of Finland (VTT), Association EURATOM-TEKES, Association EURATOM-TEKES, Helsinki University of Technology, Finland, Assoc. Euratom-ENEA-CREATE, Universita Mediterranea of Reggio Calabria [Reggio Calabria], EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Instituto Tecnológico e Nuclear (ITN), ITN, University of Naples Federico II = Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Università degli studi di Catania = University of Catania (Unict), National Institute for Fusion Science (NIFS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ITER organization (ITER), Karlsruhe Institute of Technology (KIT), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), Institut d'ophtalmologie Hédi-Rais de Tunis, Service Cardiologie [CHU Toulouse], Pôle Cardiovasculaire et Métabolique [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), H. Niewodniczanski Institute of Nuclear Physics, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA), École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Magnetic Sensor laboratory [Lviv] (MSL), National Polytechnic University of Lviv (LPNU), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Institute of Energy and Climate Research - Plasma Physics (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute for Problems of Material Science, National Academy of Sciences of Ukraine (NASU), Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] (CAS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Department of Hydraulics, Transportations and Roads, Laboratoire de microbiologie et génétique moléculaires - UMR5100 (LMGM), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Metallurgical & Materials Engineering Department (MS 388), University of Nevada [Reno], AUTRES, Institute of Plasma Physics and Laser Microfusion [Warsaw] (IPPLM), Culham Centre for Fusion Energy (CCFE), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), School of Mathematics [Cardiff], Cardiff University, Associazone EURATOM ENEA sulla Fusione, EURATOM, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Paul-Drude-Institut für Festkörperelektronik (PDI), Institut für Physik, University of Basel (Unibas), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Dutch Institute for Fundamental Energy Research [Eindhoven] (DIFFER), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Dipartimento di Energia [Milano], Politecnico di Milano [Milan] (POLIMI), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Lille économie management - UMR 9221 (LEM), Université d'Artois (UA)-Université catholique de Lille (UCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Euratom research and training programme 633053, Institut de Mécanique des Fluides et des Solides ( IMFS ), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique ( CNRS ), VTT Technical Research Centre of Finland ( VTT ), Univ. Mediterranea RC, Culham Science Centre, Instituto Tecnológico e Nuclear ( ITN ), Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] ( IPP ), Università degli studi di Catania [Catania], National Institute for Fusion Science, National Institutes of Natural Sciences, Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), School of Geography, Earth and Environmental Sciences, ITER Organization, Karlsruhe Institute of Technology ( KIT ), Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU ), Service de cardiologie [Toulouse], Université Paul Sabatier - Toulouse 3 ( UPS ) -CHU Toulouse [Toulouse]-Hôpital de Rangueil, ITER [St. Paul-lez-Durance], ITER, Polska Akademia Nauk ( PAN ), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique ( LHEEA ), École Centrale de Nantes ( ECN ) -Centre National de la Recherche Scientifique ( CNRS ), MSL, Lviv Polytechnic National University ( MSL ), Lviv Polytechnic National University, Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Energy and Climate Research - Plasma Physics ( IEK-4 ), Forschungszentrum Jülich GmbH, National Academy of Sciences of Ukraine ( NASU ), Lille - Economie et Management ( LEM ), Université catholique de Lille ( UCL ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Czech Academy of Sciences [Prague] ( ASCR ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Département Méthodes et Modèles Mathématiques pour l'Industrie ( 3MI-ENSMSE ), École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris]-Centre G2I, Laboratoire de microbiologie et génétique moléculaires ( LMGM ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), University of Nevada, Institute of Plasma Physics and Laser Microfusion [Warsaw] ( IPPLM ), UCL Department of Space and Climate Physics, University College of London [London] ( UCL ), Astrophysics Research Centre [Belfast] ( ARC ), Queen's University [Belfast] ( QUB ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Cardiff School of Mathematics, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS ( LPP ERM KMS ), Ecole Royale Militaire / Koninklijke Militaire School ( ERM KMS ), Paul-Drude-Institut für Festkörperelektronik, University of Basel ( Unibas ), Dutch Institute for Fundamental Energy Research [Nieuwegein] ( DIFFER ), Dutch Institute for Fundamental Energy Research [Eindhoven] ( DIFFER ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Dipartimento di Energia, Politecnico di Milano [Milan], Max Planck Institute for Plasma Physics, Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, JET Contributors, Litaudon, X, Abduallev, S, Abhangi, M, Abreu, P, Afzal, M, Aggarwal, K, Ahlgren, T, Ahn, J, Aho Mantila, L, Aiba, N, Airila, M, Albanese, R, Aldred, V, Alegre, D, Alessi, E, Aleynikov, P, Alfier, A, Alkseev, A, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amicucci, L, Amosov, V, Andersson Sundén, E, Angelone, M, Anghel, M, Angioni, C, Appel, L, Appelbee, C, Arena, P, Ariola, M, Arnichand, H, Arshad, S, Ash, A, Ashikawa, N, Aslanyan, V, Asunta, O, Auriemma, F, Austin, Y, Avotina, L, Axton, M, Ayres, C, Bacharis, M, Baciero, A, Baiã¡o, D, Bailey, S, Baker, A, Balboa, I, Balden, M, Balshaw, N, Bament, R, Banks, J, Baranov, Y, Barnard, M, Barnes, D, Barnes, M, Barnsley, R, Baron Wiechec, A, Barrera Orte, L, Baruzzo, M, Basiuk, V, Bassan, M, Bastow, R, Batista, A, Batistoni, P, Baughan, R, Bauvir, B, Baylor, L, Bazylev, B, Beal, J, Beaumont, P, Beckers, M, Beckett, B, Becoulet, A, Bekris, N, Beldishevski, M, Bell, K, Belli, F, Bellinger, M, Belonohy, Ã, Ben Ayed, N, Benterman, N, Bergsã¥ker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Besliu, C, Beurskens, M, Bieg, B, Bielecki, J, Biewer, T, Bigi, M, Bãlkovã¡, P, Binda, F, Bisoffi, A, Bizarro, J, Bjã¶rkas, C, Blackburn, J, Blackman, K, Blackman, T, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bodnã¡r, G, Bogar, O, Bolshakova, I, Bolzonella, T, Bonanomi, N, Bonelli, F, Boom, J, Booth, J, Borba, D, Borodin, D, Borodkina, I, Botrugno, A, Bottereau, C, Boulting, P, Bourdelle, C, Bowden, M, Bower, C, Bowman, C, Boyce, T, Boyd, C, Boyer, H, Bradshaw, J, Braic, V, Bravanec, R, Breizman, B, Bremond, S, Brennan, P, Breton, S, Brett, A, Brezinsek, S, Bright, M, Brix, M, Broeckx, W, Brombin, M, Broså‚awski, A, Brown, D, Brown, M, Bruno, E, Bucalossi, J, Buch, J, Buchanan, J, Buckley, M, Budny, R, Bufferand, H, Bulman, M, Bulmer, N, Bunting, P, Buratti, P, Burckhart, A, Buscarino, A, Busse, A, Butler, N, Bykov, I, Byrne, J, Cahyna, P, Calabrã², G, Calvo, I, Camenen, Y, Camp, P, Campling, D, Cane, J, Cannas, B, Capel, A, Card, P, Cardinali, A, Carman, P, Carr, M, Carralero, D, Carraro, L, Carvalho, B, Carvalho, I, Carvalho, P, Casson, F, Castaldo, C, Catarino, N, Caumont, J, Causa, F, Cavazzana, R, Cave Ayland, K, Cavinato, M, Cecconello, M, Ceccuzzi, S, Cecil, E, Cenedese, A, Cesario, R, Challis, C, Chandler, M, Chandra, D, Chang, C, Chankin, A, Chapman, I, Chapman, S, Chernyshova, M, Chitarin, G, Ciraolo, G, Ciric, D, Citrin, J, Clairet, F, Clark, E, Clark, M, Clarkson, R, Clatworthy, D, Clements, C, Cleverly, M, Coad, J, Coates, P, Cobalt, A, Coccorese, V, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Collins, S, Conka, D, Conroy, S, Conway, N, Coombs, D, Cooper, D, Cooper, S, Corradino, C, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Couchman, A, Cox, M, Craciunescu, T, Cramp, S, Craven, R, Crisanti, F, Croci, G, Croft, D, Crombã©, K, Crowe, R, Cruz, N, Cseh, G, Cufar, A, Cullen, A, Curuia, M, Czarnecka, A, Dabirikhah, H, Dalgliesh, P, Dalley, S, Dankowski, J, Darrow, D, Davies, O, Davis, W, Day, C, Day, I, De Bock, M, De Castro, A, De La Cal, E, De La Luna, E, De Masi, G, De Pablos, J, De Temmerman, G, De Tommasi, G, De Vries, P, Deakin, K, Deane, J, Degli Agostini, F, Dejarnac, R, Delabie, E, Den Harder, N, Dendy, R, Denis, J, Denner, P, Devaux, S, Devynck, P, Di Maio, F, Di Siena, A, Di Troia, C, Dinca, P, D'Inca, R, Ding, B, Dittmar, T, Doerk, H, Doerner, R, Donnã©, T, Dorling, S, Dormido Canto, S, Doswon, S, Douai, D, Doyle, P, Drenik, A, Drewelow, P, Drews, P, Duckworth, P, Dumont, R, Dumortier, P, Dunai, D, Dunne, M, Äžuran, I, Durodiã©, F, Dutta, P, Duval, B, Dux, R, Dylst, K, Dzysiuk, N, Edappala, P, Edmond, J, Edwards, A, Edwards, J, Eich, T, Ekedahl, A, El Jorf, R, Elsmore, C, Enachescu, M, Ericsson, G, Eriksson, F, Eriksson, J, Eriksson, L, Esposito, B, Esquembri, S, Esser, H, Esteve, D, Evans, B, Evans, G, Evison, G, Ewart, G, Fagan, D, Faitsch, M, Falie, D, Fanni, A, Fasoli, A, Faustin, J, Fawlk, N, Fazendeiro, L, Fedorczak, N, Felton, R, Fenton, K, Fernades, A, Fernandes, H, Ferreira, J, Fessey, J, Fã©vrier, O, Ficker, O, Field, A, Fietz, S, Figueiredo, A, Figueiredo, J, Fil, A, Finburg, P, Firdaouss, M, Fischer, U, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Fleming, C, Flinders, K, Fonnesu, N, Fontdecaba, J, Formisano, A, Forsythe, L, Fortuna, L, Fortuna Zalesna, E, Fortune, M, Foster, S, Franke, T, Franklin, T, Frasca, M, Frassinetti, L, Freisinger, M, Fresa, R, Frigione, D, Fuchs, V, Fuller, D, Futatani, S, Fyvie, J, Gã¡l, K, Galassi, D, Gaå‚azka, K, Galdon Quiroga, J, Gallagher, J, Gallart, D, Galvã¡o, R, Gao, X, Gao, Y, Garcia, J, Garcia Carrasco, A, GarcÃa Muñoz, M, Gardarein, J, Garzotti, L, Gaudio, P, Gauthier, E, Gear, D, Gee, S, Geiger, B, Gelfusa, M, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Ghate, M, Gherendi, M, Giacalone, J, Giacomelli, L, Gibson, C, Giegerich, T, Gil, C, Gil, L, Gilligan, S, Gin, D, Giovannozzi, E, Girardo, J, Giroud, C, Giruzzi, G, Glã¶ggler, S, Godwin, J, Goff, J, Gohil, P, Goloborod'Ko, V, Gomes, R, Goncalves, B, Goniche, M, Goodliffe, M, Goodyear, A, Gorini, G, Gosk, M, Goulding, R, Goussarov, A, Gowland, R, Graham, B, Graham, M, Graves, J, Grazier, N, Grazier, P, Green, N, Greuner, H, Grierson, B, Griph, F, Grisolia, C, Grist, D, Groth, M, Grove, R, Grundy, C, Grzonka, J, Guard, D, Guã©rard, C, Guillemaut, C, Guirlet, R, Gurl, C, Utoh, H, Hackett, L, Hacquin, S, Hagar, A, Hager, R, Hakola, A, Halitovs, M, Hall, S, Hallworth Cook, S, Hamlyn Harris, C, Hammond, K, Harrington, C, Harrison, J, Harting, D, Hasenbeck, F, Hatano, Y, Hatch, D, Haupt, T, Hawes, J, Hawkes, N, Hawkins, J, Hawkins, P, Haydon, P, Hayter, N, Hazel, S, Heesterman, P, Heinola, K, Hellesen, C, Hellsten, T, Helou, W, Hemming, O, Hender, T, Henderson, M, Henderson, S, Henriques, R, Hepple, D, Hermon, G, Hertout, P, Hidalgo, C, Highcock, E, Hill, M, Hillairet, J, Hillesheim, J, Hillis, D, Hizanidis, K, Hjalmarsson, A, Hobirk, J, Hodille, E, Hogben, C, Hogeweij, G, Hollingsworth, A, Hollis, S, Homfray, D, Horã¡ä ek, J, Hornung, G, Horton, A, Horton, L, Horvath, L, Hotchin, S, Hough, M, Howarth, P, Hubbard, A, Huber, A, Huber, V, Huddleston, T, Hughes, M, Huijsmans, G, Hunter, C, Huynh, P, Hynes, A, Iglesias, D, Imazawa, N, Imbeaux, F, Imrãå¡ek, M, Incelli, M, Innocente, P, Irishkin, M, Ivanova Stanik, I, Jachmich, S, Jacobsen, A, Jacquet, P, Jansons, J, Jardin, A, Jã¤rvinen, A, Jaulmes, F, Jednorã³g, S, Jenkins, I, Jeong, C, Jepu, I, Joffrin, E, Johnson, R, Johnson, T, Johnston, J, Joita, L, Jones, G, Jones, T, Hoshino, K, Kallenbach, A, Kamiya, K, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Karnowska, I, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, D, Keenan, T, Keep, J, Kempenaars, M, Kennedy, C, Kenny, D, Kent, J, Kent, O, Khilkevich, E, Kim, H, Kinch, A, King, C, King, D, King, R, Kinna, D, Kiptily, V, Kirk, A, Kirov, K, Kirschner, A, Kizane, G, Klepper, C, Klix, A, Knight, P, Knipe, S, Knott, S, Kobuchi, T, Kã¶chl, F, Kocsis, G, Kodeli, I, Kogan, L, Kogut, D, Koivuranta, S, Kominis, Y, Kã¶ppen, M, Kos, B, Koskela, T, Koslowski, H, Koubiti, M, Kovari, M, Kowalska StrzÈ©ciwilk, E, Krasilnikov, A, Krasilnikov, V, Krawczyk, N, Kresina, M, Krieger, K, Krivska, A, Kruezi, U, Ksiaå¼ek, I, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kwak, S, Kwiatkowski, R, Kwon, O, Laguardia, L, Lahtinen, A, Laing, A, Lam, N, Lambertz, H, Lane, C, Lang, P, Lanthaler, S, Lapins, J, Lasa, A, Last, J, Å aszyå„ska, E, Lawless, R, Lawson, A, Lawson, K, Lazaros, A, Lazzaro, E, Leddy, J, Lee, S, Lefebvre, X, Leggate, H, Lehmann, J, Lehnen, M, Leichtle, D, Leichuer, P, Leipold, F, Lengar, I, Lennholm, M, Lerche, E, Lescinskis, A, Lesnoj, S, Letellier, E, Leyland, M, Leysen, W, Li, L, Liang, Y, Likonen, J, Linke, J, Linsmeier, C, Lipschultz, B, Liu, G, Liu, Y, Lo Schiavo, V, Loarer, T, Loarte, A, Lobel, R, Lomanowski, B, Lomas, P, Lã¶nnroth, J, Lã³pez, J, López Razola, J, Lorenzini, R, Losada, U, Lovell, J, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukin, A, Luna, C, Lungaroni, M, Lungu, C, Lungu, M, Lunniss, A, Lupelli, I, Lyssoivan, A, Macdonald, N, Macheta, P, Maczewa, K, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makwana, R, Malaquias, A, Malizia, A, Manas, P, Manning, A, Manso, M, Mantica, P, Mantsinen, M, Manzanares, A, Maquet, P, Marandet, Y, Marcenko, N, Marchetto, C, Marchuk, O, Marinelli, M, Marinucci, M, Markoviä , T, Marocco, D, Marot, L, Marren, C, Marshal, R, Martin, A, Martin, Y, MartÃn De Aguilera, A, Martãnez, F, MartÃn SolÃs, J, Martynova, Y, Maruyama, S, Masiello, A, Maslov, M, Matejcik, S, Mattei, M, Matthews, G, Maviglia, F, Mayer, M, Mayoral, M, May Smith, T, Mazon, D, Mazzotta, C, Mcadams, R, Mccarthy, P, Mcclements, K, Mccormack, O, Mccullen, P, Mcdonald, D, Mcintosh, S, Mckean, R, Mckehon, J, Meadows, R, Meakins, A, Medina, F, Medland, M, Medley, S, Meigh, S, Meigs, A, Meisl, G, Meitner, S, Meneses, L, Menmuir, S, Mergia, K, Merrigan, I, Mertens, P, Meshchaninov, S, Messiaen, A, Meyer, H, Mianowski, S, Michling, R, Middleton Gear, D, Miettunen, J, Militello, F, Militello Asp, E, Miloshevsky, G, Mink, F, Minucci, S, Miyoshi, Y, Mlynã¡å™, J, Molina, D, Monakhov, I, Moneti, M, Mooney, R, Moradi, S, Mordijck, S, Moreira, L, Moreno, R, Moro, F, Morris, A, Morris, J, Moser, L, Mosher, S, Moulton, D, Murari, A, Muraro, A, Murphy, S, Asakura, N, Na, Y, Nabais, F, Naish, R, Nakano, T, Nardon, E, Naulin, V, Nave, M, Nedzelski, I, Nemtsev, G, Nespoli, F, Neto, A, Neu, R, Neverov, V, Newman, M, Nicholls, K, Nicolas, T, Nielsen, A, Nielsen, P, Nilsson, E, Nishijima, D, Noble, C, Nocente, M, Nodwell, D, Nordlund, K, Nordman, H, Nouailletas, R, Nunes, I, Oberkofler, M, Odupitan, T, Ogawa, M, O'Gorman, T, Okabayashi, M, Olney, R, Omolayo, O, O'Mullane, M, Ongena, J, Orsitto, F, Orszagh, J, Oswuigwe, B, Otin, R, Owen, A, Paccagnella, R, Pace, N, Pacella, D, Packer, L, Page, A, Pajuste, E, Palazzo, S, Pamela, S, Panja, S, Papp, P, Paprok, R, Parail, V, Park, M, Parra Diaz, F, Parsons, M, Pasqualotto, R, Patel, A, Pathak, S, Paton, D, Patten, H, Pau, A, Pawelec, E, Paz Soldan, C, Peackoc, A, Pearson, I, Pehkonen, S, Peluso, E, Penot, C, Pereira, A, Pereira, R, Pereira Puglia, P, Perez Von Thun, C, Peruzzo, S, Peschanyi, S, Peterka, M, Petersson, P, Petravich, G, Petre, A, Petrella, N, Petrå¾ilka, V, Peysson, Y, Pfefferlã©, D, Philipps, V, Pillon, M, Pintsuk, G, Piovesan, P, Pires Dos Reis, A, Piron, L, Pironti, A, Pisano, F, Pitts, R, Pizzo, F, Plyusnin, V, Pomaro, N, Pompilian, O, Pool, P, Popovichev, S, Porfiri, M, Porosnicu, C, Porton, M, Possnert, G, Potzel, S, Powell, T, Pozzi, J, Prajapati, V, Prakash, R, Prestopino, G, Price, D, Price, M, Price, R, Prior, P, Proudfoot, R, Pucella, G, Puglia, P, Puiatti, M, Pulley, D, Purahoo, K, Pã¼tterich, T, Rachlew, E, Rack, M, Ragona, R, Rainford, M, Rakha, A, Ramogida, G, Ranjan, S, Rapson, C, Rasmussen, J, Rathod, K, Rattã¡, G, Ratynskaia, S, Ravera, G, Rayner, C, Rebai, M, Reece, D, Reed, A, Rã©fy, D, Regan, B, Regaã±a, J, Reich, M, Reid, N, Reimold, F, Reinhart, M, Reinke, M, Reiser, D, Rendell, D, Reux, C, Reyes Cortes, S, Reynolds, S, Riccardo, V, Richardson, N, Riddle, K, Rigamonti, D, Rimini, F, Risner, J, Riva, M, Roach, C, Robins, R, Robinson, S, Robinson, T, Robson, D, Roccella, R, Rodionov, R, Rodrigues, P, Rodriguez, J, Rohde, V, Romanelli, F, Romanelli, M, Romanelli, S, Romazanov, J, Rowe, S, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruiz, M, Ruset, C, Rzadkiewicz, J, Saarelma, S, Sabot, R, Safi, E, Sagar, P, Saibene, G, Saint Laurent, F, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Samaddar, D, Samm, U, Sandiford, D, Santa, P, Santala, M, Santos, B, Santucci, A, Sartori, F, Sartori, R, Sauter, O, Scannell, R, Schlummer, T, Schmid, K, Schmidt, V, Schmuck, S, Schneider, M, Schã¶pf, K, Schwã¶rer, D, Scott, S, Sergienko, G, Sertoli, M, Shabbir, A, Sharapov, S, Shaw, A, Shaw, R, Sheikh, H, Shepherd, A, Shevelev, A, Shumack, A, Sias, G, Sibbald, M, Sieglin, B, Silburn, S, Silva, A, Silva, C, Simmons, P, Simpson, J, Simpson Hutchinson, J, Sinha, A, Sipilã¤, S, Sips, A, Sirã©n, P, Sirinelli, A, Sjã¶strand, H, Skiba, M, Skilton, R, Slabkowska, K, Slade, B, Smith, N, Smith, P, Smith, R, Smith, T, Smithies, M, Snoj, L, Soare, S, Solano, E, Somers, A, Sommariva, C, Sonato, P, Sopplesa, A, Sousa, J, Sozzi, C, Spagnolo, S, Spelzini, T, Spineanu, F, Stables, G, Stamatelatos, I, Stamp, M, Staniec, P, Stankå«nas, G, Stan Sion, C, Stead, M, Stefanikova, E, Stepanov, I, Stephen, A, Stephen, M, Stevens, A, Stevens, B, Strachan, J, Strand, P, Strauss, H, Strã¶m, P, Stubbs, G, Studholme, W, Subba, F, Summers, H, Svensson, J, Åšwiderski, Å, Szabolics, T, Szawlowski, M, Szepesi, G, Suzuki, T, Tã¡l, B, Tala, T, Talbot, A, Talebzadeh, S, Taliercio, C, Tamain, P, Tame, C, Tang, W, Tardocchi, M, Taroni, L, Taylor, D, Taylor, K, Tegnered, D, Telesca, G, Teplova, N, Terranova, D, Testa, D, Tholerus, E, Thomas, J, Thomas, P, Thompson, A, Thompson, C, Thompson, V, Thorne, L, Thornton, A, Thrysã¸e, A, Tigwell, P, Tipton, N, Tiseanu, I, Tojo, H, Tokitani, M, Tolias, P, Tomeå¡, M, Tonner, P, Towndrow, M, Trimble, P, Tripsky, M, Tsalas, M, Tsavalas, P, Tskhakaya Jun, D, Turner, I, Turner, M, Turnyanskiy, M, Tvalashvili, G, Tyrrell, S, Uccello, A, Ul Abidin, Z, Uljanovs, J, Ulyatt, D, Urano, H, Uytdenhouwen, I, Vadgama, A, Valcarcel, D, Valentinuzzi, M, Valisa, M, Vallejos Olivares, P, Valovic, M, Van De Mortel, M, Van Eester, D, Van Renterghem, W, Van Rooij, G, Varje, J, Varoutis, S, Vartanian, S, Vasava, K, Vasilopoulou, T, Vega, J, Verdoolaege, G, Verhoeven, R, Verona, C, Verona Rinati, G, Veshchev, E, Vianello, N, Vicente, J, Viezzer, E, Villari, S, Villone, F, Vincenzi, P, Vinyar, I, Viola, B, Vitins, A, Vizvary, Z, Vlad, M, Voitsekhovitch, I, Vondrã¡ä ek, P, Vora, N, Vu, T, Pires De Sa, W, Wakeling, B, Waldon, C, Walkden, N, Walker, M, Walker, R, Walsh, M, Wang, E, Wang, N, Warder, S, Warren, R, Waterhouse, J, Watkins, N, Watts, C, Wauters, T, Weckmann, A, Weiland, J, Weisen, H, Weiszflog, M, Wellstood, C, West, A, Wheatley, M, Whetham, S, Whitehead, A, Whitehead, B, Widdowson, A, Wiesen, S, Wilkinson, J, Williams, J, Williams, M, Wilson, A, Wilson, D, Wilson, H, Wilson, J, Wischmeier, M, Withenshaw, G, Withycombe, A, Witts, D, Wood, D, Wood, R, Woodley, C, Wray, S, Wright, J, Wu, J, Wukitch, S, Wynn, A, Xu, T, Yadikin, D, Yanling, W, Yao, L, Yavorskij, V, Yoo, M, Young, C, Young, D, Young, I, Young, R, Zacks, J, Zagorski, R, Zaitsev, F, Zanino, R, Zarins, A, Zastrow, K, Zerbini, M, Zhang, W, Zhou, Y, Zilli, E, Zoita, V, Zoletnik, S, Zychor, I, Materials Physics, Department of Physics, European Commission, Litaudon, X., Abduallev, S., Abhangi, M., Abreu, P., Afzal, M., Aggarwal, K. M., Ahlgren, T., Ahn, J. H., Aho-Mantila, L., Aiba, N., Airila, M., Albanese, R., Aldred, V., Alegre, D., Alessi, E., Aleynikov, P., Alfier, A., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amicucci, L., Amosov, V., Andersson Sundén, E., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arnichand, H., Arshad, S., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M. D., Ayres, C., Bacharis, M., Baciero, A., Baião, D., Bailey, S., Baker, A., Balboa, I., Balden, M., Balshaw, N., Bament, R., Banks, J. W., Baranov, Y. F., Barnard, M. A., Barnes, D., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baughan, R., Bauvir, B., Baylor, L., Bazylev, B., Beal, J., Beaumont, P. S., Beckers, M., Beckett, B., Becoulet, A., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Bellinger, M., Belonohy, É., Ben Ayed, N., Benterman, N. A., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besliu, C., Beurskens, M., Bieg, B., Bielecki, J., Biewer, T., Bigi, M., Bílková, P., Binda, F., Bisoffi, A., Bizarro, J. P. S., Björkas, C., Blackburn, J., Blackman, K., Blackman, T. R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bodnár, G., Bogar, O., Bolshakova, I., Bolzonella, T., Bonanomi, N., Bonelli, F., Boom, J., Booth, J., Borba, D., Borodin, D., Borodkina, I., Botrugno, A., Bottereau, C., Boulting, P., Bourdelle, C., Bowden, M., Bower, C., Bowman, C., Boyce, T., Boyd, C., Boyer, H. J., Bradshaw, J. M. A., Braic, V., Bravanec, R., Breizman, B., Bremond, S., Brennan, P. D., Breton, S., Brett, A., Brezinsek, S., Bright, M. D. J., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, D. P. D., Brown, M., Bruno, E., Bucalossi, J., Buch, J., Buchanan, J., Buckley, M. A., Budny, R., Bufferand, H., Bulman, M., Bulmer, N., Bunting, P., Buratti, P., Burckhart, A., Buscarino, A., Busse, A., Butler, N. K., Bykov, I., Byrne, J., Cahyna, P., Calabrò, G., Calvo, I., Camenen, Y., Camp, P., Campling, D. C., Cane, J., Cannas, B., Capel, A. J., Card, P. J., Cardinali, A., Carman, P., Carr, M., Carralero, D., Carraro, L., Carvalho, B. B., Carvalho, I., Carvalho, P., Casson, F. J., Castaldo, C., Catarino, N., Caumont, J., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavinato, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Cenedese, A., Cesario, R., Challis, C. D., Chandler, M., Chandra, D., Chang, C. S., Chankin, A., Chapman, I. T., Chapman, S. C., Chernyshova, M., Chitarin, G., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, E., Clark, M., Clarkson, R., Clatworthy, D., Clements, C., Cleverly, M., Coad, J. P., Coates, P. A., Cobalt, A., Coccorese, V., Cocilovo, V., Coda, S., Coelho, R., Coenen, J. W., Coffey, I., Colas, L., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, D., Cooper, S. R., Corradino, C., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Couchman, A. S., Cox, M. P., Craciunescu, T., Cramp, S., Craven, R., Crisanti, F., Croci, G., Croft, D., Crombé, K., Crowe, R., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curuia, M., Czarnecka, A., Dabirikhah, H., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., Davies, O., Davis, W., Day, C., Day, I. E., De Bock, M., de Castro, A., de la Cal, E., de la Luna, E., De Masi, G., de Pablos, J. L., De Temmerman, G., De Tommasi, G., de Vries, P., Deakin, K., Deane, J., Degli Agostini, F., Dejarnac, R., Delabie, E., den Harder, N., Dendy, R. O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dinca, P., D’Inca, R., Ding, B., Dittmar, T., Doerk, H., Doerner, R. P., Donné, T., Dorling, S. E., Dormido-Canto, S., Doswon, S., Douai, D., Doyle, P. T., Drenik, A., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B. P., Dux, R., Dylst, K., Dzysiuk, N., Edappala, P. V., Edmond, J., Edwards, A. M., Edwards, J., Eich, Th., Ekedahl, A., El-Jorf, R., Elsmore, C. G., Enachescu, M., Ericsson, G., Eriksson, F., Eriksson, J., Eriksson, L. G., Esposito, B., Esquembri, S., Esser, H. G., Esteve, D., Evans, B., Evans, G. E., Evison, G., Ewart, G. D., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Fasoli, A., Faustin, J. M., Fawlk, N., Fazendeiro, L., Fedorczak, N., Felton, R. C., Fenton, K., Fernades, A., Fernandes, H., Ferreira, J., Fessey, J. A., Février, O., Ficker, O., Field, A., Fietz, S., Figueiredo, A., Figueiredo, J., Fil, A., Finburg, P., Firdaouss, M., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Fleming, C., Flinders, K., Fonnesu, N., Fontdecaba, J. M., Formisano, A., Forsythe, L., Fortuna, L., Fortuna-Zalesna, E., Fortune, M., Foster, S., Franke, T., Franklin, T., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Frigione, D., Fuchs, V., Fuller, D., Futatani, S., Fyvie, J., Gál, K., Galassi, D., Gałązka, K., Galdon-Quiroga, J., Gallagher, J., Gallart, D., Galvão, R., Gao, X., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardarein, J. -L., Garzotti, L., Gaudio, P., Gauthier, E., Gear, D. F., Gee, S. J., Geiger, B., Gelfusa, M., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Giegerich, T., Gil, C., Gil, L., Gilligan, S., Gin, D., Giovannozzi, E., Girardo, J. B., Giroud, C., Giruzzi, G., Glöggler, S., Godwin, J., Goff, J., Gohil, P., Goloborod’Ko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodliffe, M., Goodyear, A., Gorini, G., Gosk, M., Goulding, R., Goussarov, A., Gowland, R., Graham, B., Graham, M. E., Graves, J. P., Grazier, N., Grazier, P., Green, N. R., Greuner, H., Grierson, B., Griph, F. S., Grisolia, C., Grist, D., Groth, M., Grove, R., Grundy, C. N., Grzonka, J., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gurl, C., Utoh, H. H., Hackett, L. J., Hacquin, S., Hagar, A., Hager, R., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamlyn-Harris, C., Hammond, K., Harrington, C., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D. R., Haupt, T. D. V., Hawes, J., Hawkes, N. C., Hawkins, J., Hawkins, P., Haydon, P. W., Hayter, N., Hazel, S., Heesterman, P. J. L., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O. N., Hender, T. C., Henderson, M., Henderson, S. S., Henriques, R., Hepple, D., Hermon, G., Hertout, P., Hidalgo, C., Highcock, E. G., Hill, M., Hillairet, J., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Hobirk, J., Hodille, E., Hogben, C. H. A., Hogeweij, G. M. D., Hollingsworth, A., Hollis, S., Homfray, D. A., Horáček, J., Hornung, G., Horton, A. R., Horton, L. D., Horvath, L., Hotchin, S. P., Hough, M. R., Howarth, P. J., Hubbard, A., Huber, A., Huber, V., Huddleston, T. M., Hughes, M., Huijsmans, G. T. A., Hunter, C. L., Huynh, P., Hynes, A. M., Iglesias, D., Imazawa, N., Imbeaux, F., Imríšek, M., Incelli, M., Innocente, P., Irishkin, M., Ivanova-Stanik, I., Jachmich, S., Jacobsen, A. S., Jacquet, P., Jansons, J., Jardin, A., Järvinen, A., Jaulmes, F., Jednoróg, S., Jenkins, I., Jeong, C., Jepu, I., Joffrin, E., Johnson, R., Johnson, T., Johnston, Jane, Joita, L., Jones, G., Jones, T. T. C., Hoshino, K. K., Kallenbach, A., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Karnowska, I., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D. L., Keenan, T., Keep, J., Kempenaars, M., Kennedy, C., Kenny, D., Kent, J., Kent, O. N., Khilkevich, E., Kim, H. T., Kim, H. S., Kinch, A., King, C., King, D., King, R. F., Kinna, D. J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klepper, C., Klix, A., Knight, P., Knipe, S. J., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Kogan, L., Kogut, D., Koivuranta, S., Kominis, Y., Köppen, M., Kos, B., Koskela, T., Koslowski, H. R., Koubiti, M., Kovari, M., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwiatkowski, R., Kwon, O. J., Laguardia, L., Lahtinen, A., Laing, A., Lam, N., Lambertz, H. T., Lane, C., Lang, P. T., Lanthaler, S., Lapins, J., Lasa, A., Last, J. R., Łaszyńska, E., Lawless, R., Lawson, A., Lawson, K. D., Lazaros, A., Lazzaro, E., Leddy, J., Lee, S., Lefebvre, X., Leggate, H. J., Lehmann, J., Lehnen, M., Leichtle, D., Leichuer, P., Leipold, F., Lengar, I., Lennholm, M., Lerche, E., Lescinskis, A., Lesnoj, S., Letellier, E., Leyland, M., Leysen, W., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Liu, G., Liu, Y., Lo Schiavo, V. P., Loarer, T., Loarte, A., Lobel, R. C., Lomanowski, B., Lomas, P. J., Lönnroth, J., López, J. M., López-Razola, J., Lorenzini, R., Losada, U., Lovell, J. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukin, A., Luna, C., Lungaroni, M., Lungu, C. P., Lungu, M., Lunniss, A., Lupelli, I., Lyssoivan, A., Macdonald, N., Macheta, P., Maczewa, K., Magesh, B., Maget, P., Maggi, C., Maier, H., Mailloux, J., Makkonen, T., Makwana, R., Malaquias, A., Malizia, A., Manas, P., Manning, A., Manso, M. E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marren, C. A., Marshal, R., Martin, A., Martin, Y., Martín de Aguilera, A., Martínez, F. J., Martín-Solís, J. R., Martynova, Y., Maruyama, S., Masiello, A., Maslov, M., Matejcik, S., Mattei, M., Matthews, G. F., Maviglia, F., Mayer, M., Mayoral, M. L., May-Smith, T., Mazon, D., Mazzotta, C., Mcadams, R., Mccarthy, P. J., Mcclements, K. G., Mccormack, O., Mccullen, P. A., Mcdonald, D., Mcintosh, S., Mckean, R., Mckehon, J., Meadows, R. C., Meakins, A., Medina, F., Medland, M., Medley, S., Meigh, S., Meigs, A. G., Meisl, G., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merrigan, I. R., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Mianowski, S., Michling, R., Middleton-Gear, D., Miettunen, J., Militello, F., Militello-Asp, E., Miloshevsky, G., Mink, F., Minucci, S., Miyoshi, Y., Mlynář, J., Molina, D., Monakhov, I., Moneti, M., Mooney, R., Moradi, S., Mordijck, S., Moreira, L., Moreno, R., Moro, F., Morris, A. W., Morris, J., Moser, L., Mosher, S., Moulton, D., Murari, A., Muraro, A., Murphy, S., Asakura, N. N., Na, Y. S., Nabais, F., Naish, R., Nakano, T., Nardon, E., Naulin, V., Nave, M. F. F., Nedzelski, I., Nemtsev, G., Nespoli, F., Neto, A., Neu, R., Neverov, V. S., Newman, M., Nicholls, K. J., Nicolas, T., Nielsen, A. H., Nielsen, P., Nilsson, E., Nishijima, D., Noble, C., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Nouailletas, R., Nunes, I., Oberkofler, M., Odupitan, T., Ogawa, M. T., O’Gorman, T., Okabayashi, M., Olney, R., Omolayo, O., O’Mullane, M., Ongena, J., Orsitto, F., Orszagh, J., Oswuigwe, B. I., Otin, R., Owen, A., Paccagnella, R., Pace, N., Pacella, D., Packer, L. W., Page, A., Pajuste, E., Palazzo, S., Pamela, S., Panja, S., Papp, P., Paprok, R., Parail, V., Park, M., Parra Diaz, F., Parsons, M., Pasqualotto, R., Patel, A., Pathak, S., Paton, D., Patten, H., Pau, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pearson, I. J., Pehkonen, S. -P., Peluso, E., Penot, C., Pereira, A., Pereira, R., Pereira Puglia, P. P., Perez von Thun, C., Peruzzo, S., Peschanyi, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petrella, N., Petržilka, V., Peysson, Y., Pfefferlé, D., Philipps, V., Pillon, M., Pintsuk, G., Piovesan, P., Pires dos Reis, A., Piron, L., Pironti, A., Pisano, F., Pitts, R., Pizzo, F., Plyusnin, V., Pomaro, N., Pompilian, O. G., Pool, P. J., Popovichev, S., Porfiri, M. T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Powell, T., Pozzi, J., Prajapati, V., Prakash, R., Prestopino, G., Price, D., Price, M., Price, R., Prior, P., Proudfoot, R., Pucella, G., Puglia, P., Puiatti, M. E., Pulley, D., Purahoo, K., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M. S. J., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C. J., Rasmussen, J. J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rayner, C., Rebai, M., Reece, D., Reed, A., Réfy, D., Regan, B., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S. D. A., Reynolds, S., Riccardo, V., Richardson, N., Riddle, K., Rigamonti, D., Rimini, F. G., Risner, J., Riva, M., Roach, C., Robins, R. J., Robinson, S. A., Robinson, T., Robson, D. W., Roccella, R., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, F., Romanelli, M., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruiz, M., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Safi, E., Sagar, P., Saibene, G., Saint-Laurent, F., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samaddar, D., Samm, U., Sandiford, D., Santa, P., Santala, M. I. K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schlummer, T., Schmid, K., Schmidt, V., Schmuck, S., Schneider, M., Schöpf, K., Schwörer, D., Scott, S. D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S. E., Shaw, A., Shaw, R., Sheikh, H., Shepherd, A., Shevelev, A., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, A., Silva, C., Simmons, P. A., Simpson, J., Simpson-Hutchinson, J., Sinha, A., Sipilä, S. K., Sips, A. C. C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Slabkowska, K., Slade, B., Smith, N., Smith, P. G., Smith, R., Smith, T. J., Smithies, M., Snoj, L., Soare, S., Solano, E. R., Somers, A., Sommariva, C., Sonato, P., Sopplesa, A., Sousa, J., Sozzi, C., Spagnolo, S., Spelzini, T., Spineanu, F., Stables, G., Stamatelatos, I., Stamp, M. F., Staniec, P., Stankūnas, G., Stan-Sion, C., Stead, M. J., Stefanikova, E., Stepanov, I., Stephen, A. V., Stephen, M., Stevens, A., Stevens, B. D., Strachan, J., Strand, P., Strauss, H. R., Ström, P., Stubbs, G., Studholme, W., Subba, F., Summers, H. P., Svensson, J., Świderski, Ł., Szabolics, T., Szawlowski, M., Szepesi, G., Suzuki, T. T., Tál, B., Tala, T., Talbot, A. R., Talebzadeh, S., Taliercio, C., Tamain, P., Tame, C., Tang, W., Tardocchi, M., Taroni, L., Taylor, D., Taylor, K. A., Tegnered, D., Telesca, G., Teplova, N., Terranova, D., Testa, D., Tholerus, E., Thomas, J., Thomas, J. D., Thomas, P., Thompson, A., Thompson, C. -A., Thompson, V. K., Thorne, L., Thornton, A., Thrysøe, A. S., Tigwell, P. A., Tipton, N., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Tonner, P., Towndrow, M., Trimble, P., Tripsky, M., Tsalas, M., Tsavalas, P., Tskhakaya jun, D., Turner, I., Turner, M. M., Turnyanskiy, M., Tvalashvili, G., Tyrrell, S. G. J., Uccello, A., Ul-Abidin, Z., Uljanovs, J., Ulyatt, D., Urano, H., Uytdenhouwen, I., Vadgama, A. P., Valcarcel, D., Valentinuzzi, M., Valisa, M., Vallejos Olivares, P., Valovic, M., Van De Mortel, M., Van Eester, D., Van Renterghem, W., van Rooij, G. J., Varje, J., Varoutis, S., Vartanian, S., Vasava, K., Vasilopoulou, T., Vega, J., Verdoolaege, G., Verhoeven, R., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Vondráček, P., Vora, N., Vu, T., Pires de Sa, W. W., Wakeling, B., Waldon, C. W. F., Walkden, N., Walker, M., Walker, R., Walsh, M., Wang, E., Wang, N., Warder, S., Warren, R. J., Waterhouse, J., Watkins, N. W., Watts, C., Wauters, T., Weckmann, A., Weiland, J., Weisen, H., Weiszflog, M., Wellstood, C., West, A. T., Wheatley, M. R., Whetham, S., Whitehead, A. M., Whitehead, B. D., Widdowson, A. M., Wiesen, S., Wilkinson, J., Williams, J., Williams, M., Wilson, A. R., Wilson, D. J., Wilson, H. R., Wilson, J., Wischmeier, M., Withenshaw, G., Withycombe, A., Witts, D. M., Wood, D., Wood, R., Woodley, C., Wray, S., Wright, J., Wright, J. C., Wu, J., Wukitch, S., Wynn, A., Xu, T., Yadikin, D., Yanling, W., Yao, L., Yavorskij, V., Yoo, M. G., Young, C., Young, D., Young, I. D., Young, R., Zacks, J., Zagorski, R., Zaitsev, F. S., Zanino, R., Zarins, A., Zastrow, K. D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zoita, V., Zoletnik, S., Zychor, I., Andersson Sundén, E., Baiã¡o, D., Belonohy, Ã. ., Bergsã¥ker, H., Bãlkovã¡, P., Bjã¶rkas, C., Bodnã¡r, G., Broså awski, A., Calabrã², G., Crombã©, K., De Castro, A., De La Cal, E., De La Luna, E., De Pablos, J. L., De Vries, P., Den Harder, N., D'Inca, R., Donnã©, T., Duckworth, P. h., Ä uran, I., Durodiã©, F., Eich, T. h., Fã©vrier, O., Gã¡l, K., Gaå azka, K., Galvã¡o, R., GarcÃa-Muñoz, M., Gardarein, J. -. L., Glã¶ggler, S., Goloborod'Ko, V., Goncalves, B., Guã©rard, C., Horã¡ä ek, J., Imrãå¡ek, M., Jã¤rvinen, A., Jednorã³g, S., Kã¶chl, F., Kã¶ppen, M., Kowalska-StrzÈ©ciwilk, E., Ksiaå¼ek, I., Å aszyå ska, E., Linsmeier, C. h., Lã¶nnroth, J., Lã³pez, J. M., López-Razola, J., Maquet, P. h., Markoviä , T., MartÃn De Aguilera, A., Martãnez, F. J., MartÃn-SolÃs, J. R., Mertens, P. h., Mlynã¡å , J., O'Gorman, T., O'Mullane, M., Pehkonen, S. -. P., Perez Von Thun, C., Petrå¾ilka, V., Pfefferlã©, D., Pires Dos Reis, A., Pã¼tterich, T. h., Rattã¡, G., Rã©fy, D., Regaã±a, J., Schã¶pf, K., Schwã¶rer, D., Sipilã¤, S. K., Sirã©n, P., Sjã¶strand, H., Stankå«nas, G., Strã¶m, P., Å widerski, Å. ., Tã¡l, B., Thompson, C. -. A., Thrysã¸e, A. S., Tomeå¡, M., Tskhakaya Jun, D., Van Rooij, G. J., Vondrã¡ä ek, P., Pires De Sa, W. W., Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Laboratoire de microbiologie et génétique moléculaires (LMGM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Energia [Milano] (DENG), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Research Centre Julich (FZJ), Institute for Plasma Research, Instituto Superior Tecnico Lisboa, Queen's University Belfast, University of Helsinki, CEA, Department of Applied Physics, School services, SCI, National Institutes for Quantum and Radiological Science and Technology, VTT, University of Naples Federico II, Universidad Nacional de Educacion a Distancia, CNR, Russian Research Centre Kurchatov Institute, Universita degli Studi di Napoli Parthenope, Ente Per Le Nuove Tecnologie L'energia e l'ambiente, Troitsk Institute for Innovation and Fusion Research, Uppsala University, National Institute for Cryogenics and Isotopic Technology, Max-Planck-Institut fur Plasmaphysik, University of Catania, Fusion for Energy Joint Undertaking, National Institutes of Natural Sciences - National Institute for Fusion Science, Massachusetts Institute of Technology, University of Latvia, Imperial College London, CIEMAT, University of Oxford, EUROfusion Programme Management Unit, Oak Ridge National Laboratory, Karlsruhe Institute of Technology KIT, University of York, Royal Institute of Technology, Maritime University of Szczecin, H. Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Czech Academy of Sciences, University of Trento, Ecole Polytechnique Federale de Lausanne (EPFL), Wigner Research Centre for Physics, Comenius University, University of Milan - Bicocca, National Institute for Optoelectronics, Fourth State Research, University of Texas at Austin, Belgian Nuclear Research Center, National Centre for Nuclear Research (NCBJ), Princeton University, CNRS, University of Cagliari, University of Warwick, Soltan Institute for Nuclear Studies, FOM Institute DIFFER, National Institute for Laser, Plasma and Radiation Physics, Ghent University, J. Stefan Institute, Universite de Lorraine, CAS - Institute of Plasma Physics, University of California at San Diego, Koninklijke Militaire School - Ecole Royale Militaire, Horia Hulubei National Institute of Physics and Nuclear Engineering, Chalmers University of Technology, School services, ELEC, Department of Signal Processing and Acoustics, Automaatio- ja systeemitekniik, Universidad Politecnica de Madrid, Second University of Naples, Warsaw University of Technology, Universita della Basilicata, Barcelona Supercomp. Center, Universidad de Sevilla, Centro Brasileiro de Pesquisas Fisicas, Department of Electrical Engineering and Automation, Sähkötekniikan laitos, University of Rome Tor Vergata, RAS - Ioffe Physico Technical Institute, General Atomics, University of Innsbruck, Fusion and Plasma Physics, University of Toyama, University of Strathclyde, National Technical University of Athens, Universita della Tuscia, Technical University of Denmark, Korea Advanced Institute of Science and Technology, Seoul National University, University College Cork, Vienna University of Technology, University of Opole, Daegu University, National Fusion Research Institute, Dublin City University, Universidad Politécnica de Madrid, PELIN LLC, Arizona State University, Universidad Complutense, University of Basel, Universidad Carlos III de Madrid, Consorzio CREATE, Demokritos National Centre for Scientific Research, Purdue University, Universite Libre de Bruxelles, School Services, ARTS, Department of Design, University of California Office of the President, Universidade de Sao Paulo, School Services, BIZ, Department of Information and Service Management, Lithuanian Energy Institute, HRS Fusion, Politecnico di Torino, University of Cassino, University of Electronic Science and Technology of China, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, and Faculdade de Engenharia
- Subjects
Technology ,fusion ,Física [Ciências exactas e naturais] ,Tokamak ,Nuclear engineering ,DIAGNOSTICS ,01 natural sciences ,ILW ,010305 fluids & plasmas ,law.invention ,Ilw ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Plasma ,H-Mode Plasmas ,law ,ITER ,Disruption Prediction ,COLLISIONALITY ,EDGE LOCALIZED MODES ,Diagnostics ,Operation ,JET ,plasma ,Nuclear and High Energy Physics ,Condensed Matter Physics ,Physics ,Jet (fluid) ,JET, plasma, fusion, ITER ,Divertor ,Settore FIS/01 - Fisica Sperimentale ,Fusion, Plasma and Space Physics ,DENSITY PEAKING ,Carbon Wall ,H-MODE PLASMAS ,[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Density Peaking ,Neutron transport ,Facing Components ,Collisionality ,114 Physical sciences ,Física, Física ,Nuclear physics ,Physical sciences [Natural sciences] ,Fusion, plasma och rymdfysik ,Pedestal ,0103 physical sciences ,Nuclear fusion ,ddc:530 ,Neutron ,010306 general physics ,Fusion ,Physics, Physical sciences ,Nuclear and High Energy Physic ,Edge Localized Modes ,QC717 ,Física [Àrees temàtiques de la UPC] ,Reactors de fusió ,Física ,FACING COMPONENTS ,Fusion reactors ,Jet ,CARBON WALL ,DISRUPTION PREDICTION ,OPERATION ,ddc:600 - Abstract
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at ßN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. Peer Reviewed Article signat per 1.173 autors/es: X. Litaudon35, S. Abduallev39, M. Abhangi46, P. Abreu53, M. Afzal7, K.M. Aggarwal29, T. Ahlgren101, J.H. Ahn8, L. Aho-Mantila112, N. Aiba69, M. Airila112, R. Albanese105, V. Aldred7, D. Alegre93, E. Alessi45, P. Aleynikov55, A. Alfier12, A. Alkseev72, M. Allinson7, B. Alper7, E. Alves53, G. Ambrosino105, R. Ambrosino106, L. Amicucci90, V. Amosov88, E. Andersson Sundén22, M. Angelone90, M. Anghel85, C. Angioni62, L. Appel7, C. Appelbee7, P. Arena30, M. Ariola106, H. Arnichand8, S. Arshad41, A. Ash7, N. Ashikawa68, V. Aslanyan64, O. Asunta1, F. Auriemma12, Y. Austin7, L. Avotina103, M.D. Axton7, C. Ayres7, M. Bacharis24, A. Baciero57, D. Baião53, S. Bailey7, A. Baker7, I. Balboa7, M. Balden62, N. Balshaw7, R. Bament7, J.W. Banks7, Y.F. Baranov7, M.A. Barnard7, D. Barnes7, M. Barnes27, R. Barnsley55, A. Baron Wiechec7, L. Barrera Orte34, M. Baruzzo12, V. Basiuk8, M. Bassan55, R. Bastow7, A. Batista53, P. Batistoni90, R. Baughan7, B. Bauvir55, L. Baylor73, B. Bazylev56, J. Beal110, P.S. Beaumont7, M. Beckers39, B. Beckett7, A. Becoulet8, N. Bekris35, M. Beldishevski7, K. Bell7, F. Belli90, M. Bellinger7, É. Belonohy62, N. Ben Ayed7, N.A. Benterman7, H. Bergsåker42, J. Bernardo53, M. Bernert62, M. Berry7, L. Bertalot55, C. Besliu7, M. Beurskens63, B. Bieg61, J. Bielecki47, T. Biewer73, M. Bigi12, P. Bílková50, F. Binda22, A. Bisoffi31, J.P.S. Bizarro53, C. Björkas101, J. Blackburn7, K. Blackman7, T.R. Blackman7, P. Blanchard33, P. Blatchford7, V. Bobkov62, A. Boboc7, G. Bodnár113, O. Bogar18, I. Bolshakova60, T. Bolzonella12, N. Bonanomi97, F. Bonelli56, J. Boom62, J. Booth7, D. Borba35,53, D. Borodin39, I. Borodkina39, A. Botrugno90, C. Bottereau8, P. Boulting7, C. Bourdelle8, M. Bowden7, C. Bower7, C. Bowman110, T. Boyce7, C. Boyd7, H.J. Boyer7, J.M.A. Bradshaw7, V. Braic87, R. Bravanec40, B. Breizman107, S. Bremond8, P.D. Brennan7, S. Breton8, A. Brett7, S. Brezinsek39, M.D.J. Bright7, M. Brix7, W. Broeckx78, M. Brombin12, A. Brosławski65, D.P.D. Brown7, M. Brown7, E. Bruno55, J. Bucalossi8, J. Buch46, J. Buchanan7, M.A. Buckley7, R. Budny76, H. Bufferand8, M. Bulman7, N. Bulmer7, P. Bunting7, P. Buratti90, A. Burckhart62, A. Buscarino30, A. Busse7, N.K. Butler7, I. Bykov42, J. Byrne7, P. Cahyna50, G. Calabrò90, I. Calvo57, Y. Camenen4, P. Camp7, D.C. Campling7, J. Cane7, B. Cannas17, A.J. Capel7, P.J. Card7, A. Cardinali90, P. Carman7, M. Carr7, D. Carralero62, L. Carraro12, B.B. Carvalho53, I. Carvalho53, P. Carvalho53, F.J. Casson7, C. Castaldo90, N. Catarino53, J. Caumont7, F. Causa90, R. Cavazzana12, K. Cave-Ayland7, M. Cavinato12, M. Cecconello22, S. Ceccuzzi90, E. Cecil76, A. Cenedese12, R. Cesario90, C.D. Challis7, M. Chandler7, D. Chandra46, C.S. Chang76, A. Chankin62, I.T. Chapman7, S.C. Chapman28, M. Chernyshova49, G. Chitarin12, G. Ciraolo8, D. Ciric7, J. Citrin38, F. Clairet8, E. Clark7, M. Clark7, R. Clarkson7, D. Clatworthy7, C. Clements7, M. Cleverly7, J.P. Coad7, P.A. Coates7, A. Cobalt7, V. Coccorese105, V. Cocilovo90, S. Coda33, R. Coelho53, J.W. Coenen39, I. Coffey29, L. Colas8, S. Collins7, D. Conka103, S. Conroy22, N. Conway7, D. Coombs7, D. Cooper7, S.R. Cooper7, C. Corradino30, Y. Corre8, G. Corrigan7, S. Cortes53, D. Coster62, A.S. Couchman7, M.P. Cox7, T. Craciunescu86, S. Cramp7, R. Craven7, F. Crisanti90, G. Croci97, D. Croft7, K. Crombé15, R. Crowe7, N. Cruz53, G. Cseh113, A. Cufar81, A. Cullen7, M. Curuia85, A. Czarnecka49, H. Dabirikhah7, P. Dalgliesh7, S. Dalley7, J. Dankowski47, D. Darrow76, O. Davies7, W. Davis55,76, C. Day56, I.E. Day7, M. De Bock55, A. de Castro57, E. de la Cal57, E. de la Luna57, G. De Masi12, J. L. de Pablos57, G. De Temmerman55, G. De Tommasi105, P. de Vries55, K. Deakin7, J. Deane7, F. Degli Agostini12, R. Dejarnac50, E. Delabie73, N. den Harder38, R.O. Dendy7, J. Denis8, P. Denner39, S. Devaux62,104, P. Devynck8, F. Di Maio55, A. Di Siena62, C. Di Troia90, P. Dinca86, R. D’Inca62, B. Ding51, T. Dittmar39, H. Doerk62, R.P. Doerner9, T. Donné34, S.E. Dorling7, S. Dormido-Canto93, S. Doswon7, D. Douai8, P.T. Doyle7, A. Drenik62,81, P. Drewelow63, P. Drews39, Ph. Duckworth55, R. Dumont8, P. Dumortier58, D. Dunai113, M. Dunne62, I. Ďuran50, F. Durodié58, P. Dutta46, B. P. Duval33, R. Dux62, K. Dylst78, N. Dzysiuk22, P.V. Edappala46, J. Edmond7, A.M. Edwards7, J. Edwards7, Th. Eich62, A. Ekedahl8, R. El-Jorf7, C.G. Elsmore7, M. Enachescu84, G. Ericsson22, F. Eriksson16, J. Eriksson22, L.G. Eriksson36, B. Esposito90, S. Esquembri94, H.G. Esser39, D. Esteve8, B. Evans7, G.E. Evans7, G. Evison7, G.D. Ewart7, D. Fagan7, M. Faitsch62, D. Falie86, A. Fanni17, A. Fasoli33, J. M. Faustin33, N. Fawlk7, L. Fazendeiro53, N. Fedorczak8, R.C. Felton7, K. Fenton7, A. Fernades53, H. Fernandes53, J. Ferreira53, J.A. Fessey7, O. Février8, O. Ficker50, A. Field7, S. Fietz62, A. Figueiredo53, J. Figueiredo53,35, A. Fil8, P. Finburg7, M. Firdaouss8, U. Fischer56, L. Fittill7, M. Fitzgerald7, D. Flammini90, J. Flanagan7, C. Fleming7, K. Flinders7, N. Fonnesu90, J. M. Fontdecaba57, A. Formisano79, L. Forsythe7, L. Fortuna30, E. Fortuna-Zalesna19, M. Fortune7, S. Foster7, T. Franke34, T. Franklin7, M. Frasca30, L. Frassinetti42, M. Freisinger39, R. Fresa98, D. Frigione90, V. Fuchs50, D. Fuller35, S. Futatani6, J. Fyvie7, K. Gál34,62, D. Galassi2, K. Gałązka49, J. Galdon-Quiroga92, J. Gallagher7, D. Gallart6, R. Galvão10, X. Gao51, Y. Gao39, J. Garcia8, A. Garcia-Carrasco42, M. García-Muñoz92, J.-L. Gardarein3, L. Garzotti7, P. Gaudio95, E. Gauthier8, D.F. Gear7, S.J. Gee7, B. Geiger62, M. Gelfusa95, S. Gerasimov7, G. Gervasini45, M. Gethins7, Z. Ghani7, M. Ghate46, M. Gherendi86, J.C. Giacalone8, L. Giacomelli45, C.S. Gibson7, T. Giegerich56, C. Gil8, L. Gil53, S. Gilligan7, D. Gin54, E. Giovannozzi90, J.B. Girardo8, C. Giroud7, G. Giruzzi8, S. Glöggler62, J. Godwin7, J. Goff7, P. Gohil43, V. Goloborod’ko102, R. Gomes53, B. Gonçalves53, M. Goniche8, M. Goodliffe7, A. Goodyear7, G. Gorini97, M. Gosk65, R. Goulding76, A. Goussarov78, R. Gowland7, B. Graham7, M.E. Graham7, J. P. Graves33, N. Grazier7, P. Grazier7, N.R. Green7, H. Greuner62, B. Grierson76, F.S. Griph7, C. Grisolia8, D. Grist7, M. Groth1, R. Grove73, C.N. Grundy7, J. Grzonka19, D. Guard7, C. Guérard34, C. Guillemaut8,53, R. Guirlet8, C. Gurl7, H.H. Utoh69, L.J. Hackett7, S. Hacquin8,35, A. Hagar7, R. Hager76, A. Hakola112, M. Halitovs103, S.J. Hall7, S.P. Hallworth Cook7, C. Hamlyn-Harris7, K. Hammond7, C. Harrington7, J. Harrison7, D. Harting7, F. Hasenbeck39, Y. Hatano108, D.R. Hatch107, T.D.V. Haupt7, J. Hawes7, N.C. Hawkes7, J. Hawkins7, P. Hawkins7, P.W. Haydon7, N. Hayter7, S. Hazel7, P.J.L. Heesterman7, K. Heinola101, C. Hellesen22, T. Hellsten42, W. Helou8, O.N. Hemming7, T.C. Hender7, M. Henderson55, S.S. Henderson21, R. Henriques53, D. Hepple7, G. Hermon7, P. Hertout8, C. Hidalgo57, E.G. Highcock27, M. Hill7, J. Hillairet8, J. Hillesheim7, D. Hillis73, K. Hizanidis70, A. Hjalmarsson22, J. Hobirk62, E. Hodille8, C.H.A. Hogben7, G.M.D. Hogeweij38, A. Hollingsworth7, S. Hollis7, D.A. Homfray7, J. Horáček50, G. Hornung15, A.R. Horton7, L.D. Horton36, L. Horvath110, S.P. Hotchin7, M.R. Hough7, P.J. Howarth7, A. Hubbard64, A. Huber39, V. Huber39, T.M. Huddleston7, M. Hughes7, G.T.A. Huijsmans55, C.L. Hunter7, P. Huynh8, A.M. Hynes7, D. Iglesias7, N. Imazawa69, F. Imbeaux8, M. Imríšek50, M. Incelli109, P. Innocente12, M. Irishkin8, I. Ivanova-Stanik49, S. Jachmich58,35, A.S. Jacobsen83, P. Jacquet7, J. Jansons103, A. Jardin8, A. Järvinen1, F. Jaulmes38, S. Jednoróg49, I. Jenkins7, C. Jeong20, I. Jepu86, E. Joffrin8, R. Johnson7, T. Johnson42, Jane Johnston7, L. Joita7, G. Jones7, T.T.C. Jones7, K.K. Hoshino69, A. Kallenbach62, K. Kamiya69, J. Kaniewski7, A. Kantor7, A. Kappatou62, J. Karhunen1, D. Karkinsky7, I. Karnowska7, M. Kaufman73, G. Kaveney7, Y. Kazakov58, V. Kazantzidis70, D.L. Keeling7, T. Keenan7, J. Keep7, M. Kempenaars7, C. Kennedy7, D. Kenny7, J. Kent7, O.N. Kent7, E. Khilkevich54, H.T. Kim35, H.S. Kim80, A. Kinch7, C. king7, D. King7, R.F. King7, D.J. Kinna7, V. Kiptily7, A. Kirk7, K. Kirov7, A. Kirschner39, G. Kizane103, C. Klepper73, A. Klix56, P. Knight7, S.J. Knipe7, S. Knott96, T. Kobuchi69, F. Köchl111, G. Kocsis113, I. Kodeli81, L. Kogan7, D. Kogut8, S. Koivuranta112, Y. Kominis70, M. Köppen39, B. Kos81, T. Koskela1, H.R. Koslowski39, M. Koubiti4, M. Kovari7, E. Kowalska-Strzęciwilk49, A. Krasilnikov88, V. Krasilnikov88, N. Krawczyk49, M. Kresina8, K. Krieger62, A. Krivska58, U. Kruezi7, I. Książek48, A. Kukushkin72, A. Kundu46, T. Kurki-Suonio1, S. Kwak20, R. Kwiatkowski65, O.J. Kwon13, L. Laguardia45, A. Lahtinen101, A. Laing7, N. Lam7, H.T. Lambertz39, C. Lane7, P.T. Lang62, S. Lanthaler33, J. Lapins103, A. Lasa101, J.R. Last7, E. Łaszyńska49, R. Lawless7, A. Lawson7, K.D. Lawson7, A. Lazaros70, E. Lazzaro45, J. Leddy110, S. Lee66, X. Lefebvre7, H.J. Leggate32, J. Lehmann7, M. Lehnen55, D. Leichtle41, P. Leichuer7, F. Leipold55,83, I. Lengar81, M. Lennholm36, E. Lerche58, A. Lescinskis103, S. Lesnoj7, E. Letellier7, M. Leyland110, W. Leysen78, L. Li39, Y. Liang39, J. Likonen112, J. Linke39, Ch. Linsmeier39, B. Lipschultz110, G. Liu55, Y. Liu51, V.P. Lo Schiavo105, T. Loarer8, A. Loarte55, R.C. Lobel7, B. Lomanowski1, P.J. Lomas7, J. Lönnroth1,35, J. M. López94, J. López-Razola57, R. Lorenzini12, U. Losada57, J.J. Lovell7, A.B. Loving7, C. Lowry36, T. Luce43, R.M.A. Lucock7, A. Lukin74, C. Luna5, M. Lungaroni95, C.P. Lungu86, M. Lungu86, A. Lunniss110, I. Lupelli7, A. Lyssoivan58, N. Macdonald7, P. Macheta7, K. Maczewa7, B. Magesh46, P. Maget8, C. Maggi7, H. Maier62, J. Mailloux7, T. Makkonen1, R. Makwana46, A. Malaquias53, A. Malizia95, P. Manas4, A. Manning7, M.E. Manso53, P. Mantica45, M. Mantsinen6, A. Manzanares91, Ph. Maquet55, Y. Marandet4, N. Marcenko88, C. Marchetto45, O. Marchuk39, M. Marinelli95, M. Marinucci90, T. Markovič50, D. Marocco90, L. Marot26, C.A. Marren7, R. Marshal7, A. Martin7, Y. Martin33, A. Martín de Aguilera57, F.J. Martínez93, J. R. Martín-Solís14, Y. Martynova39, S. Maruyama55, A. Masiello12, M. Maslov7, S. Matejcik18, M. Mattei79, G.F. Matthews7, F. Maviglia11, M. Mayer62, M.L. Mayoral34, T. May-Smith7, D. Mazon8, C. Mazzotta90, R. McAdams7, P.J. McCarthy96, K.G. McClements7, O. McCormack12, P.A. McCullen7, D. McDonald34, S. McIntosh7, R. McKean7, J. McKehon7, R.C. Meadows7, A. Meakins7, F. Medina57, M. Medland7, S. Medley7, S. Meigh7, A.G. Meigs7, G. Meisl62, S. Meitner73, L. Meneses53, S. Menmuir7,42, K. Mergia71, I.R. Merrigan7, Ph. Mertens39, S. Meshchaninov88, A. Messiaen58, H. Meyer7, S. Mianowski65, R. Michling55, D. Middleton-Gear7, J. Miettunen1, F. Militello7, E. Militello-Asp7, G. Miloshevsky77, F. Mink62, S. Minucci105, Y. Miyoshi69, J. Mlynář50, D. Molina8, I. Monakhov7, M. Moneti109, R. Mooney7, S. Moradi37, S. Mordijck43, L. Moreira7, R. Moreno57, F. Moro90, A.W. Morris7, J. Morris7, L. Moser26, S. Mosher73, D. Moulton7,1, A. Murari12,35, A. Muraro45, S. Murphy7, N.N. Asakura69, Y.S. Na80, F. Nabais53, R. Naish7, T. Nakano69, E. Nardon8, V. Naulin83, M.F.F. Nave53, I. Nedzelski53, G. Nemtsev88, F. Nespoli33, A. Neto41, R. Neu62, V.S. Neverov72, M. Newman7, K.J. Nicholls7, T. Nicolas33, A.H. Nielsen83, P. Nielsen12, E. Nilsson8, D. Nishijima99, C. Noble7, M. Nocente97, D. Nodwell7, K. Nordlund101, H. Nordman16, R. Nouailletas8, I. Nunes53, M. Oberkofler62, T. Odupitan7, M.T. Ogawa69, T. O’Gorman7, M. Okabayashi76, R. Olney7, O. Omolayo7, M. O’Mullane21, J. Ongena58, F. Orsitto11, J. Orszagh18, B.I. Oswuigwe7, R. Otin7, A. Owen7, R. Paccagnella12, N. Pace7, D. Pacella90, L.W. Packer7, A. Page7, E. Pajuste103, S. Palazzo30, S. Pamela7, S. Panja46, P. Papp18, R. Paprok50, V. Parail7, M. Park66, F. Parra Diaz27, M. Parsons73, R. Pasqualotto12, A. Patel7, S. Pathak46, D. Paton7, H. Patten33, A. Pau17, E. Pawelec48, C. Paz Soldan43, A. Peackoc36, I.J. Pearson7, S.-P. Pehkonen112, E. Peluso95, C. Penot55, A. Pereira57, R. Pereira53, P.P. Pereira Puglia7, C. Perez von Thun35,39, S. Peruzzo12, S. Peschanyi56, M. Peterka50, P. Petersson42, G. Petravich113, A. Petre84, N. Petrella7, V. Petržilka50, Y. Peysson8, D. Pfefferlé33, V. Philipps39, M. Pillon90, G. Pintsuk39, P. Piovesan12, A. Pires dos Reis52, L. Piron7, A. Pironti105, F. Pisano17, R. Pitts55, F. Pizzo79, V. Plyusnin53, N. Pomaro12, O.G. Pompilian86, P.J. Pool7, S. Popovichev7, M.T. Porfiri90, C. Porosnicu86, M. Porton7, G. Possnert22, S. Potzel62, T. Powell7, J. Pozzi7, V. Prajapati46, R. Prakash46, G. Prestopino95, D. Price7, M. Price7, R. Price7, P. Prior7, R. Proudfoot7, G. Pucella90, P. Puglia52, M.E. Puiatti12, D. Pulley7, K. Purahoo7, Th. Pütterich62, E. Rachlew25, M. Rack39, R. Ragona58, M.S.J. Rainford7, A. Rakha6, G. Ramogida90, S. Ranjan46, C.J. Rapson62, J.J. Rasmussen83, K. Rathod46, G. Rattá57, S. Ratynskaia82, G. Ravera90, C. Rayner7, M. Rebai97, D. Reece7, A. Reed7, D. Réfy113, B. Regan7, J. Regaña34, M. Reich62, N. Reid7, F. Reimold39, M. Reinhart34, M. Reinke110,73, D. Reiser39, D. Rendell7, C. Reux8, S.D.A. Reyes Cortes53, S. Reynolds7, V. Riccardo7, N. Richardson7, K. Riddle7, D. Rigamonti97, F.G. Rimini7, J. Risner73, M. Riva90, C. Roach7, R.J. Robins7, S.A. Robinson7, T. Robinson7, D.W. Robson7, R. Roccella55, R. Rodionov88, P. Rodrigues53, J. Rodriguez7, V. Rohde62, F. Romanelli90, M. Romanelli7, S. Romanelli7, J. Romazanov39, S. Rowe7, M. Rubel42, G. Rubinacci105, G. Rubino12, L. Ruchko52, M. Ruiz94, C. Ruset86, J. Rzadkiewicz65, S. Saarelma7, R. Sabot8, E. Safi101, P. Sagar7, G. Saibene41, F. Saint-Laurent8, M. Salewski83, A. Salmi112, R. Salmon7, F. Salzedas53, D. Samaddar7, U. Samm39, D. Sandiford7, P. Santa46, M.I.K. Santala1, B. Santos53, A. Santucci90, F. Sartori41, R. Sartori41, O. Sauter33, R. Scannell7, T. Schlummer39, K. Schmid62, V. Schmidt12, S. Schmuck7, M. Schneider8, K. Schöpf102, D. Schwörer32, S.D. Scott76, G. Sergienko39, M. Sertoli62, A. Shabbir15, S.E. Sharapov7, A. Shaw7, R. Shaw7, H. Sheikh7, A. Shepherd7, A. Shevelev54, A. Shumack38, G. Sias17, M. Sibbald7, B. Sieglin62, S. Silburn7, A. Silva53, C. Silva53, P.A. Simmons7, J. Simpson7, J. Simpson-Hutchinson7, A. Sinha46, S.K. Sipilä1, A.C.C. Sips36, P. Sirén112, A. Sirinelli55, H. Sjöstrand22, M. Skiba22, R. Skilton7, K. Slabkowska49, B. Slade7, N. Smith7, P.G. Smith7, R. Smith7, T.J. Smith7, M. Smithies110, L. Snoj81, S. Soare85, E. R. Solano35,57, A. Somers32, C. Sommariva8, P. Sonato12, A. Sopplesa12, J. Sousa53, C. Sozzi45, S. Spagnolo12, T. Spelzini7, F. Spineanu86, G. Stables7, I. Stamatelatos71, M.F. Stamp7, P. Staniec7, G. Stankūnas59, C. Stan-Sion84, M.J. Stead7, E. Stefanikova42, I. Stepanov58, A.V. Stephen7, M. Stephen46, A. Stevens7, B.D. Stevens7, J. Strachan76, P. Strand16, H.R. Strauss44, P. Ström42, G. Stubbs7, W. Studholme7, F. Subba75, H.P. Summers21, J. Svensson63, Ł. Świderski65, T. Szabolics113, M. Szawlowski49, G. Szepesi7, T.T. Suzuki69, B. Tál113, T. Tala112, A.R. Talbot7, S. Talebzadeh95, C. Taliercio12, P. Tamain8, C. Tame7, W. Tang76, M. Tardocchi45, L. Taroni12, D. Taylor7, K.A. Taylor7, D. Tegnered16, G. Telesca15, N. Teplova54, D. Terranova12, D. Testa33, E. Tholerus42, J. Thomas7, J.D. Thomas7, P. Thomas55, A. Thompson7, C.-A. Thompson7, V.K. Thompson7, L. Thorne7, A. Thornton7, A.S. Thrysøe83, P.A. Tigwell7, N. Tipton7, I. Tiseanu86, H. Tojo69, M. Tokitani67, P. Tolias82, M. Tomeš50, P. Tonner7, M. Towndrow7, P. Trimble7, M. Tripsky58, M. Tsalas38, P. Tsavalas71, D. Tskhakaya jun102, I. Turner7, M.M. Turner32, M. Turnyanskiy34, G. Tvalashvili7, S.G.J. Tyrrell7, A. Uccello45, Z. Ul-Abidin7, J. Uljanovs1, D. Ulyatt7, H. Urano69, I. Uytdenhouwen78, A.P. Vadgama7, D. Valcarcel7, M. Valentinuzzi8, M. Valisa12, P. Vallejos Olivares42, M. Valovic7, M. Van De Mortel7, D. Van Eester58, W. Van Renterghem78, G.J. van Rooij38, J. Varje1, S. Varoutis56, S. Vartanian8, K. Vasava46, T. Vasilopoulou71, J. Vega57, G. Verdoolaege58, R. Verhoeven7, C. Verona95, G. Verona Rinati95, E. Veshchev55, N. Vianello45, J. Vicente53, E. Viezzer62,92, S. Villari90, F. Villone100, P. Vincenzi12, I. Vinyar74, B. Viola90, A. Vitins103, Z. Vizvary7, M. Vlad86, I. Voitsekhovitch34, P. Vondráček50, N. Vora7, T. Vu8, W.W. Pires de Sa52, B. Wakeling7, C.W.F. Waldon7, N. Walkden7, M. Walker7, R. Walker7, M. Walsh55, E. Wang39, N. Wang39, S. Warder7, R.J. Warren7, J. Waterhouse7, N.W. Watkins28, C. Watts55, T. Wauters58, A. Weckmann42, J. Weiland23, H. Weisen33, M. Weiszflog22, C. Wellstood7, A.T. West7, M.R. Wheatley7, S. Whetham7, A.M. Whitehead7, B.D. Whitehead7, A.M. Widdowson7, S. Wiesen39, J. Wilkinson7, J. Williams7, M. Williams7, A.R. Wilson7, D.J. Wilson7, H.R. Wilson110, J. Wilson7, M. Wischmeier62, G. Withenshaw7, A. Withycombe7, D.M. Witts7, D. Wood7, R. Wood7, C. Woodley7, S. Wray7, J. Wright7, J.C. Wright64, J. Wu89, S. Wukitch64, A. Wynn110, T. Xu7, D. Yadikin16, W. Yanling39, L. Yao89, V. Yavorskij102, M.G. Yoo80, C. Young7, D. Young7, I.D. Young7, R. Young7, J. Zacks7, R. Zagorski49, F.S. Zaitsev18, R. Zanino75, A. Zarins103, K.D. Zastrow7, M. Zerbini90, W. Zhang62, Y. Zhou42, E. Zilli12, V. Zoita86, S. Zoletnik113, I. Zychor65 and JET Contributorsa // EUROfusion Consortium JET, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom / 1 Aalto University, PO Box 14100, FIN-00076 Aalto, Finland / 2 Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451, Marseille, France / 3 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France / 4 Aix-Marseille Université, CNRS, PIIM, UMR 7345, 13013 Marseille, France / 5 Arizona State University, Tempe, AZ, United States of America / 6 Barcelona Supercomputing Center, Barcelona, Spain / 7 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom / 8 CEA, IRFM, F-13108 Saint Paul Lez Durance, France / 9 Center for Energy Research, University of California at San Diego, La Jolla, CA 92093, United States of America / 10 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 160, Rio de Janeiro CEP 22290-180, Brazil / 11 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 12 Consorzio RFX, corso Stati Uniti 4, 35127 Padova, Italy / 13 Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-174, Republic of Korea / 14 Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain / 15 Department of Applied Physics UG (Ghent University) St-Pietersnieuwstraat 41 B-9000 Ghent, Belgium / 16 Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 17 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123, Cagliari, Italy / 18 Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics Comenius University Mlynska dolina F2, 84248 Bratislava, Slovakia / 19 Department of Materials Science, Warsaw University of Technology, PL-01-152 Warsaw, Poland / 20 Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea / 21 Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 ONG, United Kingdom / 22 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden / 23 Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 24 Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom / 25 Department of Physics, SCI, KTH, SE-10691 Stockholm, Sweden / 26 Department of Physics, University of Basel, Basel, Switzerland / 27 Department of Physics, University of Oxford, Oxford, OX1 2JD, United Kingdom / 28 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom / 29 Department of Pure and Applied Physics, Queens University, Belfast, BT7 1NN, United Kingdom / 30 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy / 31 Dipartimento di Ingegneria Industriale, University of Trento, Trento, Italy / 32 Dublin City University (DCU), Dublin, Ireland / 33 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland / 34 EUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany / 35 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom / 36 European Commission, B-1049 Brussels, Belgium / 37 Fluid and Plasma Dynamics, ULB—Campus Plaine—CP 231 Boulevard du Triomphe, 1050 Bruxelles, Belgium / 38 FOM Institute DIFFER, Eindhoven, Netherlands / 39 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany / 40 Fourth State Research, 503 Lockhart Dr, Austin, TX, United States of America / 41 Fusion for Energy Joint Undertaking, Josep Pl. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain / 42 Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden / 43 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America / 44 HRS Fusion, West Orange, NJ, United States of America / 45 IFP-CNR, via R. Cozzi 53, 20125 Milano, Italy / 46 Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat State, India / 47 Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland / 48 Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland / 49 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland / 50 Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Praha 8, Czechia / 51 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China / 52 Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brasil / 53 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal / 54 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation / 55 ITER Organization, Route de Vinon, CS 90 046, 13067 Saint Paul Lez Durance, France / 56 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany / 57 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain / 58 Laboratory for Plasma Physics Koninklijke Militaire School—Ecole Royale Militaire, Renaissancelaan 30 Avenue de la Renaissance B-1000, Brussels, Belgium / 59 Lithuanian energy institute, Breslaujos g. 3, LT-44403, Kaunas, Lithuania / 60 Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine / 61 Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland / 62 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany / 63 Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald, Germany / 64 MIT Plasma Science and Fusion Centre, Cambridge, MA 02139, United States of America / 65 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Świerk, Poland / 66 National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea / 67 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan / 68 National Institute for Fusion Science, Toki, 509-5292, Japan / 69 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan / 70 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece / 71 NCSR ‘Demokritos’, 153 10, Agia Paraskevi Attikis, Greece / 72 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russian Federation / 73 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, United States of America / 74 PELIN LLC, 27a, Gzhatskaya Ulitsa, Saint Petersburg, 195220, Russian Federation / 75 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy / 76 Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton, NJ 08543, United States of America / 77 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States of America / 78 SCK-CEN, Nuclear Research Centre, 2400 Mol, Belgium / 79 Second University of Napoli, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 80 Seoul National University, Shilim-Dong, Gwanak-Gu, Republic of Korea / 81 Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia / 82 Space and Plasma Physics, EES, KTH SE-100 44 Stockholm, Sweden / 83 Technical University of Denmark, Department of Physics, Bldg 309, DK-2800 Kgs Lyngby, Denmark / 84 The ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, Magurele-Bucharest, Romania / 85 The National Institute for Cryogenics and Isotopic Technology, Ramnicu Valcea, Romania / 86 The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania / 87 The National Institute for Optoelectronics, Magurele-Bucharest, Romania / 88 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russian Federation / 89 University of Electronic Science and Technology of China, Chengdu, People’s Republic of China / 90 Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy / 91 Universidad Complutense de Madrid, Madrid, Spain / 92 Universidad de Sevilla, Sevilla, Spain / 93 Universidad Nacional de Educación a Distancia, Madrid, Spain / 94 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain / 95 Università di Roma Tor Vergata, Via del Politecnico 1, Roma, Italy / 96 University College Cork (UCC), Ireland / 97 University Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy / 98 University of Basilicata, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 99 University of California, 1111 Franklin St., Oakland, CA 94607, United States of America / 100 University of Cassino, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 101 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland / 102 University of Innsbruck, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Innsbruck, Austria / 103 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia / 104 University of Lorraine, CNRS, UMR7198, YIJL, Nancy, France / 105 University of Napoli ‘Federico II’, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 106 University of Napoli Parthenope, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 107 University of Texas at Austin, Institute for Fusion Studies, Austin, TX 78712, United States of America / 108 University of Toyama, Toyama, 930-8555, Japan / 109 University of Tuscia, DEIM, Via del Paradiso 47, 01100 Viterbo, Italy / 110 University of York, Heslington, York YO10 5DD, United Kingdom / 111 Vienna University of Technology, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Austria / 112 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland / 113 Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
- Published
- 2017
- Full Text
- View/download PDF
14. Optimal number and position of the magnetic sensors for plasma shape identification in ITER
- Author
-
Alfredo Pironti, George Vayakis, Giuseppe Ambrosino, Marco Ariola, S. Arshad, Raffaele Albanese, Ariola, Marco, Pironti, Alfredo, Albanese, Raffaele, Ambrosino, Giuseppe, Arshad, Shakeib, and Vayakis, George
- Subjects
Multidisciplinary ,Tokamak ,Computer science ,Plasma ,Inverse problem ,law.invention ,Magnetic field ,Identification (information) ,Physics::Plasma Physics ,law ,Position (vector) ,Redundancy (engineering) ,Linear combination ,Algorithm - Abstract
Position and number of the magnetic sensors affect the accuracy of the plasma shape identification algorithms. These algorithms usually solve an inverse problem based on the solution of the Grad-Shafranov equilibrium equation, and they need as input a certain number of magnetic field and flux measurements in points located around the plasma. The scope of this paper is to investigate on the problem of assessing the minimum number of magnetic sensors that are necessary for the solution of the plasma shape identification in a tokamak machine. In particular, with reference to the ITER inner vessel magnetic diagnostic system, it is shown that, adopting a heuristic procedure, the available measurements are divided in two subsets, where the measurements in the first subset can be reconstructed by means of suitable linear combinations of measurements in the second subset. In this way, it is possible to evaluate the level of the redundancy of the ITER inner vessel diagnostic system and to outline a suitable fault management system.
- Published
- 2016
- Full Text
- View/download PDF
15. Performance assessment of a dynamic current allocator for the JET eXtreme Shape Controller
- Author
-
Giuseppe Ambrosino, G. Varano, Gianmaria De Tommasi, Sergio Galeani, Luca Zaccarian, Alfredo Pironti, G., Varano, Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, S., Galeani, Pironti, Alfredo, and L., Zaccarian
- Subjects
Plasma shape control ,Computer science ,Mechanical Engineering ,Input allocation ,Shape control ,Preliminary analysis ,Allocator ,Settore ING-INF/04 - Automatica ,Nuclear Energy and Engineering ,JET ,Control theory ,Poloidal field ,General Materials Science ,Civil and Structural Engineering - Abstract
This paper reports on a recently proposed dynamic allocation technique that can be effectively adopted to handle the current saturations of the Poloidal Field coils with the eXtreme Shape Controller. The proposed approach allows to automatically relax the plasma shape regulation when the reference shape requires current levels out of the available ranges, finding in real-time an optimal trade-off between shape control precision and currents saturation avoidance. In this paper the results attained during preliminary analysis are presented, showing the advantage arising from the use of the dynamic allocator, versus the bare use of the eXtreme Shape Controller.
- Published
- 2011
- Full Text
- View/download PDF
16. Rapid Prototyping of Safety System for Nuclear Risks of the ITER Tokamak
- Author
-
Massimiliano Banfi, Alfredo Pironti, Giuseppe Ambrosino, Augusto Mandelli, Luigi Scibile, G. Carannante, Gianmaria De Tommasi, Ambrosino, Giuseppe, Banfi, M., Carannante, Giuseppe, DE TOMMASI, Gianmaria, Mandelli, A., Pironti, Alfredo, and Scibile, L.
- Subjects
Rapid prototyping ,Hardware architecture ,Nuclear and High Energy Physics ,Computer science ,Magnetic confinement fusion ,model-based design ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,Cascading Style Sheets ,Software prototyping ,Condensed Matter Physics ,Modeling and simulation ,ITER ,Control system ,Hardware-in-the-loop (HIL) simulation ,Model-based design ,Systems engineering ,computer ,rapid prototyping ,computer.programming_language - Abstract
The ITER tokamak (Latin for “the way”) is the next step toward the realization of electricity-producing fusion power plants, since it has been designed to reach the plasma burning condition. The Central Safety System for Nuclear Risk (CSS) is the control system in charge to assure nuclear safety for the ITER plant, the personnel, and the environment. Since the CSS is a critical safety system, its validation and commissioning play an important role, and the required level of reliability must be demonstrated. In such a scenario, it is strongly recommended to use modeling and simulation tools since the early design phase. Indeed, mathematical models will help in the definition of the control system requirements. These models can be used for the rapid prototyping of the safety system, and hardware-in-the-loop (HIL) simulations can be performed to assess the performance of the control hardware against a plant simulator. This paper introduces the methodology and the software/hardware architecture used to develop both a CSS prototype and a ITER plant model suitable for the test and validation of this prototype.
- Published
- 2010
- Full Text
- View/download PDF
17. Conceptual design of the FAST load assembly
- Author
-
G. Brolatti, V. Pericoli-Ridolfini, G. Ramogida, P. Costa, A. Coletti, F. Crescenzi, G. Calabrò, G. Maddaluno, Giuseppe Ambrosino, P. Frosi, F. Crisanti, Raffaele Albanese, A. Cucchiaro, Aldo Pizzuto, V. Cocilovo, C. Rita, Gustavo Granucci, R. Coletti, A., Cucchiaro, Albanese, Raffaele, Ambrosino, Giuseppe, G., Brolatti, G., Calabro, V., Cocilovo, A., Coletti, R., Coletti, P., Costa, P., Frosi, F., Crescenzi, F., Crisanti, G., Granucci, G., Maddaluno, V., Pericoli Ridolfini, A., Pizzuto, C., Rita, and G., Ramogida
- Subjects
Materials science ,Tokamak ,Advanced Tokamak regime ,Mechanical Engineering ,Divertor ,Cyclotron ,chemistry.chemical_element ,Fusion power ,FAST Tokamak ,Liquid lithium divertor ,Neutral beam injection ,Electron cyclotron resonance ,law.invention ,Burning plasma ,Neon ,Nuclear Energy and Engineering ,chemistry ,law ,Magnet ,Ripple ,General Materials Science ,Burning plasmas ,Advanced Tokamak regimes ,Atomic physics ,Civil and Structural Engineering - Abstract
Fusion advanced studies torus (FAST) is a proposal for a satellite facility which can contribute the rapid exploitation of ITER and prepare ITER and DEMO regimes of operation, as well as exploiting innovative DEMO technology. FAST is a compact (R(0) = 1.82 m, a = 0.64 m, triangularity delta = 0.4) machine able to investigate non-linear dynamics effects of alpha particle behaviours in burning plasmas [1,2,5]. The project is based on a dominant 30 MW of ion cyclotron resonance heating (ICRH), 6 MW of lower hybrid (LH) and 4 MW of electron cyclotron resonance heating (ECRH). FAST operates at a wide range [3,4] of parameters, e.g., in high performance H-mode (B(T) up to 8.5T: I(p) up to 8 MA) as well as in advanced Tokamak operation (I(p) = 3 MA), and full non-inductive current scenario (I(p) = 2 MA). Helium gas at 30K is used for cooling the resistive copper magnets [6]. That allows for a pulse duration up to 170s. To limit the TF magnet ripple ferromagnetic insert have been introduced inside the vacuum vessel (VV). Ports have been designed to also accommodate up to 10 MW of negative neutral beam injection (NNBI). Tungsten (W) or liquid lithium (L-Li) have been chosen as the divertor plates material, and argon or neon as the injected impurities to mitigate the thermal loads. (C) 2009 Elsevier B.V. All rights reserved.
- Published
- 2010
- Full Text
- View/download PDF
18. Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches
- Author
-
Giuseppe Ambrosino, Raffaele Albanese, Ambrosino, Giuseppe, and Albanese, Raffaele
- Subjects
Physics ,Tokamak ,PID controller ,Plasma ,Decoupling (cosmology) ,Motion control ,Magnetic flux ,law.invention ,Physics::Plasma Physics ,Control and Systems Engineering ,Position (vector) ,Control theory ,law ,Modeling and Simulation ,Physics::Space Physics ,Electrical and Electronic Engineering - Abstract
Plasma current, position and shape control systems and modeling approaches were reviewed. The literature was divided into three categories, namely plasma radial position and current control, vertical stabilization of elongated plasmas, and plasma shape control. The plasma current and radial position control problem can be easily solved using a filament plasma model - the Shafarov lumped parameter equation and two separate PID controllers. At most, a MIMO controller can be used if decoupling is desired. Stabilization of the plasma vertical motion requires new control strategies in which the control algorithm is changed on the basis of an estimate of the measurement accuracy. For controlling the shape during the plasma formation and start-up phase, controllers based on magnetic flux control are useful when control requirements are not stringent.
- Published
- 2005
- Full Text
- View/download PDF
19. Perspectives for the High Field Approach in Fusion Research and Advances within the Ignitor Program
- Author
-
S. Mantovani, Bruno Coppi, Marco Tavani, Adele D'Amico, M. Sassi, A. DeVellis, P. Detragiache, Giovanna Cenacchi, Francesco Giammanco, P. Ferraris, Silvio Migliori, Alfredo Pironti, G. De Tommasi, S. Spillantini, G. Ramogida, G. Grasso, A. Airoldi, Fabio Villone, Guglielmo Rubinacci, A. Perona, L. Zucchi, A. Cardinali, Antonio Frattolillo, R. Napoli, A. Tumino, Giuseppe Ambrosino, F. Conti, L. Merriman, M. Lazzaretti, Raffaele Albanese, Samuele Pierattini, G. Belforte, Enrico Costa, E. Boggio-Sella, A. Sestero, G. Faelli, Coppi, B., Airoldi, A., Albanese, Raffaele, Ambrosino, Giuseppe, Belforte, G., Boggio Sella, E., Cardinali, A., Conti, F., Costa, E., D'Amico, A., Detragiache, P., DE TOMMASI, Gianmaria, Devellis, A., Faelli, G., Ferraris, P., Frattolillo, A., Giammanco, F., Grasso, D., Lazzaretti, M., Mantovani, S., Merriman, L., Migliori, S., Napoli, R., Perona, A., Pierattini, S., Pironti, Alfredo, Ramogida, A. G., Rubinacci, Guglielmo, Sassi, M., Sestero, A., Tavani, M., Tumino, A., Villone, F., and Zucchi, L.
- Subjects
Nuclear and High Energy Physics ,Fusion ,Thermonuclear fusion ,Computer science ,Nuclear engineering ,fusion reactors ,Welding ,Superconducting magnet ,Plasma ,Condensed Matter Physics ,IGNITOR ,burning plasmas ,law.invention ,Ignition system ,Physics::Plasma Physics ,law ,Magnet ,ignition ,burning plasma - Abstract
The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets. © 2015 IAEA.
- Published
- 2015
20. The ITER Plasma Control System Simulation Platform
- Author
-
G. De Tommasi, M.L. Walker, Giuseppe Ambrosino, G. Neu, W. Treutterer, A. Winter, C. J. Rapson, D.A. Humphreys, Gerhard Raupp, A.S. Welander, Massimiliano Mattei, Walker, M. L, Ambrosino, G., De Tommasi, G., Humphreys, D. A., Mattei, Massimiliano, Neu, G., Rapson, C. J., Raupp, G., Treutterer, W., Welander, A. S., Winter, A., Walker, M. L., Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, and Mattei, M.
- Subjects
Focus (computing) ,business.industry ,Computer science ,Tokamak ,Mechanical Engineering ,Exception handling ,Control (management) ,Modular design ,Plasma control ,Alpha (programming language) ,Plasma ,Mode (computer interface) ,Nuclear Energy and Engineering ,Systems engineering ,Plasma control system ,General Materials Science ,Materials Science (all) ,Architecture ,business ,Simulation ,Civil and Structural Engineering - Abstract
The Plasma Control System Simulation Platform (PCSSP) is a highly flexible, modular, time-dependent simulation environment developed primarily to support development of the ITER Plasma Control System (PCS). It has been under development since 2011 and is scheduled for first release to users in the ITER Organization (IO) and at selected additional sites in 2015. Modules presently implemented in PCSSP enable exploration of axisymmetric evolution and control, basic kinetic control, and tearing mode suppression. A basic capability for generation of control-relevant events is included, enabling study of exception handling in the PCS, continuous controllers, and PCS architecture. While the control design focus of PCSSP applications tends to require only a moderate level of accuracy and complexity in modules, more complex codes can be embedded or connected to access higher accuracy if needed. This paper describes the background and motivation for PCSSP, provides an overview of the capabilities, architecture, and features of PCSSP, and discusses details of the PCSSP vision and its intended goals and application. Completed work, including architectural design, prototype implementation, reference documents, and IO demonstration of PCSSP, is summarized and example use of PCSSP is illustrated. Near-term high-level objectives are summarized and include preparation for release of an "alpha" version of PCSSP and preparation for the next development phase. High-level objectives for future work are also discussed. © 2015 Elsevier B.V. All rights reserved.
- Published
- 2015
21. Improving the performance of the JET Shape Controller
- Author
-
Alfredo Pironti, F.G. Rimini, Giuseppe Ambrosino, Gianmaria De Tommasi, Francesco Maviglia, Raffaele Albanese, Peter J. Lomas, Marco Ariola, Maviglia, Francesco, Ariola, M., DE TOMMASI, Gianmaria, Lomas, P. J., Pironti, Alfredo, Rimini, F. G., Albanese, Raffaele, and Ambrosino, Giuseppe
- Subjects
Mathematical logic ,Electromagnetic field ,Computer science ,Mechanical Engineering ,MIMO ,Plasma ,Inductive coupling ,Nuclear Energy and Engineering ,Control theory ,Electromagnetic coil ,General Materials Science ,Decoupling (electronics) ,Civil and Structural Engineering ,Electronic circuit - Abstract
The JET Shape Controller (SC) uses nine distinct circuits, powering the JET poloidal field coils, to control in real time the coil currents, and the plasma shape, current and position. The control scheme presently used [1] is based on a Multiple Input Multiple Output (MIMO) controller, which is designed to decouple the inductive coupling of the different coils. Achieving such a decoupling, the SC allows the user to tune independently the time response of each circuit. As a matter of fact the intended decoupling algorithm has been incorrectly coded in the JET SC system. This paper describes the modelling and experimental activities performed to correct the code error, and to improve the performance on a subset of the controlled parameters. (C) 2015 Elsevier B.V. All rights reserved.
- Published
- 2015
22. Development environments for Tokamak plasma control
- Author
-
Giuseppe Ambrosino, M.L. Walker, D.A. Humphreys, A.S. Welander, G. Neu, P. de Vries, W. Treutterer, G. De Tommasi, Joseph Snipes, B. Sammuli, Massimiliano Mattei, A. Winter, Gerhard Raupp, C. J. Rapson, Walker, M. L., Humphreys, D. A., Sammuli, B., Welander, A. S., Winter, A., Snipes, J., de Vries, P., Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, Mattei, M., Neu, G., Treutterer, W., Raupp, G., Rapson, C., SOFE, Ambrosino, G., De Tommasi, G., and Mattei, Massimiliano
- Subjects
Engineering ,PCSSP ,Tokamak ,Software suite ,business.industry ,ITER PCS ,Control engineering ,Plasma control ,law.invention ,Data modeling ,Software ,law ,Control system ,KSTAR ,Systems engineering ,Software system ,TokSys ,business ,MATLAB ,computer ,Simulation ,computer.programming_language - Abstract
We describe a software system known as the Plasma Control System Simulation Platform (PCSSP) that is being constructed to support development of the ITER plasma control system. When mature, PCSSP will provide support for industry standard practices such as model-based controller design, simulation testing of controllers, auto-generation of controller code, hardware-and software-in-The-loop testing, use of source code management tools, and open-source methods in development of the software and control algorithms for the ITER Plasma Control System (PCS). It will also contribute to fusion-specific objectives such as validation of ITER pulse schedules prior to their use in experimental operation. We also describe a more mature but less sophisticated software suite known as TokSys, which was developed at General Atomics to support plasma control development and is expected to eventually merge with PCSSP. Plasma control development activities that use or have used these software systems are also described. We will discuss the ongoing ITER PCS control algorithm development for initial plasma operation, which takes advantage of the existing PCSSP infrastructure and library of modules. Plasma control development and initial plasma operation of the EAST and KSTAR tokamaks relied heavily on the TokSys suite, which is now in routine use at EAST, KSTAR, DIII-D, and NSTX-U. © 2015 IEEE.
- Published
- 2015
23. Novel aspects of plasma control in ITER
- Author
-
Alfredo Pironti, Giuseppe Ambrosino, M.L. Walker, L. Zabeo, Faa Federico Felici, Egemen Kolemen, S.H. Kim, D. Moreau, Joseph Snipes, D.A. Humphreys, Gerhard Raupp, A. Winter, A.S. Welander, A. Kallenbach, G.L. Jackson, P. de Vries, Eugenio Schuster, Olivier Sauter, J.B. Lister, W. Treutterer, Humphreys, D., Ambrosino, Giuseppe, De Vries, P., Felici, F., Kim, S. H., Jackson, G., Kallenbach, A., Kolemen, E., Lister, J., Moreau, D., Pironti, Alfredo, Raupp, G., Sauter, O., Schuster, E., Snipes, J., Treutterer, W., Walker, M., Welander, A., Winter, A., Zabeo, L., and Control Systems Technology
- Subjects
Physics ,Electronic stability control ,Neutron flux ,Auxiliary power unit ,Divertor ,Key (cryptography) ,Ranging ,Atomic physics ,Condensed Matter Physics ,Actuator ,Reliability engineering ,Plasma control - Abstract
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e. g., current profile regulation, tearing mode (TM) suppression), control mathematics (e. g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e. g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER. (C) 2015 AIP Publishing LLC.
- Published
- 2015
24. Conceptual architecture of the plant system controller for the magnetics diagnostic of the ITER tokamak
- Author
-
Claudio Sterle, S. Simrock, Andre Neto, António J.N. Batista, Alfredo Pironti, J.L. Fernandez-Hernando, Isidro Bas, G. De Tommasi, S. Arshad, Giuseppe Ambrosino, O. Dominguez, Filippo Sartori, A. Vergara, G. De Magneval, A. Winter, George Vayakis, João M. C. Sousa, Bernardo B. Carvalho, Roberto Campagnolo, L. Zabeo, Neto, A. C., Arshad, S., Sartori, F., Vayakis, G., Ambrosino, Giuseppe, Batista, A., Bas, I., Campagnolo, R., Carvalho, B. B., De Magneval, G., DE TOMMASI, Gianmaria, Dominguez, O., Fernandez Hernando, J. L., Pironti, Alfredo, Simrock, S., Sousa, J., Sterle, Claudio, Vergara, A., Winter, A., and Zabeo, L.
- Subjects
Tokamak ,Mechanical Engineering ,Design pattern ,Iter tokamak ,Tokamak, ITER, Magnetics, Diagnostic, Plant system, ATCA ,Conceptual architecture ,law.invention ,Reliability (semiconductor) ,Nuclear Energy and Engineering ,Control theory ,law ,Key (cryptography) ,Systems engineering ,General Materials Science ,Plant system ,Civil and Structural Engineering - Abstract
In a tokamak the magnetic diagnostics are key to the exploitation of the machine. They play a central role in the real-time control of fundamental plasma properties, such as the plasma shape and position, while also contributing with important data to a better understanding of the plasma physics. One of the particular challenges of the ITER magnetics diagnostic is the need to balance high system reliability with sufficient freedom to tune and improve the quality of the diagnostic physics output. This requirement calls for a design pattern where the functions related to plasma control and protection are loosely coupled with the functions related to the plasma science. This work reports on the current status of the magnetics plant system controller design and discusses some possible design solutions that address the aforementioned issue.
- Published
- 2015
25. Design and experimental testing of a robust multivariable controller on a tokamak
- Author
-
Alfredo Pironti, J.B. Lister, Parag Vyas, Giuseppe Ambrosino, Marco Ariola, Ariola, M., Ambrosino, Giuseppe, Pironti, Alfredo, Lister, J. B., and Vyas, P.
- Subjects
Engineering ,Tokamak ,business.industry ,Fusion reactors ,H∞control ,Plasma control ,Robustness ,Stabilization ,Control and Systems Engineering ,Electrical and Electronic Engineering ,Multivariable calculus ,PID controller ,Control engineering ,law.invention ,Physics::Plasma Physics ,law ,Control theory ,Digital control ,Robust control ,Tokamak à configuration variable ,business ,Nested loop join - Abstract
Describes the design and the experimental validation of a multivariable digital controller for a Tokamak, the Tokamak a configuration variable (TCV). The design of the controller is based on a linearized model of the plasma confined in the Tokamak. The plant is multiple-input-multiple-output (MIMO) and the various outputs are strongly coupled. Moreover the plant is open-loop unstable. The scope of the controller is to stabilize the plasma and to guarantee some closed-loop performance in terms of decoupling among the plant outputs. The proposed controller is composed of two nested loops: one is devoted to the vertical stabilization, the other, designed using the /spl Hscr//sub /spl infin// technique, guarantees the control of the plasma current and of the plasma shape. After massive simulations, this controller has been successfully tested on the plant. The experimental results show a significant improvement of the performance with respect to those obtained with a proportional integral derivative (PID) MIMO controller, that was used before on the plant.
- Published
- 2002
- Full Text
- View/download PDF
26. A control scheme to deal with coil current saturation in a Tokamak
- Author
-
M.L. Walker, Marco Ariola, Giuseppe Ambrosino, Alfredo Portone, Alfredo Pironti, Ambrosino, Giuseppe, M., Ariola, Pironti, Alfredo, A., Portone, and M., Walker
- Subjects
Control under saturation ,Engineering ,Tokamak ,business.industry ,Control engineering ,Feedback control ,Fusion reactors ,H∞control ,Plasma control ,Control and Systems Engineering ,Electrical and Electronic Engineering ,law.invention ,Plasma current ,LTI system theory ,law ,Control theory ,Electromagnetic coil ,Control system ,business ,Saturation (magnetic) - Abstract
We present a new approach for the design of a plasma current and shape feedback control system in a Tokamak. This approach takes explicitly into account the problem of current saturation in the coils which are used for the control action. The proposed design technique is essentially aimed at enlarging the operating envelope in which the Tokamak can operate without current saturation. The proposed controller structure consists of two feedback loops: one is a standard linear time invariant controller designed with the H/sub /spl infin// technique, which operates in the absence of current saturation; the second gracefully degrades the system performance when the coil currents approach their saturation limits. Some stability considerations on the overall control system are given, and a case study is presented.
- Published
- 2001
- Full Text
- View/download PDF
27. A Modern Plasma Controller Tested on the TCV Tokamak
- Author
-
Giuseppe Ambrosino, J.B. Lister, Alfredo Pironti, Fabio Villone, Marco Ariola, Parag Vyas, Ariola, M., Ambrosino, Giuseppe, Lister, J. B., Pironti, Alfredo, Villone, F., and Vyas, P.
- Subjects
Tokamak ,Computer science ,020209 energy ,Multivariable calculus ,General Engineering ,02 engineering and technology ,Plasma ,Optimal control ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,LRP 606 ,law ,Control theory ,Position (vector) ,Control system ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Engineering design process - Abstract
A high-order, multivariable, modern plasma controller has been designed using H-infinity optimal control techniques and tested oil the Tokamak Configuration Variable (TCV) tokamak. An initial design for the control of the plasma current, position, and shape parameters is described. The design process was based on the CREATE-L linearized model of TCV, and the controller was implemented oil a digital processor. The results demonstrated that the required performance was delivered and the controller response was in good agreement with predictions using the model.
- Published
- 1999
- Full Text
- View/download PDF
28. Overview of magnetic control in ITER
- Author
-
Joseph Snipes, A. Winter, Alfredo Pironti, Giuseppe Ambrosino, Y. Gribov, Mario Cavinato, A. Kavin, Massimiliano Mattei, George Vayakis, V.E. Lukash, L. Zabeo, Zabeo, L., Ambrosino, Giuseppe, Cavinato, M., Gribov, Y., Kavin, A., Lukash, V., Mattei, M., Pironti, Alfredo, Snipes, J. A., Vayakis, G., Winter, A., Zabeo, L, Ambrosino, G., Mattei, Massimiliano, and Pironti, A.
- Subjects
Tokamak ,Operability ,Computer science ,Mechanical Engineering ,Fusion power ,Plasma control ,Automotive engineering ,law.invention ,Nuclear Energy and Engineering ,law ,Eddy current ,Systems design ,General Materials Science ,Materials Science (all) ,Robust control ,Actuator ,Voltage ,Civil and Structural Engineering - Abstract
ITER is targeting Q = 10 with 500 MW of fusion power. To meet this target, the plasma needs to be controlled and shaped for a period of hundreds of seconds, avoiding contact with internal components, and acting against instabilities that could result in the loss of control of the plasma and in its disruptive termination. Axisymmetric magnetic control is a well-understood area being the basic control for any tokamak device. ITER adds more stringent constraints to the control primarily due to machine protection and engineering limits. The limits on the actuators by means of the maximum current and voltage at the coils and the few hundred ms time response of the vacuum vessel requires optimization of the control strategies and the validation of the capabilities of the machine in controlling the designed scenarios. Scenarios have been optimized with realistic control strategies able to guarantee robust control against plasma behavior and engineering limits due to recent changes in the ITER design. Technological issues such as performance changes associated with the optimization of the final design of the central solenoid, control of fast transitions like H to L mode to avoid plasma-wall contact, and optimization of the plasma ramp-down have been modeled to demonstrate the successful operability of ITER and compatibility with the latest refinements in the magnetic system design. Validation and optimization of the scenarios refining the operational space available for ITER and associated control strategies will be proposed. The present capabilities of magnetic control will be assessed and the remaining critical aspects that still need to be refined will be presented. The paper will also demonstrate the capabilities of the diagnostic system for magnetic control as a basic element for control. In fact, the noisy environment (affecting primarily vertical stability), the non-axisymmetric elements in the machine structure (affecting the accuracy of the identification of the plasma boundary), and the strong component of eddy current at the start-up (resulting in a poor S/N ratio for plasma reconstruction for Ip < 2 MA requiring a robust plasma control) make the ITER magnetic diagnostic system a demanding part of the magnetic control and investment protection systems. Finally the paper will illustrate the identified roles of magnetic control in the PCS (plasma control system) as formally defined in the recent first step of the design and development of the system.
- Published
- 2014
29. Event generation and simulation of exception handling with the ITER PCSSP
- Author
-
W. Treutterer, A. Winter, M.L. Walker, D.A. Humphreys, Giuseppe Ambrosino, Gerhard Raupp, Massimiliano Mattei, G. De Tommasi, G. Neu, Raupp, G., Walker, M. L., Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, Humphreys, D. A., Mattei, M., Neu, G., Treutterer, W., Winter, A., Raupp, G, Ambrosino, G., De Tommasi, G., and Mattei, Massimiliano
- Subjects
Schedule ,Computer science ,Event (computing) ,Mechanical Engineering ,Exception handling ,Plasma control ,Domain (software engineering) ,Nuclear Energy and Engineering ,Component (UML) ,General Materials Science ,Materials Science (all) ,Interlock ,Actuator ,Simulation ,Degradation (telecommunications) ,Civil and Structural Engineering - Abstract
The plasma control system simulation platform (PCSSP) for ITER shall support the analysis and development of methods to be used by the ITER plasma control system (PCS) for handling exceptions to optimize pulses and assist in machine protection. PCSSP will permit to investigate physical and technical events, such as component failures, control degradation, operation domain excess, plasma state bifurcation or instabilities, and interlock activity. Serving that purpose, the plasma, actuator, diagnostics and PCS simulation modules in PCSSP will be enhanced to compute nominal and off-normal data. Configured by an event schedule, an event generator will orchestrate the activation and manipulate the characteristics of such off-normal computation. In the simulated PCS exceptions will be handled in a pulse supervision layer operating on top of the pulse continuous control (PCC) feedback loops. It will monitor events, decide on which exceptions to respond, and compute new control references to modify PCC behavior. We discuss basic concepts for the event generation in PCSSP, and a preliminary architecture for exception handling in PCS, and show how these will be configured with event and pulse schedules.
- Published
- 2014
30. Shape Control with the eXtreme Shape Controller during Plasma Current Ramp-Up and Ramp-Down at the JET Tokamak
- Author
-
A. C. C. Sips, Sergio Galeani, G. Varano, G. De Tommasi, G. Calabrò, Marco Ariola, Francesco Maviglia, F.G. Rimini, R. Vitelli, Giuseppe Ambrosino, Luca Zaccarian, Alfredo Pironti, Jet-Efda Contributors, Università degli studi di Napoli Federico II, Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Consiglio Nazionale delle Ricerche [Roma] (CNR), Università degli Studi di Roma Tor Vergata [Roma], EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], European Commission [Brussels], Équipe Méthodes et Algorithmes en Commande (LAAS-MAC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Dipartimento di Ingegneria Industriale [Trento], University of Trento [Trento], DE TOMMASI, Gianmaria, Ambrosino, Giuseppe, Ariola, M., Calabrò, G., Galeani, S., Maviglia, F., Pironti, Alfredo, Rimini, F. G., Sips, A. C. C., Varano, G., Vitelli, R., Zaccarian, L., University of Naples Federico II = Università degli studi di Napoli Federico II, National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and Université de Toulouse (UT)
- Subjects
0209 industrial biotechnology ,Nuclear and High Energy Physics ,Tokamak ,eXtreme Shape Controller ,Tokamak control ,Astrophysics::High Energy Astrophysical Phenomena ,Phase (waves) ,Current limit avoidance ,Plasma shape control ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,020901 industrial engineering & automation ,Settore ING-INF/04 - Automatica ,Control theory ,law ,0103 physical sciences ,Physics ,Jet (fluid) ,Plasma ,Mechanics ,Classical mechanics ,Nuclear Energy and Engineering ,Transient (oscillation) ,Current (fluid) ,Actuator - Abstract
The eXtreme Shape Controller (XSC) has been originally designed to control the plasma shape at JET during the flat-top phase, when the plasma current has a constant value. During the JET 2012 experimental campaigns, the XSC has been used to improve the shape control during the transient phases of plasma current ramp-up and ramp-down. In order to avoid the saturation of the actuators with these transient phases, a current limit avoidance system has been designed and implemented. This paper presents the experimental results achieved at JET during the 2012 campaigns using the XSC. © 2013 Euratom: EURATOM-ENEA-CREATE/ Universita' di Napoli Federico II; European Atomic Energy Community.
- Published
- 2014
- Full Text
- View/download PDF
31. Integrated Model of a Flexible Beam with Piezoelectric Plates for Active Vibration Control
- Author
-
Roberto Setola, G. Celentano, and Giuseppe Ambrosino
- Subjects
Engineering ,business.industry ,Piezoelectric sensor ,Acoustics ,Structural engineering ,Piezoelectricity ,Computer Science::Other ,Distributed parameter system ,Control system ,Active vibration control ,PMUT ,business ,Actuator ,Beam (structure) - Abstract
A new approach to the integrated modelling of a mechanical structure and piezoelectric plates is presented. Tn particular a beam-like structure is considered, i.e. a structure which may be modelled by means of the elastic line equations. It is shown how to include into the beam model the interaction with the piezoelectric sensors and actuators dynamics and with the dynamics of the electric network at which the piezoelectric devices are connected. The resulting model is particularly useful for the design of control systems.
- Published
- 1996
- Full Text
- View/download PDF
32. New developments, plasma physics regimes and issues for the Ignitor experiment
- Author
-
Alfredo Pironti, A. Bianchi, S. Mantovani, Arnaud Ferrari, A. Tumino, Giuseppe Ambrosino, Bruno Coppi, M. Lazzaretti, A. DeVellis, Francesco Giammanco, Giovanna Cenacchi, P. Detragiache, Fabio Villone, Samuele Pierattini, P. Frosi, Silvio Migliori, Raffaele Albanese, G. De Tommasi, A. Airoldi, Enrico Costa, M. Sassi, A. Cardinali, G. Faelli, Antonio Frattolillo, F. Bombarda, G. Grasso, G. Ramogida, Marco Tavani, Guglielmo Rubinacci, Coppi, B., Airoldi, A., Albanese, Raffaele, Ambrosino, Giuseppe, Bombarda, F., Bianchi, A., Cardinali, A., Cenacchi, G., Costa, E., Detragiache, P., DE TOMMASI, Gianmaria, Devellis, A., Faelli, G., Ferrari, A., Frattolillo, A., Frosi, P., Giammanco, F., Grasso, G., Lazzaretti, M., Mantovani, S., Migliori, S., Pierattini, S., Pironti, Alfredo, Ramogida, G., Rubinacci, Guglielmo, Sassi, M., Tavani, M., Tumino, A., and Villone, F.
- Subjects
Physics ,Nuclear and High Energy Physics ,Toroid ,Nuclear engineering ,Full scale ,Control reconfiguration ,Condensed Matter Physics ,IGNITOR ,law.invention ,Nuclear physics ,Ignition system ,Duty cycle ,law ,Magnet ,Water cooling - Abstract
The scientific goal of the Ignitor experiment is to approach, for the first time, the ignition conditions of a magnetically confined D-T plasma. The IGNIR collaboration between Italy and Russia is centred on the construction of the core of the Ignitor machine in Italy and its installation and operation within the Triniti site (Troitsk). A parallel initiative has developed that integrates this programme, involving the study of plasmas in which high-energy populations are present, with ongoing research in high-energy astrophysics, with a theory effort involving the National Institute for High Mathematics, and with INFN and the University of Pisa for the development of relevant nuclear and optical diagnostics. The construction of the main components of the machine core has been fully funded by the Italian Government. Therefore, considerable attention has been devoted towards identifying the industrial groups having the facilities necessary to build these components. An important step for the Ignitor programme is the adoption of the superconducting MgB2 material for the largest poloidal field coils (P14) that is compatible with the He-gas cooling system designed for the entire machine. The progress made in the construction of these coils is described. An important advance has been made in the reconfiguration of the cooling channels of the toroidal magnet that can double the machine duty cycle. A facility has been constructed to test the most important components of the ICRH system at full scale, and the main results of the tests carried out are presented. The main physics issues that the Ignitor experiment is expected to face are analysed considering the most recent developments in both experimental observations and theory for weakly collisional plasma regimes. Of special interest is the I-regime that has been investigated in depth only recently and combines advanced confinement properties with a high degree of plasma purity. This is a promising alternative to the high-density L-regime that had been observed by the Alcator experiment and whose features motivated the Ignitor project. The provisions that are incorporated in the machine design, and in that of the plasma chamber in particular, in order to withstand or prevent the development of macroscopic instabilities with deleterious amplitudes are presented together with relevant analyses. © 2013 IAEA, Vienna.
- Published
- 2013
33. Shape control with the XSC during plasma current ramp-up and ramp-down at the JET tokamak
- Author
-
G. De Tommasi, F.G. Rimini, Giuseppe Ambrosino, Francesco Maviglia, A. C. C. Sips, Marco Ariola, Sergio Galeani, R. Vitelli, G. Varano, Alfredo Pironti, Luca Zaccarian, G. Calabrò, DE TOMMASI, Gianmaria, Ambrosino, Giuseppe, M., Ariola, G., Calabrò, S., Galeani, F., Maviglia, Pironti, Alfredo, F. G., Rimini, A. C. C., Sip, G., Varano, R., Vitelli, L., Zaccarian, and Calabro, G.
- Subjects
0209 industrial biotechnology ,Tokamak control ,Tokamak ,Astrophysics::High Energy Astrophysical Phenomena ,Phase (waves) ,02 engineering and technology ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,020901 industrial engineering & automation ,Settore ING-INF/04 - Automatica ,Control theory ,law ,0103 physical sciences ,Current limit avoidance ,Physics ,Jet (fluid) ,Plasma shape control ,EXtreme shape controller ,Plasma ,Mechanics ,Transient (oscillation) ,Current (fluid) ,Actuator ,Current limit avoidance EXtreme shape controller Plasma shape control Tokamak control - Abstract
The eXtreme Shape Controller (XSC) has been originally designed to control the plasma shape at JET during the flat-top phase, when the plasma current has a constant value. During the JET 2012 experimental campaigns, the XSC has been used to improve the shape control during the transient phases of plasma current ramp-up and ramp-down. In order to avoid the saturation of the actuators with these transient phases, a Current Limit Avoidance system (CLA ) has been designed and implemented. This paper discusses the CLA algorithm and presents the experimental results achieved at JET during the 2012 campaigns using the XSc. © 2013 IEEE.
- Published
- 2013
- Full Text
- View/download PDF
34. Optimization of the magnetic diagnostic for plasma shape identification in tokamak machines
- Author
-
Giuseppe Ambrosino, Alfredo Pironti, Marco Ariola, Raffaele Albanese, Pironti, Alfredo, Albanese, Raffaele, Ambrosino, Giuseppe, and M., Ariola
- Subjects
Tokamak ,Computer science ,Flux ,Magnetic confinement fusion ,Plasma ,Inverse problem ,law.invention ,Magnetic field ,Identification (information) ,Physics::Plasma Physics ,law ,Redundancy (engineering) ,Plasma diagnostics ,Algorithm - Abstract
Plasma shape identification is a crucial problem that needs to be tackled for controlling the plasma configuration in a tokamak machine. The usual way to cope with this issue is to solve an inverse problem based on the solution of the Grad-Shafranov equilibrium equation; the inputs to this algorithm are a certain number of magnetic field and flux measurements in points located around the plasma. The number and the location of the magnetic sensors providing the measurements affect the accuracy of the identification algorithm. In this paper we deal with the problem of assessing the minimum number of magnetic sensors that are necessary for the solution of the plasma shape identification in a tokamak machine. In particular we consider the ITER inner vessel magnetic diagnostic system and show that we can partition the available measurements in two subsets, where the measurements in the first subset can be reconstructed by means of suitable linear combinations of measurements in the second subset. This allow us to evaluate the redundancy level of the ITER inner vessel diagnostic system and to outline a suitable fault management system.
- Published
- 2013
35. Axisymmetric magnetic control in ITER
- Author
-
Mario Cavinato, Joseph Snipes, Giuseppe Ambrosino, A. A. Kavin, M.L. Walker, Y. Gribov, L. Zabeo, V.E. Lukash, George Vayakis, and D.A. Humphreys
- Subjects
Physics ,Tokamak ,Dense plasma focus ,Reversed field pinch ,business.industry ,Magnetic confinement fusion ,law.invention ,Coupling (physics) ,Physics::Plasma Physics ,law ,Control system ,Field-reversed configuration ,Atomic physics ,Aerospace engineering ,business ,Plasma stability - Abstract
In magnetically confined fusion plasmas, feedback control of plasma parameters is assuming an increasingly important role. The complexity of the phenomena that occur in the plasmas and the limited number of actuators available require the implementation of sophisticated control systems to achieve adequate quality of plasma confinement. The range of requirements is wide and the relevant timescales can range from a few to hundreds of milliseconds. In addition, the high degree of coupling between control parameters increases the level of complexity that the control systems have to address.
- Published
- 2012
- Full Text
- View/download PDF
36. A Software Tool for the Design of the Current Limit Avoidance System at the JET tokamak
- Author
-
Luca Zaccarian, Giuseppe Ambrosino, Alfredo Pironti, Andre Neto, Francesco Maviglia, R. Vitelli, G. Varano, Sergio Galeani, G. De Tommasi, DE TOMMASI, Gianmaria, Ambrosino, Giuseppe, S., Galeani, F., Maviglia, A. C., Neto, Pironti, Alfredo, G., Varano, R., Vitelli, and L., Zaccarian
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Computer science ,Software tool ,Joint European Torus ,Plasma ,Condensed Matter Physics ,law.invention ,Settore ING-INF/04 - Automatica ,Control theory ,law ,Electromagnetic coil ,Control system ,Redundancy (engineering) ,Poloidal field - Abstract
A current limit avoidance (CLA) system has been proposed to avoid current saturation in the poloidal field (PF) coils of the Joint European Torus tokamak when the eXtreme Shape Controller is used to control the plasma shape. CLA uses the redundancy of the PF coil system to automatically obtain almost the same plasma shape with a different combination of control currents. This paper describes the set of graphic tools that has been recently developed to aid the design of the CLA parameters by nonexpert users.
- Published
- 2012
37. Modelling and control for plasma disruption avoidance and mitigation
- Author
-
Giuliana Sias, Giuseppe Ambrosino, Barbara Cannas, Raffaele Albanese, Alfredo Pironti, Guglielmo Rubinacci, Salvatore Ventre, Fabio Villone, Alessandra Fanni, Albanese, Raffaele, Ambrosino, Giuseppe, Cannas, B., Fanni, A., Pironti, Alfredo, Rubinacci, Guglielmo, Sias, G., Ventre, S., and Villone, F.
- Subjects
Engineering ,Tokamak ,Control algorithm ,business.industry ,Mechanical Engineering ,Multivariable calculus ,Control (management) ,Plasma ,Plasma control ,Condensed Matter Physics ,Active control ,Electronic, Optical and Magnetic Materials ,law.invention ,Disruption avoidance ,Model predictive control ,Mechanics of Materials ,Control theory ,law ,Plasma parameter ,tokamaks ,Electrical and Electronic Engineering ,business - Abstract
This paper proposes an approach aimed at avoiding or mitigating the consequences of a plasma disruption in a tokamak. The control strategy is based on a Disruption Predictive Control (DPC) where the use of a set of disruption predictors could allow actively modification of some plasma parameters when a disruption warning is issued. The DPC approach requires the continuous monitoring of various plasma performance indicators, which play the role of disruption precursors. The active control is based on the availability of magnetic and nonmagnetic plasma parameter response models as well as multivariable control algorithms and architectures. © 2012 - IOS Press and the authors.
- Published
- 2012
38. Plasma Modeling and Magnetic Control of FAST Tokamak Proposal
- Author
-
F. Crisanti, G. Calabrò, A. Cucchiaro, Giuseppe Ambrosino, C. E. Labate, G. Ramogida, G. Artaserse, Raffaele Albanese, Massimiliano Mattei, B. Viola, Alfredo Pironti, F. Maviglia, G., Calabro, F., Maviglia, R., Albanese, G., Ambrosino, G., Artaserse, F., Crisanti, A., Cucchiaro, C. V., Labate, Mattei, Massimiliano, A., Pironti, G., Ramogida, B., Viola, Calabrò, G., Maviglia, F., Albanese, Raffaele, Ambrosino, Giuseppe, Artaserse, G., Crisanti, F., Cucchiaro, A., Labate, C. E., Mattei, M., Pironti, Alfredo, Ramogida, G., and Viola, B.
- Subjects
Engineering ,Tokamak ,business.industry ,optimisation ,Nuclear engineering ,PID controller ,Torus ,Plasma ,Tokamak device ,Plasma modeling ,Instability ,law.invention ,law ,Control theory ,Position (vector) ,Sensitivity (control systems) ,business ,electric current control ,fusion reactor design - Abstract
Fusion Advanced Studies Torus (FAST) conceptual study has been proposed as possible European ITER Satellite. This facility is aimed at exploring and preparing ITER operation scenarios as well as helping DEMO design and R&D. This paper presents the plasma position and shape control studies, focusing on the machine flexibility in terms of both operational space and physics that can be investigated. The optimization of a copper shell position inside the vacuum vessel provides a slowing down of the growth rate of the vertical instability around 13s−1. A sensitivity analysis of each poloidal field (PF) circuit and their effects on plasma shape is carried out. A SVD based PID control scheme has been used for controlling the plasma current, shape and position.
- Published
- 2011
39. First plasma operation of the enhanced JET vertical stabilisation system
- Author
-
Marco Ariola, Isabel L. Nunes, Giuseppe Ambrosino, F. Crisanti, Alfredo Pironti, S.R. Shaw, G. Ramogida, R. Vitelli, Luca Zabeo, Peter J. Lomas, Francesco Maviglia, Raffaele Albanese, Filippo Sartori, F.G. Rimini, V. Coccorese, G. Artaserse, T. Bellizio, Andre Neto, M. Tsalas, Gianmaria De Tommasi, Peter de Vries, F. G., Rimini, F., Crisanti, Albanese, Raffaele, Ambrosino, Giuseppe, M., Ariola, G., Artaserse, T., Bellizio, Coccorese, Vincenzo, DE TOMMASI, Gianmaria, P., De Vrie, P. J., Loma, F., Maviglia, A., Neto, I., Nune, Pironti, Alfredo, G., Ramogida, F., Sartori, S. R., Shaw, M., Tsala, R., Vitelli, and L., Zabeo
- Subjects
Jet (fluid) ,business.industry ,Computer science ,Mechanical Engineering ,Amplifier ,Plasma ,Power (physics) ,Upgrade ,Data acquisition ,Nuclear Energy and Engineering ,Real-time Control System ,Control system ,General Materials Science ,Aerospace engineering ,business ,Civil and Structural Engineering - Abstract
A project dedicated to the enhancement of the JET vertical stabilization system was launched in 2006, including an upgrade of the Power Supply of the Radial Field Amplifier, of hardware and software of the vertical stabilization control system. The main aim was to double the JET capability in stabilising high current plasmas when subject to perturbations, in particular large Edge Localised Modes. We present here the results of first plasma operation with the new Enhanced Radial Field Amplifier and its data acquisition and control system, focussing on the benefits of an approach based on phased commissioning, modelling and offline algorithm validation. (C) 2011 EURATOM. Published by Elsevier B.V. All rights reserved.
- Published
- 2011
40. Plasma Vertical Stabilization in the ITER Tokamak via Constrained Static Output Feedback
- Author
-
Alfredo Pironti, G. De Tommasi, Marco Ariola, Giuseppe Ambrosino, Ambrosino, Giuseppe, M., Ariola, DE TOMMASI, Gianmaria, and Pironti, Alfredo
- Subjects
Engineering ,Tokamak ,Thermonuclear fusion ,business.industry ,Open-loop controller ,Fusion power ,Inductor ,law.invention ,Electricity generation ,Control and Systems Engineering ,Control theory ,law ,Electrical and Electronic Engineering ,business ,Realization (systems) - Abstract
The international thermonuclear experimental reactor (ITER) is the next step toward the realization of electricity-producing fusion power plants. ITER has been designed so as to reach the plasma burning condition, and to operate with high elongated unstable plasmas. However, due to the constraints which affect the machine realization, these open-loop unstable high performance plasmas can be hardly stabilized using the Poloidal Field coils placed outside the tokamak vessel. In this paper, it is proposed to use the in-vessel coils to vertically stabilize the plasma. In particular a constraint on the current in the in-vessel coils is explicitly taken into account in the design procedure, so as to yield a controller which can operate safely. Furthermore, the proposed controller is designed as a static-output feedback, in order to obtain a simple structure which permits to envisage effective adaptive algorithms, as it is usually required in operating tokamaks. The sufficient condition provided to design the controller is expressed in terms of a Bilinear Matrix Inequalities feasibility problem. The effectiveness of the approach is shown in a study case.
- Published
- 2011
41. Robust vertical control of ITER plasmas via static output feedback
- Author
-
Alfredo Pironti, Marco Ariola, G. De Tommasi, Giuseppe Ambrosino, Ambrosino, Giuseppe, M., Ariola, DE TOMMASI, Gianmaria, and Pironti, Alfredo
- Subjects
Output feedback ,Engineering ,Tokamak ,business.industry ,Physics::Medical Physics ,Plasma ,law.invention ,Physics::Plasma Physics ,law ,Control theory ,Electromagnetic shielding ,Current (fluid) ,Robust control ,business ,Vertical control - Abstract
It is now well known that in order to reach plasma burning conditions it is needed to operate with high elongated unstable plasmas. These plasmas can be hardly stabilized using Poloidal Field coils placed outside the tokamak vessel, due to the shielding effects of the conducting structures. Therefore for the ITER tokamak it has been proposed to install in-vessel coils for the plasma vertical stabilization. In this paper we design a plasma vertical controller which makes use of both in-vessel and ex-vessel coils for the stabilization of ITER plasmas in various operating conditions. Besides guaranteeing robust stabilization of ITER plasmas, the controller also takes into account constraints on the current flowing in the in-vessel coils; such constraints are required to operate these coils safely. Furthermore the proposed controller is designed as a static-output feedback, where only three gains have to be specified. A sufficient condition is provided to design the controller by solving a Bilinear Matrix Inequalities feasibility problem. The effectiveness of the proposed approach is shown in simulation on a number of ITER plasma configurations.
- Published
- 2011
42. On dynamic input allocation for set-point regulation of the JET tokamak plasma shape
- Author
-
G. Varano, Giuseppe Ambrosino, Sergio Galeani, Luca Zaccarian, G. DeTommasi, Alfredo Pironti, Ambrosino, Giuseppe, DE TOMMASI, Gianmaria, S., Galeani, Pironti, Alfredo, G., Varano, and L., Zaccarian
- Subjects
Tokamak ,Control theory ,Electromagnetic coil ,law ,Settore ING-INF/03 - Telecomunicazioni ,Plasma ,Dynamic priority scheduling ,Set point ,Mathematics ,Shape control ,law.invention - Abstract
In this paper we propose a solution to the input saturation avoidance problem in the JET tokamak shape control by illustrating its capabilities to enforce coil currents selections that tend to move away from the saturation limits within the allowable degrees of freedom. The proposed solution revisits the dynamic allocation scheme first proposed in [10] for input redundant plants and generalized in [6] and [9] for not input redundant ones. In particular we propose a different scheme for the input allocation, more suitable within a set-point regulation setting, and prove its convergence properties. We also present simulation results to assess the steady-state and transient performances obtained with the novel scheme, as compared to the previous approaches.
- Published
- 2011
43. Control of Elongated Plasma in Presence of ELMs in the JET Tokamak
- Author
-
Teresa Bellizio, Raffaele Albanese, Giuseppe Ambrosino, Marco Ariola, Giovanni Artaserse, Flavio Crisanti, Vincenzo Coccorese, Gianmaria De Tommasi, Peter J. Lomas, Francesco Maviglia, Andre Neto, Alfredo Pironti, Fernanda Rimini, Filippo Sartori, Riccardo Vitelli, Luca Zabeo, null JET EFDA Contributors, Bellizio, Teresa, Albanese, Raffaele, Ambrosino, Giuseppe, M., Ariola, G., Artaserse, F., Crisanti, Coccorese, Vincenzo, DE TOMMASI, Gianmaria, P. J., Loma, F., Maviglia, A., Neto, Pironti, Alfredo, F., Rimini, F., Sartori, R., Vitelli, and L., Zabeo
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Toroid ,Tokamak ,Reversed field pinch ,Nuclear engineering ,Context (language use) ,Plasma ,law.invention ,Nuclear physics ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,law ,Nuclear fusion ,Electrical and Electronic Engineering ,Plasma stability - Abstract
Tokamaks are the most promising approach for nuclear fusion on earth. They are toroidal machines where the plasma is heated in a ring-shaped vessel and kept away from the vessel by applied magnetic fields. To achieve high performance in tokamaks, plasmas with elongated poloidal cross-section are needed. Such elongated plasmas are vertically unstable, hence position control on a fast time scale is clearly an essential feature for all tokamak devices. In this context the Plasma Control Upgrade project was aimed at increasing the capabilities of the Vertical Stabilization (VS) of the JET tokamak. This paper introduces the new JET VS system and focuses on how the flexibility of this real-time system has been exploited to enlarge its operational limits in terms of maximum controllable disturbance. Eventually, some experimental results achieved during the last experimental campaigns are presented.
- Published
- 2011
44. Plasma Scenarios and Magnetic Control in FAST
- Author
-
G. Ramogida, G. Artaserse, F. Crisanti, A. Cucchiaro, Giuseppe Ambrosino, G. Calabrò, C. Rita, A. Pizzuto, Massimiliano Mattei, Francesco Maviglia, G. Mazzitelli, Raffaele Albanese, V. Cocilovo, Fulvio Zonca, Alfredo Pironti, Luigi Fortuna, Alexander Fradkov, Mattia Frasca, Artaserse, G., Maviglia, F., Albanese, Raffaele, Ambrosino, Giuseppe, Calabrò, G., Cocilovo, V., Crisanti, F., Cucchiaro, A., Mattei, M., Mazzitelli, G., Pironti, Alfredo, Pizzuto, A., Ramogida, G., Rita, C., Zonca, F., R., Albanese, G., Ambrosino, G., Artaserse, G., Calabrò, V., Cocilovo, F., Crisanti, A., Cucchiaro, Mattei, Massimiliano, F., Maviglia, G., Mazzitelli, A., Pironti, A., Pizzuto, G., Ramogida, C., Rita, and F., Zonca
- Subjects
Materials science ,Nuclear Fusion ,Control theory ,Plasma Control ,Tokamak ,Plasma - Published
- 2010
45. Development of ITER 15 MA ELMy H-mode inductive scenario
- Author
-
R. Kharyrutdinov, J.A. Leuer, L. D. Horton, T.A. Casper, J.C. Wesley, David Campbell, Massimiliano Mattei, C.E. Kessel, F. Koechl, R. Sartori, R.V. Budny, V.E. Lukash, P. R. Thomas, H. Fujieda, A. R. Polevoi, P. J. Lomas, A. C. C. Sips, Y. Gribov, A. Loarte, Alfredo Portone, A. Kavin, A.S. Welander, I. Nunes, V.V. Parail, T.C. Luce, G. Saibene, Mario Cavinato, Giuseppe Ambrosino, R.J. Hawryluk, Kessel, C. E., Campbell, D., Gribov, Y., Saibene, G., Ambrosino, Giuseppe, Budny, R. V., Casper, T., Cavinato, M., Fujieda, H., Hawryluk, R., Horton, L. D., Kavin, A., Kharyrutdinov, R., Koechl, F., Leuer, J., Loarte, A., Lomas, P. J., Luce, T., Lukash, V., Mattei, M., Nunes, I., Parail, V., Polevoi, A., Portone, A., Sartori, R., Sips, A. C. C., Thomas, P. R., Welander, A., Wesley, J., Kessel, C., Ambrosino, G., Budny, R., Horton, L., Lomas, P., Mattei, Massimiliano, Sips, A., and Thomas, P.
- Subjects
Physics ,Nuclear and High Energy Physics ,Upgrade ,Electromagnetic coil ,Nuclear engineering ,Divertor ,Fusione Termonucleare, Tokamak, Modellistica e Controllo di plasmi ,Feed forward ,Magnetic confinement fusion ,Solenoid ,Plasma ,Condensed Matter Physics ,Flattop - Abstract
The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300–500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode and a late H-mode onset. Static equilibrium analyses for this scenario, which determine PF coil currents to produce a given plasma configuration, indicate that the original PF coil limitations do not allow low li(
- Published
- 2009
46. Path generation and tracking in 3-D for UAVs
- Author
-
Alfredo Pironti, E. De Lellis, U. Ciniglio, Giuseppe Ambrosino, Federico Corraro, Marco Ariola, Ambrosino, Giuseppe, M., Ariola, U., Ciniglio, F., Corraro, De Lellis, Ettore, and Pironti, Alfredo
- Subjects
Simulations ,Engineering ,Path Planning ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,Path generation ,Aeronautics ,Tracking (particle physics) ,Computer Science::Robotics ,Tracking error ,Vehicle dynamics ,Unmanned air vehicles (UAVs) ,Control theory ,Position (vector) ,Turning radius ,Motion planning ,Aerospace engineering ,Electrical and Electronic Engineering ,Path tracking ,Control and Systems Engineering ,business.industry ,Tracking ,Path (graph theory) ,Trajectory ,UAV control ,business - Abstract
In this brief, we consider the problem of 3-D path generation and tracking for unmanned air vehicles (UAVs). The proposed path generation algorithm allows us to find a path satisfying arbitrary initial and final conditions, specified in terms of position and velocity. Our method assumes that aircraft structural and dynamic limitations can be translated in a turn radius constraint; therefore, the generated paths satisfy a constraint on the minimum admissible turning radius. The proposed algorithm for the path tracking guarantees, under specified assumptions, that the tracking error, both in position and in attitude, asymptotically tends to zero. The work has been carried out with reference to the UAV of the Italian Aerospace Research Center (CIRA). Simulation results for both the path generation and the tracking algorithms are presented; the latter have been obtained using a detailed 6-degree-of-freedom model of the CIRA UAV in the presence of wind and turbulence.
- Published
- 2009
47. ITER vertical stabilization system
- Author
-
Alfredo Pironti, Fabio Villone, Guglielmo Rubinacci, Giuseppe Ambrosino, G. Saibene, Yueqiang Liu, Raffaele Albanese, Filippo Sartori, Massimiliano Mattei, Mario Cavinato, G. De Tommasi, Marco Ariola, Alfredo Portone, M., Cavinato, A., Portone, G., Saibene, P. R., Thoma, R., Albanese, G., Ambrosino, G., DE TOMMASI, A., Pironti, G., Rubinacci, F., Sartori, Mattei, Massimiliano, F., Villone, AND M., Ariola, Albanese, Raffaele, Ambrosino, Giuseppe, Cavinato, M., DE TOMMASI, Gianmaria, Liu, Y., Mattei, M., Pironti, Alfredo, Portone, A., Rubinacci, Guglielmo, Saibene, G., Sartori, F., Thomas, P. R., Villone, F., and Ariola, M.
- Subjects
Tokamak ,Computer science ,Nuclear engineering ,Mechanical Engineering ,Ranging ,Fusion power ,Plasma control ,Power supplies ,law.invention ,Civil and Structural Engineering ,Nuclear Energy and Engineering ,Materials Science (all) ,Noise ,Upgrade ,law ,Control system ,General Materials Science ,Voltage ,Design review - Abstract
As part of the ITER design review, a reassessment of the specifications underlying the design of the vertical stabilization system (VS) was performed. Recent results from experiments, aimed at the evaluation of the feasibility of the ITER reference scenarios, have raised several concerns regarding mostly the ramp-up and ramp-down phases of the pulse. The main issue is the value of the internal inductance li which may reach values outside the range 0.7–1, considered as reference for the ITER control system design. Similar concerns apply to the low current L-mode plasmas, needed to the exploitation of the machine towards the development of the 15 MA pulse. The performance of the reference vertical stabilization system, under the revised conditions may be marginal, in particular if the effect of plasma generated noise on the velocity measurement is considered. A reliable and robust VS is mandatory to guarantee the operation of ITER at the reference elongation and plasma current values. To avoid de-scoping of the machine mission, several solutions have been proposed to improve the VS performances, ranging from an upgrade of the maximum voltage available to the present external coils system, to the introduction of in-vessel passive and/or active conductors. The paper presents an overview of the modelling and experimental effort aimed at the assessment of the baseline ITER VS and analyses the proposed solutions to improve the system performance.
- Published
- 2009
48. Design of the plasma position and shape control in the ITER tokamak using in-vessel coils
- Author
-
Giuseppe Ambrosino, Alfredo Pironti, Alfredo Portone, Marco Ariola, G. De Tommasi, Ambrosino, Giuseppe, M., Ariola, DE TOMMASI, Gianmaria, Pironti, Alfredo, and A., Portone
- Subjects
Physics ,Nuclear and High Energy Physics ,Thermonuclear fusion ,Tokamak ,Plasma shape control ,business.industry ,Nuclear engineering ,Electrical engineering ,Plasma vertical stabilization (VS) ,Tokamaks control ,Condensed Matter Physics ,Magnetic confinement fusion ,Plasma ,Fusion power ,Inductor ,law.invention ,law ,Control system ,business ,Voltage - Abstract
The International Thermonuclear Experimental Reactor (ITER) is the next step toward the realization of electricity-producing fusion power plants, and it is planned to be in operation in 2016. ITER has been designed so as to reach the plasma burning condition and to operate with high-elongated unstable plasmas. However, due to the constraints that affect the machine realization, these open-loop unstable high-performance plasmas can hardly be stabilized using the poloidal field coils placed outside the tokamak vessel. For this reason, during the ITER design review phase, it has been proposed to investigate the possibility of using in-vessel coils in order to improve the best achievable performance of the vertical stabilization (VS) system. This paper proposes a new approach for the plasma current, position, and shape control design in the presence of in-vessel coils. Two control loops are designed: a first loop that guarantees the VS driving the voltage applied to in-vessel coils, and a second loop that controls the plasma current and up to 32 geometrical shape descriptors as close as possible to the reference values. The performance of the proposed control system is shown by means of simulations of some cases of interest.
- Published
- 2009
49. Dynamic simulation of a planar flexible boom for tokamak in-vessel operations
- Author
-
G. Celentano, David Maisonnier, Franco Garofalo, Giuseppe Ambrosino, Ambrosino, Giuseppe, Celentano, Giovanni, Garofalo, Francesco, and D., Maisonnier
- Subjects
Tokamak ,Horizontal and vertical ,Mechanical Engineering ,Mechanics ,Boom ,law.invention ,Vibration ,Dynamic simulation ,Planar ,Nuclear Energy and Engineering ,law ,Net (polyhedron) ,General Materials Science ,Geology ,Civil and Structural Engineering - Abstract
In this paper we present a dynamic model for the analysis of the vibrations of the vibrations of a planar articulated flexible boom to be used for tokamak in-vessel maintenance operations. The peculiarity of the mechanical structure of the boom enables us to consider separately the oscillations in the horizontal and vertical planes so that two separate models can be constructed for describing these phenomena. The results of simulations based on booms like that proposed for NET in-vessel operations are presented.
- Published
- 1991
- Full Text
- View/download PDF
50. Plasma position and shape control in ITER using in-vessel coils
- Author
-
Alfredo Pironti, Marco Ariola, Alfredo Portone, G. De Tommasi, Giuseppe Ambrosino, Ambrosino, Giuseppe, M., Ariola, DE TOMMASI, Gianmaria, Pironti, Alfredo, and A., Portone
- Subjects
Engineering ,Control and Optimization ,Thermonuclear fusion ,Tokamak ,business.industry ,Nuclear engineering ,Electrical engineering ,Plasma ,Fusion power ,Converters ,Control and Systems Engineering ,Modeling and Simulation ,law.invention ,law ,Control theory ,business ,Realization (systems) ,Voltage - Abstract
The International Thermonuclear Experimental Reactor (ITER) is the next step toward the realization of electricity-producing fusion power plants. ITER has been designed so as to reach the plasma burning condition, and to operate with high elongated unstable plasmas. However, due to the constraints which affect the machine realization, these open-loop unstable high performance plasmas can be hardly stabilized using the Poloidal Field (PF) coils placed outside the tokamak vessel. For this reason, during the ITER design review phase, it has been proposed to investigate the possibility of using in-vessel coils, in order to improve the best achievable performance of the vertical stabilization system. Because of some technological differences between the in-vessel coils and the PF coils (the former cannot be superconductive), the controller design procedure previously adopted in [1] cannot longer be used. This paper proposes a new approach for the plasma current, position, and shape control design in the presence of in-vessel coils. In particular two control loops are designed: a first loop which guarantees the vertical stabilization by means of a MISO controller which drives the voltage applied to in-vessel coils; a second MIMO loop controls the plasma current and up to 32 geometrical shape descriptors as close as possible to the reference values.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.