25 results on '"GRAVITATIONAL-WAVE DETECTION"'
Search Results
2. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
- Author
-
Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R.X., Adya, V.B., LIGO Scientific Collaboration and Virgo Collaboration, Affeldt, Christoph, Aufmuth, Peter, Bergmann, G., Bisht, Aparna, Bode, N., Booker, Phillip, Brinkmann, M., Cabero, M., Danilishin, Stefan L., Danzmann, Karsten, Dent, Thomas, de Varona, Omar, Doravari, S., Hanke, Manuela Melanie, Hennig, J., Heurs, M., Hochheim, Sven, Junker, J., Karvinen, K.S., Khan, S., Kaufer, S., Kirchhoff, R., Koch, P., Koehlenbeck, S.M., Koper, N., Kringel, V., Kuehn, G., Leavey, S., Lehmann, J., Lück, Harald, Mehmet, M., Mukherjee, Arunava, Nery, M., Ohme, F., Oppermann, P., Papa, M.A., Phelps, M., Puncken, O., Rüdiger, A., Schreiber, E., Schulte, B.W., Setyawati, Y., Standke, M., Steinke, M., Steinmeyer, D., Wei, L.-W., Weinert, M., Wellmann, F., Weßels, P., Wilken, D.M., Willke, B., Wimmer, M.H., Winkler, W., Wittel, H., Woehler, J., and Wu, D.S.
- Subjects
Neutrons ,Binary neutron stars ,Astrophysics::High Energy Astrophysical Phenomena ,Confidence interval ,Gravitational effects ,Flocculation ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravity waves ,False alarm rate ,Population statistics ,Stars ,Merging ,Upper limits ,Neutron stars ,Gravitational wave detectors ,General Relativity and Quantum Cosmology ,Gravitational-wave detection ,Wave transients ,ddc:530 ,Signal detection - Abstract
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1. © 2019 authors. Published by the American Physical Society.
- Published
- 2019
3. Anderson photon-phonon colocalization in certain random superlattices
- Author
-
Pedro García, Clivia M. Sotomayor-Torres, Guillermo Arregui, Norberto D. Lanzillotti-Kimura, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, European Research Council, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Barcelona Institute of Science and Technology (BIST), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Institució Catalana de Recerca i Estudis Avançats (ICREA)
- Subjects
Anderson localization ,Localization phenomena ,Photon ,Phonon ,FOS: Physical sciences ,General Physics and Astronomy ,Physics::Optics ,Nanomechanical oscillators ,Cavity optomechanics ,01 natural sciences ,Gravitational-wave detection ,Quantum mechanics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Quantum ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Degree (graph theory) ,Acoustic wave ,Coupling (probability) ,Light-matter interactions ,Quantum ground state ,Wavelength ,Longitudinal acoustic waves ,Physics - Optics ,Optics (physics.optics) - Abstract
Fundamental observations in physics ranging from gravitational wave detection to laser cooling of a nanomechanical oscillator into its quantum ground state rely on the interaction between the optical and the mechanical degrees of freedom. A key parameter to engineer this interaction is the spatial overlap between the two fields, optimized in carefully designed resonators on a case-by-case basis. Disorder is an alternative strategy to confine light and sound at the nanoscale. However, it lacks an a priori mechanism guaranteeing a high degree of colocalization due to the inherently complex nature of the underlying interference processes. Here, we propose a way to address this challenge by using GaAs/AlAs vertical distributed Bragg reflectors with embedded geometrical disorder. Because of a remarkable coincidence in the physical parameters governing light and motion propagation in these two materials, the equations for both longitudinal acoustic waves and normal-incidence light become practically equivalent for excitations of the same wavelength. This guarantees spatial overlap between the electromagnetic and displacement fields of specific photon-phonon pairs, leading to strong light-matter interaction. In particular, a statistical enhancement in the vacuum optomechanical coupling rate, go, is found, making this system a promising candidate to explore Anderson localization of high frequency (∼20 GHz) phonons enabled by cavity optomechanics. The colocalization effect shown here unlocks the access to unexplored localization phenomena and the engineering of light-matter interactions mediated by Anderson-localized states., This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades (MICINN) via the Severo Ochoa Program (Grant No. SEV-2017-0706) and the project PHENTOM (Grant No. Fis 2015-70862-P) as well as by the Centres de Recerca de Catalunya (CERCA), and by the European Commission in the form of the H2020 FET open project PHENOMEN (Grant No. 713450). G. A. is supported by a Barcelona Institute of Science and Technology PhD fellowship, N. D. L. K. by the ERC Starting Grant Nanophennec (Grant No. 715939) and P. D. G. by a Ramon y Cajal fellowship (Grant No. RyC-2015-18124).
- Published
- 2019
- Full Text
- View/download PDF
4. Advanced techniques for squeezed-light-enhanced gravitational-wave detection
- Author
-
Gniesmer, Jan
- Subjects
gravitational-wave detection ,Frequenzabhängiges gequetschtes Licht ,Bichromatic homodyne detection ,Verschränkung ,Gravitationswellendetektion ,ddc:530 ,Zweifarbige Homodyndetektion ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,entanglement ,Frequency-dependent squeezed light - Abstract
Quantum noise is one of the limiting factors in laser-interferometric gravitational-wave (GW) detectors. The application of squeezed states in these interferometers allows the reduction of quantum noise in one quadrature. Due to opto-mechanical coupling in a GW detector the squeezed quadrature needs to be rotated within the spectrum to achieve a broadband noise reduction. So far, the implementation of additional filter cavities is considered that allow for the optimal, frequency-dependent rotation of the squeezed quadrature. However, these cavities need to have low loss, a length in the order of \unit[100]{m} and must be situated in the vacuum system, making them cost-intensive. In 2017, Ma and coworkers proposed a scheme for the broadband quantum-noise reduction without the need of additional filter cavities. It was shown by Brown et al. that a similar scheme can be used to broadband-enhance interferometers with a detuned signal-recycling cavity. Here, we performed a proof-of-principle experiment of the proposal on a table-top-scale. Squeezed states were produced detuned to the carrier field of a \unit[2.5]{m}-linear cavity and read out in a bichromatic homodyne detection. The frequencies of the lower and upper local oscillator were at entangled sidebands of the squeezed field. Depending on the relations between the involved frequencies, we can address both variants of the proposal. We show, that the frequency-dependences of the resulting noise spectra fit to a theoretical model we derived from the theory used by Ma et al. With this work we set the path towards an implementation of these schemes in a GW-detector prototype, where the compatibility of the approach with a low-frequency suspended interferometer can be tested. Moreover, we used the same setup to show nonclassical interferometer enhancement at low frequencies by high-frequency squeezed states. Here, a heterodyne readout scheme was implemented to avoid limiting noises at low frequencies. The application of squeezed states centered around the local oscillator frequency yielded an improvement in signal-to-noise ratio of $\unit[3.4]{dB}\pm\unit[0.3]{dB}$. Additionally, I designed, built and characterized a compact source of squeezed vacuum-states at \unit[1064]{nm} with a footprint of just $\unit[0.8]{m^2}$. I show measurements of squeezed states from this source with a reduction of quantum noise of $\unit[10.7]{dB}\pm\unit[0.2]{dB}$ below the vacuum noise and present a noise reduction in the frequency range from \unit[70]{kHz} to \unit[65]{MHz}.
- Published
- 2019
- Full Text
- View/download PDF
5. Bayesian Inference Analysis of Unmodelled Gravitational-Wave Transients
- Author
-
Francesco Pannarale, Patrick J. Sutton, and R. Macas
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Data analysis ,gravitational waves ,gravitational-wave detection ,Estimation theory ,Noise (signal processing) ,Signal reconstruction ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Bayesian inference ,01 natural sciences ,Signal ,General Relativity and Quantum Cosmology ,Constant false alarm rate ,Binary black hole ,0103 physical sciences ,Waveform ,010306 general physics ,010303 astronomy & astrophysics ,Algorithm - Abstract
We report the results of an in-depth analysis of the parameter estimation capabilities of BayesWave, an algorithm for the reconstruction of gravitational-wave signals without reference to a specific signal model. Using binary black hole signals, we compare BayesWave's performance to the theoretical best achievable performance in three key areas: sky localisation accuracy, signal/noise discrimination, and waveform reconstruction accuracy. BayesWave is most effective for signals that have very compact time-frequency representations. For binaries, where the signal time-frequency volume decreases with mass, we find that BayesWave's performance reaches or approaches theoretical optimal limits for system masses above approximately 50 M_sun. For such systems BayesWave is able to localise the source on the sky as well as templated Bayesian analyses that rely on a precise signal model, and it is better than timing-only triangulation in all cases. We also show that the discrimination of signals against glitches and noise closely follow analytical predictions, and that only a small fraction of signals are discarded as glitches at a false alarm rate of 1/100 y. Finally, the match between BayesWave- reconstructed signals and injected signals is broadly consistent with first-principles estimates of the maximum possible accuracy, peaking at about 0.95 for high mass systems and decreasing for lower-mass systems. These results demonstrate the potential of unmodelled signal reconstruction techniques for gravitational-wave astronomy., 10 pages, 7 figures
- Published
- 2018
6. Gravitational-wave detection beyond the quantum shot-noise limit : the integration of squeezed light in GEO 600
- Author
-
Schreiber, Emil
- Subjects
gravitational-wave detection ,shot noise ,gequetschtes Licht ,Gravitationswellendetektion ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Schrotrauschen ,squeezed light - Abstract
The first detections of gravitational waves have opened an exciting new field of astronomy. One of the most fundamental limitations for the sensitivity of current and future interferometric gravitational-wave detectors is imposed by the quantum nature of light: Quantum vacuum fluctuations entering the interferometer through the readout port will contribute to the detection noise, at high frequencies in the form of shot noise and at low frequencies by radiation pressure noise. A promising way to reduce this quantum noise is the injection of squeezed states of light that have a lower uncertainty in one quadrature than the vacuum state. The GEO 600 gravitational-wave detector demonstrated the use of squeezed light in 2010 and it is now the first detector to routinely apply squeezing to improve its sensitivity beyond the limits set by classical quantum shot noise. This thesis details the practical aspects of long-term stable and efficient squeezed-light integration in a large-scale gravitational-wave detector. Imperfections that can limit the amount of observable non-classical noise improvement, such as optical losses and phase fluctuations, were studied in detail and methods for their mitigation were developed. Novel control schemes for the active stabilisation of the squeezed light field's phase and alignment were one main focus of the investigations. At the same time, important experience was gathered in the operation of the squeezed light source over long timescales. Over the course of the thesis work, improvements were implemented that significantly increased the performance of the squeezed-light application. Squeezing was injected with an overall duty cycle of 88%, reaching a noise reduction of up to 4.4 dB, corresponding to a 40% lowered shot-noise level. This work has firmly established the practical application of squeezing as a mature technology. The gained knowledge will directly inform the implementation of squeezed light for all future gravitational-wave detectors.
- Published
- 2018
- Full Text
- View/download PDF
7. Measurement uncertainty in pulsar timing array experiments
- Author
-
G. Shaifullah, Joris P. W. Verbiest, W Verbiest, J, and Shaifullah, G
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Astrophysics::High Energy Astrophysical Phenomena ,pulsar timing ,Astronomy ,technique ,01 natural sciences ,gravitational-wave detection ,Pulsar timing array ,0103 physical sciences ,Measurement uncertainty ,010306 general physics ,techniques ,010303 astronomy & astrophysics - Abstract
Highly precise monitoring of arrival times of pulses from pulsars will allow for gravitational-wave detection in the nano-Hertz regime in the near future. Due to the complex nature of such pulsar-timing experiments and to the large number of effects that can affect these data (starting with magnetospheric effects at the pulsars themselves but extending across the entire signal path down to the final gravitational-wave detection algorithm), any treatment of the measurement uncertainties relevant to such a gravitational-wave detection has been lacking and incomplete so far. In this review, we provide an exhaustive description of the currently known influences on measurement precision in pulsar-timing experiments in general and in gravitational-wave detection through pulsar-timing specifically. While some of these effects remain poorly understood and largely unquantified at present, we discuss both analytic and observational quantifications where available.
- Published
- 2018
- Full Text
- View/download PDF
8. Quantum-dense metrology for substraction of back-scatter disturbances in gravitational-wave detection
- Author
-
Ast, Melanie, Schnabel, Roman, and Danzmann, Karsten
- Subjects
Gravitationswellen-Detektion ,Gravitational-wave detection ,zwei-Moden-gequetschtes Licht ,gequetschtes Licht ,scattered light ,ddc:530 ,Streulicht ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,quantendichte Messung ,squeezed light ,quantum-dense metrology ,two-mode-squeezing - Abstract
[no abstract]
- Published
- 2017
9. Upper Limits On The Rates Of Binary Neutron Star And Neutron Star-Black Hole Mergers From Advanced Ligo's First Observing Run
- Author
-
Ligo, The Scientific Collaboration, the Virgo Collaboration, Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allocca, A., Altin, P. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C. C., Areeda, J. S., Arnaud, N., Arun, K. G., Ascenzi, S., Ashton, G., Ast, M., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Babak, S., Bacon, P., Bader, M. K. M., Baker, P. T., Baldaccini, F., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barclay, S. E., Barish, B. C., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Bartos, I., Bassiri, R., Basti, A., Batch, J. C., Baune, C., Bavigadda, V., Bazzan, M., Bejger, M., Bell, A. S., Berger, B. K., Bergmann, G., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhagwat, S., Bhandare, R., Bilenko, I. A., Billingsley, G., Birch, J., Birney, R., Biscans, S., Bisht, A., Bitossi, M., Biwer, C., Bizouard, M. A., Blackburn, J. K., Blair, C. D., Blair, D. G., Blair, R. M., Bloemen, S., Bock, O., Boer, M., Bogaert, G., Bogan, C., Bohe, A., Bond, C., Bondu, F., Bonnand, R., Boom, B. A., Bork, R., Boschi, V., Bose, S., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brau, J. E., Briant, T., Brillet, A., Brinkmann, M., Brisson, V., Brockill, P., Broida, J. E., Brooks, A. F., Brown, D. A., Brown, D. D., Brown, N. M., Brunett, S., Buchanan, C. C., Buikema, A., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cabero, M., Cadonati, L., Cagnoli, G., Cahillane, C., Calder On Bustillo, J., Callister, T., Calloni, E., Camp, J. B., Cannon, K. C., Cao, J., Capano, C. D., Capocasa, E., Carbognani, F., Caride, S., Casanueva Diaz, J., Casentini, C., Caudill, S., Cavagli A, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C. B., Cerboni Baiardi, L., Cerretani, G., Cesarini, E., Chamberlin, S. J., Chan, M., Chao, S., Charlton, P., Chassande-Mottin, E., Cheeseboro, B. D., Chen, H. Y., Chen, Y., Cheng, C., Chincarini, A., Chiummo, A., Cho, H. S., Cho, M., Chow, J. H., Christensen, N., Chu, Q., Chua, S., Chung, S., Ciani, G., Clara, F., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. -F, Colla, A., Collette, C. G., Cominsky, L., Constancio, M., Conte, A., Conti, L., Cook, D., Corbitt, T. R., Cornish, N., Corsi, A., Cortese, S., Costa, C. A., Coughlin, M. W., Coughlin, S. B., Coulon, J. -P, Countryman, S. T., Couvares, P., Cowan, E. E., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creighton, J. D. E., Cripe, J., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Dal Canton, T., Danilishin, S. L., D Antonio, S., Danzmann, K., Darman, N. S., Dasgupta, A., Da Silva Costa, C. F., Dattilo, V., Dave, I., Davier, M., Davies, G. S., Daw, E. J., Day, R., De, S., Debra, D., Debreczeni, G., Degallaix, J., Laurentis, M., Del Eglise, S., Del Pozzo, W., Denker, T., Dent, T., Dergachev, V., Rosa, R., Derosa, R. T., Desalvo, R., Devine, R. C., Dhurandhar, S., D Iaz, M. C., Di Fiore, L., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Di Pace, S., Di Palma, I., Di Virgilio, A., Dolique, V., Donovan, F., Dooley, K. L., Doravari, S., Douglas, R., Downes, T. P., Drago, M., Drever, R. W. P., Driggers, J. C., Ducrot, M., Dwyer, S. E., Edo, T. B., Edwards, M. C., Effler, A., Eggenstein, H. -B, Ehrens, P., Eichholz, J., Eikenberry, S. S., Engels, W., Essick, R. C., Etzel, T., Evans, M., Evans, T. M., Everett, R., Factourovich, M., Fafone, V., Fair, H., Fairhurst, S., Fan, X., Fang, Q., Farinon, S., Farr, B., Farr, W. M., Favata, M., Fays, M., Fehrmann, H., Fejer, M. M., Fenyvesi, E., Ferrante, I., Ferreira, E. C., Ferrini, F., Fidecaro, F., Fiori, I., Fiorucci, D., Fisher, R. P., Flaminio, R., Fletcher, M., Fournier, J. -D, Frasca, S., Frasconi, F., Frei, Z., Freise, A., Frey, R., Frey, V., Fritschel, P., Frolov, V. V., Fulda, P., Fyffe, M., Gabbard, H. A. G., Gair, J. R., Gammaitoni, L., Gaonkar, S. G., Garufi, F., Gaur, G., Gehrels, N., Gemme, G., Geng, P., Genin, E., Gennai, A., George, J., Gergely, L., Germain, V., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, S., Giaime, J. A., Giardina, K. D., Giazotto, A., Gill, K., Glaefke, A., Goetz, E., Goetz, R., Gondan, L., Gonz Alez, G., Gonzalez Castro, J. M., Gopakumar, A., Gordon, N. A., Gorodetsky, M. L., Gossan, S. E., Gosselin, M., Gouaty, R., Grado, A., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greco, G., Green, A. C., Paul Groot, Grote, H., Grunewald, S., Guidi, G. M., Guo, X., Gupta, A., Gupta, M. K., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hacker, J. J., Hall, B. R., Hall, E. D., Hammond, G., Haney, M., Hanke, M. M., Hanks, J., Hanna, C., Hannam, M. D., Hanson, J., Hardwick, T., Harms, J., Harry, G. M., Harry, I. W., Hart, M. J., Hartman, M. T., Haster, C. -J, Haughian, K., Heidmann, A., Heintze, M. C., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Hennig, J., Henry, J., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hofman, D., Holt, K., Holz, D. E., Hopkins, P., Hough, J., Houston, E. A., Howell, E. J., Hu, Y. M., Huang, S., Huerta, E. A., Huet, D., Hughey, B., Husa, S., Huttner, S. H., Huynh-Dinh, T., Indik, N., Ingram, D. R., Inta, R., Isa, H. N., Isac, J. -M, Isi, M., Isogai, T., Iyer, B. R., Izumi, K., Jacqmin, T., Jang, H., Jani, K., Jaranowski, P., Jawahar, S., Jian, L., Jim Enez-Forteza, F., Johnson, W. W., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., K, Haris, Kalaghatgi, C. V., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Karki, S., Karvinen, K. S., Kasprzack, M., Katsavounidis, E., Katzman, W., Kaufer, S., Kaur, T., Kawabe, K., K Ef Elian, F., Kehl, M. S., Keitel, D., Kelley, D. B., Kells, W., Kennedy, R., Key, J. S., Khalili, F. Y., Khan, I., Khan, S., Khan, Z., Khazanov, E. A., Kijbunchoo, N., Kim, Chi-Woong, Kim, Chunglee, Kim, J., Kim, K., Kim, N., Kim, W., Kim, Y. -M, Kimbrell, S. J., King, E. J., King, P. J., Kissel, J. S., Klein, B., Kleybolte, L., Klimenko, S., Koehlenbeck, S. M., Koley, S., Kondrashov, V., Kontos, A., Korobko, M., Korth, W. Z., Kowalska, I., Kozak, D. B., Kringel, V., Krishnan, B., Kr Olak, A., Krueger, C., Kuehn, G., Kumar, P., Kumar, R., Kuo, L., Kutynia, A., Lackey, B. D., Landry, M., Lange, J., Lantz, B., Lasky, P. D., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lebigot, E. O., Lee, C. H., Lee, H. K., Lee, H. M., Lee, K., Lenon, A., Leonardi, M., Leong, J. R., Leroy, N., Letendre, N., Levin, Y., Lewis, J. B., Li, T. G. F., Libson, A., Littenberg, T. B., Lockerbie, N. A., Lombardi, A. L., London, L. T., Lord, J. E., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J. D., Quot, L., Uck, H., Lundgren, A. P., Lynch, R., Ma, Y., Machenschalk, B., Macinnis, M., Macleod, D. M., Magana-Sandoval, F., Magana Zertuche, L., Magee, R. M., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandic, V., Mangano, V., Mansell, G. L., Manske, M., Mantovani, M., Marchesoni, F., Marion, F., M Arka, S., M Arka, Z., Markosyan, A. S., Maros, E., Martelli, F., Martellini, L., Martin, I. W., Martynov, D. V., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Masso-Reid, M., Mastrogiovanni, S., Matichard, F., Matone, L., Mavalvala, N., Mazumder, N., Mccarthy, R., Mcclelland, D. E., Mccormick, S., Mcguire, S. C., Mcintyre, G., Mciver, J., Mcmanus, D. J., Mcrae, T., Mcwilliams, S. T., Meacher, D., Meadors, G. D., Meidam, J., Melatos, A., Mendell, G., Mercer, R. A., Merilh, E. L., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Metzdorff, R., Meyers, P. M., Mezzani, F., Miao, H., Michel, C., Middleton, H., Mikhailov, E. E., Milano, L., Miller, A. L., Miller, A., Miller, B. B., Miller, J., Millhouse, M., Minenkov, Y., Ming, J., Mirshekari, S., Mishra, C., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moggi, A., Mohan, M., Mohapatra, S. R. P., Montani, M., Moore, B. C., Moore, C. J., Moraru, D., Moreno, G., Morriss, S. R., Mossavi, K., Mours, B., Mow-Lowry, C. M., Mueller, G., Muir, A. W., Mukherjee, Arunava, Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Murphy, D. J., Murray, P. G., Mytidis, A., Nardecchia, I., Naticchioni, L., Nayak, R. K., Nedkova, K., Nelemans, G., Nelson, T. J. N., Neri, M., Neunzert, A., Newton, G., Nguyen, T. T., Nielsen, A. B., Nissanke, S., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E. N., Nuttall, L. K., Oberling, J., Ochsner, E., O, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oliver, M., Oppermann, P., Oram, Richard J., O Reilly, B., O Shaughnessy, R., Ottaway, D. J., Overmier, H., Owen, B. J., Pai, A., Pai, S. A., Palamos, J. R., Palashov, O., Palomba, C., Pal-Singh, A., Pan, H., Pankow, C., Pannarale, F., Pant, B. C., Paoletti, F., Paoli, A., Papa, M. A., Paris, H. R., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Patrick, Z., Pearlstone, B. L., Pedraza, M., Pedurand, R., Pekowsky, L., Pele, A., Penn, S., Perreca, A., Perri, L. M., Phelps, M., Piccinni, O. J., Pichot, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I. M., Pitkin, M., Poe, M., Poggiani, R., Popolizio, P., Post, A., Powell, J., Prasad, J., Pratt, J., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prix, R., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Quot, P., Urrer, M., Qi, H., Qin, J., Qiu, S., Quetschke, V., Quintero, E. A., Quitzow-James, R., Raab, F. J., Rabeling, D. S., Radkins, H., Raffai, P., Raja, S., Rajan, C., Rakhmanov, M., Rapagnani, P., Raymond, V., Razzano, M., Re, V., Read, J., Reed, C. M., Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Rew, H., Reyes, S. D., Ricci, F., Riles, K., Rizzo, M., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rolland, L., Rollins, J. G., Roma, V. J., Romano, R., Romanov, G., Romie, J. H., Rosi Nska, D., Rowan, S., Quot, R., Udiger, A., Ruggi, P., Ryan, K., Sachdev, S., Sadecki, T., Sadeghian, L., Sakellariadou, M., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sammut, L., Sanchez, E. J., Sandberg, V., Sandeen, B., Sanders, J. R., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Sauter, O. E. S., Savage, R. L., Sawadsky, A., Schale, P., Schilling, R., Schmidt, J., Schmidt, P., Schnabel, R., Schofield, R. M. S., Sch", Onbeck, A., Schreiber, E., Schuette, D., Schutz, B. F., Scott, J., Scott, S. M., Sellers, D., Sengupta, A. S., Sentenac, D., Sequino, V., Sergeev, A., Setyawati, Y., Shaddock, D. A., Shaffer, T., Shahriar, M. S., Shaltev, M., Shapiro, B., Shawhan, P., Sheperd, A., Shoemaker, D. H., Shoemaker, D. M., Siellez, K., Siemens, X., Sieniawska, M., Sigg, D., Silva, A. D., Singer, A., Singer, L. P., Singh, A., Singh, R., Singhal, A., Sintes, A. M., Slagmolen, B. J. J., Smith, J. R., Smith, N. D., Smith, R. J. E., Son, E. J., Sorazu, B., Sorrentino, F., Souradeep, T., Srivastava, A. K., Staley, A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stephens, B. C., Stone, R., Strain, K. A., Straniero, N., Stratta, G., Strauss, N. A., Strigin, S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Sun, L., Sunil, S., Sutton, P. J., Swinkels, B. L., Szczepa Nczyk, M. J., Tacca, M., Talukder, D., Tanner, D. B., T Apai, M., Tarabrin, S. P., Taracchini, A., Taylor, R., Theeg, T., Thirugnanasambandam, M. P., Thomas, E. G., Thomas, M., Thomas, P., Thorne, K. A., Thrane, E., Tiwari, S., Tiwari, V., Tokmakov, K. V., Toland, K., Tomlinson, C., Tonelli, M., Tornasi, Z., Torres, C. V., Torrie, C. I., Quot, T., oyr", A, D., Travasso, F., Traylor, G., Trifir O, D., Tringali, M. C., Trozzo, L., Tse, M., Turconi, M., Tuyenbayev, D., Ugolini, D., Unnikrishnan, C. S., Urban, A. L., Usman, S. A., Vahlbruch, H., Vajente, G., Valdes, G., Bakel, N., Beuzekom, M., Den Brand, J. F. J., Den Broeck, C., Vander-Hyde, D. C., Schaaf, L., Heijningen, J. V., Veggel, A. A., Vardaro, M., Vass, S., Vas Uth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Vetrano, F., Vicer E, A., Vinciguerra, S., Vine, D. J., Vinet, J. -Y, Vitale, S., Vo, T., Vocca, H., Vorvick, C., Voss, D. V., Vousden, W. D., Vyatchanin, S. P., Wade, A. R., Wade, L. E., Wade, M., Walker, M., Wallace, L., Walsh, S., Wang, G., Wang, H., Wang, M., Wang, X., Wang, Y., Ward, R. L., Warner, J., Was, M., Weaver, B., Wei, L. -W, Weinert, M., Weinstein, A. J., Weiss, R., Wen, L., Wessels, P., Westphal, T., Wette, K., Whelan, J. T., Whiting, B. F., Williams, R. D., Williamson, A. R., Willis, J. L., Willke, B., Wimmer, M. H., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Woehler, J., Worden, J., Wright, J. L., Wu, D. S., Wu, G., Yablon, J., Yam, W., Yamamoto, H., Yancey, C. C., Yu, H., Yvert, M., Zadro Zny, A., Zangrando, L., Zanolin, M., Zendri, J. -P, Zevin, M., Zhang, L., Zhang, M., Zhang, Y., Zhao, C., Zhou, M., Zhou, Z., Zhu, X. J., Zucker, M. E., Zuraw, S. E., Zweizig, J., Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire des matériaux avancés (LMA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, VIRGO, Ligo, Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., Adya, V. B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Allen, B., Allocca, A., Altin, P. A., Anderson, S. B., Anderson, W. G., Arai, K., Araya, M. C., Arceneaux, C. C., Areeda, J. S., Arnaud, N., Arun, K. G., Ascenzi, S., Ashton, G., Ast, M., Aston, S. M., Astone, P., Aufmuth, P., Aulbert, C., Babak, S., Bacon, P., Bader, M. K. M., Baker, P. T., Baldaccini, F., Ballardin, G., Ballmer, S. W., Barayoga, J. C., Barclay, S. E., Barish, B. C., Barker, D., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Bartos, I., Bassiri, R., Basti, A., Batch, J. C., Baune, C., Bavigadda, V., Bazzan, M., Bejger, M., Bell, A. S., Berger, B. K., Bergmann, G., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhagwat, S., Bhandare, R., Bilenko, I. A., Billingsley, G., Birch, J., Birney, R., Biscans, S., Bisht, A., Bitossi, M., Biwer, C., Bizouard, M. A., Blackburn, J. K., Blair, C. D., Blair, D. G., Blair, R. M., Bloemen, S., Bock, O., Boer, M., Bogaert, G., Bogan, C., Bohe, A., Bond, C., Bondu, F., Bonnand, R., Boom, B. A., Bork, R., Boschi, V., Bose, S., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P. R., Braginsky, V. B., Branchesi, M., Brau, J. E., Briant, T., Brillet, A., Brinkmann, M., Brisson, V., Brockill, P., Broida, J. E., Brooks, A. F., Brown, D. A., Brown, D. D., Brown, N. M., Brunett, S., Buchanan, C. C., Buikema, A., Bulik, T., Bulten, H. J., Buonanno, A., Buskulic, D., Buy, C., Byer, R. L., Cabero, M., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T., Calloni, Enrico, Camp, J. B., Cannon, K. C., Cao, J., Capano, C. D., Capocasa, E., Carbognani, F., Caride, S., Diaz, J. Casanueva, Casentini, C., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cepeda, C. B., Baiardi, L. Cerboni, Cerretani, G., Cesarini, E., Chamberlin, S. J., Chan, M., Chao, S., Charlton, P., Chassande Mottin, E., Cheeseboro, B. D., Chen, H. Y., Chen, Y., Cheng, C., Chincarini, A., Chiummo, A., Cho, H. S., Cho, M., Chow, J. H., Christensen, N., Chu, Q., Chua, S., Chung, S., Ciani, G., Clara, F., Clark, J. A., Cleva, F., Coccia, E., Cohadon, P. F., Colla, A., Collette, C. G., Cominsky, L., M., C. o. n. s. t. a. n. c. i. o. J. r., Conte, A., Conti, L., Cook, D., Corbitt, T. R., Cornish, N., Corsi, A., Cortese, S., Costa, C. A., Coughlin, M. W., Coughlin, S. B., Coulon, J. P., Countryman, S. T., Couvares, P., Cowan, E. E., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creighton, J. D. E., Cripe, J., Crowder, S. G., Cumming, A., Cunningham, L., Cuoco, E., Canton, T. Dal, Danilishin, S. L., D’Antonio, S., Danzmann, K., Darman, N. S., Dasgupta, A., Costa, C. F. Da Silva, Dattilo, V., Dave, I., Davier, M., Davies, G. S., Daw, E. J., Day, R., De, S., Debra, D., Debreczeni, G., Degallaix, J., DE LAURENTIS, Martina, Deléglise, S., Pozzo, W. Del, Denker, T., Dent, T., Dergachev, V., Rosa, R. De, DE ROSA, Rosario, Desalvo, R., Devine, R. C., Dhurandhar, S., Díaz, M. C., Fiore, L. Di, Giovanni, M., DI GIROLAMO, Tristano, Lieto, A. Di, Pace, S. Di, Palma, I. Di, Virgilio, A. Di, Dolique, V., Donovan, F., Dooley, K. L., Doravari, S., Douglas, R., Downes, T. P., Drago, M., Drever, R. W. P., Driggers, J. C., Ducrot, M., Dwyer, S. E., Edo, T. B., Edwards, M. C., Effler, A., Eggenstein, H. B., Ehrens, P., Eichholz, J., Eikenberry, S. S., Engels, W., Essick, R. C., Etzel, T., Evans, M., Evans, T. M., Everett, R., Factourovich, M., Fafone, V., Fair, H., Fairhurst, S., Fan, X., Fang, Q., Farinon, S., Farr, B., Farr, W. M., Favata, M., Fays, M., Fehrmann, H., Fejer, M. M., Fenyvesi, E., Ferrante, I., Ferreira, E. C., Ferrini, F., Fidecaro, F., Fiori, I., Fiorucci, D., Fisher, R. P., Flaminio, R., Fletcher, M., Fournier, J. D., Frasca, S., Frasconi, F., Frei, Z., Freise, A., Frey, R., Frey, V., Fritschel, P., Frolov, V. V., Fulda, P., Fyffe, M., Gabbard, H. A. G., Gair, J. R., Gammaitoni, L., Gaonkar, S. G., Garufi, Fabio, Gaur, G., Gehrels, N., Gemme, G., Geng, P., Genin, E., Gennai, A., George, J., Gergely, L., Germain, V., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, S., Giaime, J. A., Giardina, K. D., Giazotto, A., Gill, K., Glaefke, A., Goetz, E., Goetz, R., Gondan, L., González, G., Castro, J. M. Gonzalez, Gopakumar, A., Gordon, N. A., Gorodetsky, M. L., Gossan, S. E., Gosselin, M., Gouaty, R., Grado, A., Graef, C., Graff, P. B., Granata, M., Grant, A., Gras, S., Gray, C., Greco, G., Green, A. C., Groot, P., Grote, H., Grunewald, S., Guidi, G. M., Guo, X., Gupta, A., Gupta, M. K., Gushwa, K. E., Gustafson, E. K., Gustafson, R., Hacker, J. J., Hall, B. R., Hall, E. D., Hammond, G., Haney, M., Hanke, M. M., Hanks, J., Hanna, C., Hannam, M. D., Hanson, J., Hardwick, T., Harms, J., Harry, G. M., Harry, I. W., Hart, M. J., Hartman, M. T., Haster, C. J., Haughian, K., Heidmann, A., Heintze, M. C., Heitmann, H., Hello, P., Hemming, G., Hendry, M., Heng, I. S., Hennig, J., Henry, J., Heptonstall, A. W., Heurs, M., Hild, S., Hoak, D., Hofman, D., Holt, K., Holz, D. E., Hopkins, P., Hough, J., Houston, E. A., Howell, E. J., Hu, Y. M., Huang, S., Huerta, E. A., Huet, D., Hughey, B., Husa, S., Huttner, S. H., Huynh Dinh, T., Indik, N., Ingram, D. R., Inta, R., Isa, H. N., Isac, J. M., Isi, M., Isogai, T., Iyer, B. R., Izumi, K., Jacqmin, T., Jang, H., Jani, K., Jaranowski, P., Jawahar, S., Jian, L., Jiménez Forteza, F., Johnson, W. W., Jones, D. I., Jones, R., Jonker, R. J. G., Ju, L., K, Hari, Kalaghatgi, C. V., Kalogera, V., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Karki, S., Karvinen, K. S., Kasprzack, M., Katsavounidis, E., Katzman, W., Kaufer, S., Kaur, T., Kawabe, K., Kéfélian, F., Kehl, M. S., Keitel, D., Kelley, D. B., Kells, W., Kennedy, R., Key, J. S., Khalili, F. Y., Khan, I., Khan, S., Khan, Z., Khazanov, E. A., Kijbunchoo, N., Kim, Chi Woong, Kim, Chunglee, Kim, J., Kim, K., Kim, N., Kim, W., Kim, Y. M., Kimbrell, S. J., King, E. J., King, P. J., Kissel, J. S., Klein, B., Kleybolte, L., Klimenko, S., Koehlenbeck, S. M., Koley, S., Kondrashov, V., Kontos, A., Korobko, M., Korth, W. Z., Kowalska, I., Kozak, D. B., Kringel, V., Krishnan, B., Królak, A., Krueger, C., Kuehn, G., Kumar, P., Kumar, R., Kuo, L., Kutynia, A., Lackey, B. D., Landry, M., Lange, J., Lantz, B., Lasky, P. D., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lebigot, E. O., Lee, C. H., Lee, H. K., Lee, H. M., Lee, K., Lenon, A., Leonardi, M., Leong, J. R., Leroy, N., Letendre, N., Levin, Y., Lewis, J. B., Li, T. G. F., Libson, A., Littenberg, T. B., Lockerbie, N. A., Lombardi, A. L., London, L. T., Lord, J. E., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J. D., Lück, H., Lundgren, A. P., Lynch, R., Ma, Y., Machenschalk, B., Macinnis, M., Macleod, D. M., Magaña Sandoval, F., Magaña Zertuche, L., Magee, R. M., Majorana, E., Maksimovic, I., Malvezzi, V., Man, N., Mandic, V., Mangano, V., Mansell, G. L., Manske, M., Mantovani, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Maros, E., Martelli, F., Martellini, L., Martin, I. W., Martynov, D. V., Marx, J. N., Mason, K., Masserot, A., Massinger, T. J., Masso Reid, M., Mastrogiovanni, S., Matichard, F., Matone, L., Mavalvala, N., Mazumder, N., Mccarthy, R., Mcclelland, D. E., Mccormick, S., Mcguire, S. C., Mcintyre, G., Mciver, J., Mcmanus, D. J., Mcrae, T., Mcwilliams, S. T., Meacher, D., Meadors, G. D., Meidam, J., Melatos, A., Mendell, G., Mercer, R. A., Merilh, E. L., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Metzdorff, R., Meyers, P. M., Mezzani, F., Miao, H., Michel, C., Middleton, H., Mikhailov, E. E., Milano, Leopoldo, Miller, A. L., Miller, A., Miller, B. B., Miller, J., Millhouse, M., Minenkov, Y., Ming, J., Mirshekari, S., Mishra, C., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Moggi, A., Mohan, M., Mohapatra, S. R. P., Montani, M., Moore, B. C., Moore, C. J., Moraru, D., Moreno, G., Morriss, S. R., Mossavi, K., Mours, B., Mow Lowry, C. M., Mueller, G., Muir, A. W., Mukherjee, Arunava, Mukherjee, D., Mukherjee, S., Mukund, N., Mullavey, A., Munch, J., Murphy, D. J., Murray, P. G., Mytidis, A., Nardecchia, I., Naticchioni, L., Nayak, R. K., Nedkova, K., Nelemans, G., Nelson, T. J. N., Neri, M., Neunzert, A., Newton, G., Nguyen, T. T., Nielsen, A. B., Nissanke, S., Nitz, A., Nocera, F., Nolting, D., Normandin, M. E. N., Nuttall, L. K., Oberling, J., Ochsner, E., O’Dell, J., Oelker, E., Ogin, G. H., Oh, J. J., Oh, S. H., Ohme, F., Oliver, M., Oppermann, P., Oram, Richard J., O’Reilly, B., O’Shaughnessy, R., Ottaway, D. J., Overmier, H., Owen, B. J., Pai, A., Pai, S. A., Palamos, J. R., Palashov, O., Palomba, C., Pal Singh, A., Pan, H., Pankow, C., Pannarale, F., Pant, B. C., Paoletti, F., Paoli, A., Papa, M. A., Paris, H. R., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patricelli, B., Patrick, Z., Pearlstone, B. L., Pedraza, M., Pedurand, R., Pekowsky, L., Pele, A., Penn, S., Perreca, A., Perri, L. M., Phelps, M., Piccinni, O. J., Pichot, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I. M., Pitkin, M., Poe, M., Poggiani, R., Popolizio, P., Post, A., Powell, J., Prasad, J., Predoi, V., Prestegard, T., Price, L. R., Prijatelj, M., Principe, M., Privitera, S., Prix, R., Prodi, G. A., Prokhorov, L., Puncken, O., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Qiu, S., Quetschke, V., Quintero, E. A., Quitzow James, R., Raab, F. J., Rabeling, D. S., Radkins, H., Raffai, P., Raja, S., Rajan, C., Rakhmanov, M., Rapagnani, P., Raymond, V., Razzano, M., Re, V., Read, J., Reed, C. M., Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Rew, H., Reyes, S. D., Ricci, F., Riles, K., Rizzo, M., Robertson, N. A., Robie, R., Robinet, F., Rocchi, A., Rolland, L., Rollins, J. G., Roma, V. J., Romano, R., Romanov, G., Romie, J. H., Rosińska, D., Rowan, S., Rüdiger, A., Ruggi, P., Ryan, K., Sachdev, S., Sadecki, T., Sadeghian, L., Sakellariadou, M., Salconi, L., Saleem, M., Salemi, F., Samajdar, A., Sammut, L., Sanchez, E. J., Sandberg, V., Sandeen, B., Sanders, J. R., Sassolas, B., Sathyaprakash, B. S., Saulson, P. R., Sauter, O. E. S., Savage, R. L., Sawadsky, A., Schale, P., Schilling, R., Schmidt, J., Schmidt, P., Schnabel, R., Schofield, R. M. S., Schönbeck, A., Schreiber, E., Schuette, D., Schutz, B. F., Scott, J., Scott, S. M., Sellers, D., Sengupta, A. S., Sentenac, D., Sequino, V., Sergeev, A., Setyawati, Y., Shaddock, D. A., Shaffer, T., Shahriar, M. S., Shaltev, M., Shapiro, B., Shawhan, P., Sheperd, A., Shoemaker, D. H., Shoemaker, D. M., Siellez, K., Siemens, X., Sieniawska, M., Sigg, D., Silva, A. D., Singer, A., Singer, L. P., Singh, A., Singh, R., Singhal, A., Sintes, A. M., Slagmolen, B. J. J., Smith, J. R., Smith, N. D., Smith, R. J. E., Son, E. J., Sorazu, B., Sorrentino, F., Souradeep, T., Srivastava, A. K., Staley, A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stephens, B. C., Stone, R., Strain, K. A., Straniero, N., Stratta, G., Strauss, N. A., Strigin, S., Sturani, R., Stuver, A. L., Summerscales, T. Z., Sun, L., Sunil, S., Sutton, P. J., Swinkels, B. L., Szczepańczyk, M. J., Tacca, M., Talukder, D., Tanner, D. B., Tápai, M., Tarabrin, S. P., Taracchini, A., Taylor, R., Theeg, T., Thirugnanasambandam, M. P., Thomas, E. G., Thomas, M., Thomas, P., Thorne, K. A., Thrane, E., Tiwari, S., Tiwari, V., Tokmakov, K. V., Toland, K., Tomlinson, C., Tonelli, M., Tornasi, Z., Torres, C. V., Torrie, C. I., Töyrä, D., Travasso, F., Traylor, G., Trifirò, D., Tringali, M. C., Trozzo, L., Tse, M., Turconi, M., Tuyenbayev, D., Ugolini, D., Unnikrishnan, C. S., Urban, A. L., Usman, S. A., Vahlbruch, H., Vajente, G., Valdes, G., Bakel, N. van, Beuzekom, M. van, van den Brand, J. F. J., Broeck, C. Van Den, Vander Hyde, D. C., Schaaf, L. van der, Heijningen, J. V. van, Veggel, A. A. van, Vardaro, M., Vass, S., Vasúth, M., Vaulin, R., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venkateswara, K., Verkindt, D., Vetrano, F., Viceré, A., Vinciguerra, S., Vine, D. J., Vinet, J. Y., Vitale, S., Vo, T., Vocca, H., Vorvick, C., Voss, D. V., Vousden, W. D., Vyatchanin, S. P., Wade, A. R., Wade, L. E., Wade, M., Walker, M., Wallace, L., Walsh, S., Wang, G., Wang, H., Wang, M., Wang, X., Wang, Y., Ward, R. L., Warner, J., Was, M., Weaver, B., Wei, L. W., Weinert, M., Weinstein, A. J., Weiss, R., Wen, L., Weßels, P., Westphal, T., Wette, K., Whelan, J. T., Whiting, B. F., Williams, R. D., Williamson, A. R., Willis, J. L., Willke, B., Wimmer, M. H., Winkler, W., Wipf, C. C., Wittel, H., Woan, G., Woehler, J., Worden, J., Wright, J. L., Wu, D. S., Wu, G., Yablon, J., Yam, W., Yamamoto, H., Yancey, C. C., Yu, H., Yvert, M., Zadrożny, A., Zangrando, L., Zanolin, M., Zendri, J. P., Zevin, M., Zhang, L., Zhang, M., Zhang, Y., Zhao, C., Zhou, M., Zhou, Z., Zhu, X. J., Zucker, M. E., Zuraw, S. E., Zweizig, J., Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), (Astro)-Particles Physics, LIGO, Louisiana State Univ, Amer Univ, Univ Salerno, Complesso Univ Monte S Angelo, Univ Florida, LIGO Livingston Observ, Lab Annecy Le Vieux Phys Particules, Univ Sannio Benevento, INFN, Max Planck Inst Gravitat Phys, Nikhef, MIT, Inst Nacl Pesquisas Espaciais, Inter Univ Ctr Astron & Astrophys, Int Ctr Theoret Sci, Univ Wisconsin Milwaukee, Leibniz Univ Hannover, Univ Pisa, Australian Natl Univ, Univ Mississippi, Calif State Univ Fullerton, Univ Paris 11, Chennai Math Inst, Univ Roma Tor Vergata, Univ Southampton, Univ Hamburg, Universidade de São Paulo (USP), Montana State Univ, Univ Perugia, EGO, Syracuse Univ, Univ Glasgow, LIGO Hanford Observ, Wigner RCP, Columbia Univ, Stanford Univ, Univ Padua, CAMK PAN, Univ Birmingham, Univ Genoa, RRCAT, Lomonosov Moscow State Univ, Univ West Scotland, Univ Western Australia, Radboud Univ Nijmegen, Univ Cote Azur, Univ Rennes 1, Washington State Univ, Univ Urbino Carlo Bo, Ist Nazl Fis Nucl, Univ Oregon, ENS PSL Res Univ, Carleton Coll, Astron Observ Warsaw Univ, Vrije Univ Amsterdam, Univ Maryland, Georgia Inst Technol, CNRS, Univ Claude Bernard Lyon 1, NASA, Univ Tokyo, Tsinghua Univ, Texas Tech Univ, Penn State Univ, Natl Tsing Hua Univ, Charles Sturt Univ, West Virginia Univ, Univ Chicago, Caltech CaRT, Korea Inst Sci & Technol Informat, Univ Roma La Sapienza, Univ Brussels, Sonoma State Univ, NW Univ, Univ Minnesota, Univ Melbourne, Inst Plasma Res, Univ Sheffield, Univ Texas Rio Grande Valley, Univ Trent, Cardiff Univ, Montclair State Univ, MTA Eotvos Univ, Natl Astron Observ Japan, Univ Edinburgh, Indian Inst Technol, Univ Szeged, Embry Riddle Aeronaut Univ, Tata Inst Fundamental Res, INAF, Univ Michigan, Rochester Inst Technol, Univ Illinois, Univ Illes Balears, Univ Bialystok, Univ Strathclyde, IISER TVM, Univ Toronto, Inst Appl Phys, Pusan Natl Univ, Hanyang Univ, Univ Adelaide, NCBJ, IM PAN, Monash Univ, Seoul Natl Univ, Chinese Univ Hong Kong, Univ Alabama Huntsville, Univ Massachusetts Amherst, Univ Camerino, A&M Coll, Southern Univ, Coll William & Mary, Universidade Estadual Paulista (Unesp), Univ Cambridge, IISER Kolkata, HSIC, Whitman Coll, Natl Inst Math Sci, Univ Lyon, Hobart & William Smith Colleges, Univ Zielona Gora, Univ London, Andrews Univ, Univ Siena, Tnnity Univ, Univ Washington, Kenyon Coll, Abilene Christian Univ, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), The LIGO Scientific Collaboration, The Virgo Collaboration, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Astronomy ,gamma-ray burst: general ,Astrophysics ,general [gamma-ray burst] ,01 natural sciences ,General Relativity and Quantum Cosmology ,general [binaries] ,Astrophysics::Solar and Stellar Astrophysics ,binaries: general ,gravitational waves ,stars: black holes ,stars: neutron ,astro-ph.HE ,astro-ph.CO ,Astronomy and Astrophysics ,Space and Planetary Science ,LIGO ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,QC ,POPULATION ,QB ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,GAMMA-RAY BURSTS ,Settore FIS/01 - Fisica Sperimentale ,SPIN ,ACCRETION DISK ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics::Earth and Planetary Astrophysics ,Binary Neutron Star ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics ,[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Star (game theory) ,gr-qc ,Astrophysics::High Energy Astrophysical Phenomena ,Neutron Star and Black Hole ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,GRAVITATIONAL-WAVE DETECTION ,[ PHYS.ASTR.CO ] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,O1 ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,MAXIMUM MASS ,neutron [stars] ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,black holes [stars] ,Sensitivity (control systems) ,LIGO, O1, Binary Neutron Star, Neutron Star and Black Hole ,STFC ,Astrophysics::Galaxy Astrophysics ,MASS-DISTRIBUTION ,RADIO ,EXPLOSION ,010308 nuclear & particles physics ,Gravitational wave ,RCUK ,[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Black hole ,Neutron star ,Physics and Astronomy ,HOST GALAXY ,Binaries: general ,Gamma-ray burst ,Dimensionless quantity - Abstract
© 2016 The American Astronomical Society. This is the publisher Version of Record Manuscript. Please refer to any applicable publisher terms of use., We report here the non-detection of gravitational waves from the merger of binary–neutron star systems and neutron star–black hole systems during the first observing run of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary–neutron star systems with component masses Î[ ] 1, 3 M and component dimensionless spins
- Published
- 2016
- Full Text
- View/download PDF
10. Automatic Alignment for the first science run of the Virgo interferometer
- Subjects
Gravitational wave detectors ,Control systems ,Interferometry ,Angular ,GRAVITATIONAL-WAVE DETECTION ,SYSTEM - Abstract
During the past few years a network of large-scale laser interferometers, including the Virgo detector, has been developed with the aim of detecting gravitational waves To properly operate the detectors, the longitudinal and angular positions of the suspended detector test masses, the interferometer mirrors, must be kept within a small range from the operating point.The design of the Virgo angular control system, called Automatic Alignment is based on a modified version of the Anderson-Giordano technique, a wave-front sensing scheme which uses the modulation-demodulation technique.This paper will present the theoretical background of the Virgo Automatic Alignment system, the implementation issues and the performances observed during the first Virgo science run (VSR1) A total RMS of 4 x 10(-2) to 3 x 10(-3) mu rad for all angular degrees of freedom has been achieved. (C) 2010 Elsevier B.V. All rights reserved.
- Published
- 2010
11. Building blocks for future detectors: Silicon test masses and 1550 nm laser light
- Author
-
H. Lück, Michael Britzger, Ronny Nawrodt, Moritz Mehmet, Roman Schnabel, Frank Brückner, Sebastian Steinlechner, Daniel Friedrich, T. Eberle, Jessica Dück, Benno Willke, Karsten Danzmann, and Oliver Burmeister
- Subjects
History ,Physics - Instrumentation and Detectors ,Testing ,02 engineering and technology ,01 natural sciences ,General Relativity and Quantum Cosmology ,law.invention ,Gravitational wave detectors ,law ,Sensitivity increase ,ABSORPTION ,Crystalline silicon ,COATINGS ,Quantum Physics ,Quantum noise ,Gravitational effects ,Silica ,Instrumentation and Detectors (physics.ins-det) ,Laser radiation ,021001 nanoscience & nanotechnology ,Computer Science Applications ,Radiation detectors ,Optoelectronics ,0210 nano-technology ,Laser lights ,Third generation ,ANTENNAE ,Materials science ,1550 nm ,Quasi-monochromatic ,Silicon ,chemistry.chemical_element ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Radiation ,Gravity waves ,Noise (electronics) ,Electromagnetic radiation ,LOW-TEMPERATURES ,Particle detector ,Crystalline silicons ,Education ,Gravitational-wave detection ,GRAVITATIONAL-WAVE DETECTORS ,0103 physical sciences ,Low temperatures ,ddc:530 ,010306 general physics ,Konferenzschrift ,Room temperature ,Gravitationswelle ,business.industry ,1064 nm ,Building blockes ,Fused silica ,Laser ,VITREOUS SILICA ,THERMAL NOISE ,chemistry ,Silicon detectors ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,business ,Quantum Physics (quant-ph) - Abstract
Current interferometric gravitational wave detectors use the combination of quasi-monochromatic, continuous-wave laser light at 1064 nm and fused silica test masses at room temperature. Detectors of the third generation, such as the Einstein-Telescope, will involve a considerable sensitivity increase. The combination of 1550 nm laser radiation and crystalline silicon test masses at low temperatures might be important ingredients in order to achieve the sensitivity goal. Here we compare some properties of the fused silica and silicon test mass materials relevant for decreasing the thermal noise in future detectors as well as the recent technology achievements in the preparation of laser radiation at 1064 nm and 1550 nm relevant for decreasing the quantum noise. We conclude that silicon test masses and 1550 nm laser light have the potential to form the future building blocks of gravitational wave detection. DFG/EXC/QUEST DFG/SFB/TR7 EC/FP7/2007-2013
- Published
- 2010
- Full Text
- View/download PDF
12. Automatic Alignment for the first science run of the Virgo interferometer
- Author
-
M. Laval, G. Ballardin, M. A. Bizouard, F. Frasconi, L. Pinard, F. Vetrano, R. Flaminio, Luca Gammaitoni, Shourov Chatterji, E. Campagna, R. Terenzi, H. J. Bulten, A. Brillet, M. Del Prete, S. Frasca, N. Letendre, M. Yvert, L. Rolland, Fabrizio Barone, M. Mohan, Silvio Pardi, V. Brisson, S. Braccini, Benjamin Canuel, P. Puppo, G. Losurdo, C. Palomba, Gianluca Persichetti, F. Travasso, R. Cavalieri, E. Coccia, G. Cagnoli, F. Ricci, K.G. Arun, F. Carbognani, A. Viceré, A. Rocchi, A. Pasqualetti, F. Paoletti, P. Ruggi, J. Trummer, M. Di Paolo Emilio, L. Di Fiore, B. Mours, R. Passaquieti, S. Birindelli, M. Barsuglia, P. Rapagnani, F. Piergiovanni, M. Davier, J.-P. Coulon, A. Di Virgilio, F. Garufi, Fabio Marchesoni, J.-D. Fournier, M. Lorenzini, P. La Penna, A. Giazotto, I. Ferrante, Simona Mosca, Y. Minenkov, Leopoldo Milano, Th. S. Bauer, N. Leroy, B. L. Swinkels, M. Granata, Alessandra Toncelli, V. Loriette, D. Huet, I. Fiori, Rosa Poggiani, Igor Neri, François Bondu, S. D'Antonio, E. Genin, M. Alshourbagy, V. Dattilo, V. Fafone, Rocco Romano, F. Antonucci, F. Fidecaro, G. M. Guidi, Fausto Acernese, V. Granata, Stefan Hild, L. Bonelli, C. Michel, M. Mantovani, E. Chassande-Mottin, D. Buskulic, R. De Rosa, S. Van Der Putten, C. Bradaschia, Claude Boccara, F. Menzinger, A. Masserot, A. Gennai, F. Cleva, C. N. Man, J.-M. Mackowski, Tania Regimbau, E. Cuoco, F. Martelli, Julien Moreau, L. Bosi, A. Di Lieto, G. Pagliaroli, Sofiane Aoudia, Patrice Hello, Stefano Bigotta, F. Cavalier, N. Morgado, E. Tournefier, C. Greverie, Alessandra Corsi, Enrico Calloni, Christian Corda, D. Passuello, J. F. J. van den Brand, Elena Cesarini, M. Punturo, J-Y. Vinet, D. Verkindt, P. Astone, J. Marque, F. Nocera, Ettore Majorana, Ludovico Carbone, F. Marion, M. Tonelli, M. Colombini, G. Vajente, B. Sassolas, H. Heitmann, Anna Dari, D. Sentenac, G. Cella, J. Colas, O. Rabaste, M. Was, H. Vocca, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire des matériaux avancés (LMA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Virgo, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), VIRGO, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI), Mairie de Paris, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), F., Acernese, F., Barone, Calloni, Enrico, DE ROSA, Rosario, L., Di Fiore, Garufi, Fabio, Milano, Leopoldo, S., Mosca, M., Parisi, G., Persichetti, R., Romano, (Astro)-Particles Physics, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Angular ,Virgo interferometer ,onde gravitazionali ,GRAVITATIONAL-WAVE DETECTION ,01 natural sciences ,law.invention ,allineamento ,Gravitational wave detectors ,Optics ,Settore FIS/05 - Astronomia e Astrofisica ,law ,0103 physical sciences ,Astronomical interferometer ,SDG 7 - Affordable and Clean Energy ,010303 astronomy & astrophysics ,Physics ,Operating point ,Control systems ,010308 nuclear & particles physics ,Gravitational wave ,business.industry ,Detector ,Settore FIS/01 - Fisica Sperimentale ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Laser ,control systems ,interferometri ,gravitational wave detectors ,angular ,interferometry ,Interferometry ,Control system ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,business ,SYSTEM - Abstract
During the past few years a network of large-scale laser interferometers, including the Virgo detector, has been developed with the aim of detecting gravitational waves To properly operate the detectors, the longitudinal and angular positions of the suspended detector test masses, the interferometer mirrors, must be kept within a small range from the operating point.The design of the Virgo angular control system, called Automatic Alignment is based on a modified version of the Anderson-Giordano technique, a wave-front sensing scheme which uses the modulation-demodulation technique.This paper will present the theoretical background of the Virgo Automatic Alignment system, the implementation issues and the performances observed during the first Virgo science run (VSR1) A total RMS of 4 x 10(-2) to 3 x 10(-3) mu rad for all angular degrees of freedom has been achieved. (C) 2010 Elsevier B.V. All rights reserved.
- Published
- 2010
- Full Text
- View/download PDF
13. Comparing interferometry techniques for multi-degree of freedom test mass readout
- Author
-
Gerhard Heinzel, Karsten Danzmann, K. Isleif, Oliver Gerberding, Thomas S. Schwarze, and Moritz Mehmet
- Subjects
History ,Interferometry technique ,Physics::Instrumentation and Detectors ,Phase (waves) ,02 engineering and technology ,Gravity waves ,01 natural sciences ,Displacement (vector) ,Degrees of freedom (mechanics) ,Education ,law.invention ,010309 optics ,Gravitational-wave detection ,Optics ,law ,0103 physical sciences ,ddc:530 ,Gravitational physics ,Dewey Decimal Classification::500 | Naturwissenschaften ,Konferenzschrift ,Physics ,Gravitationswelle ,Ultrasonic devices ,Gravitational wave ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gravitational effects ,021001 nanoscience & nanotechnology ,Laser ,Computer Science Applications ,Interferometry ,Pathfinder ,Tilt (optics) ,Phase modulation ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,ddc:500 ,Laser interferometry ,0210 nano-technology ,business ,Space probes - Abstract
Laser interferometric readout systems with 1pm √Hz precision over long time scales have successfully been developed for LISA and LISA Pathfinder. Future gravitational physics experiments, for example in the fields of gravitational wave detection and geodesy, will potentially require similar levels of displacement and tilt readouts of multiple test masses in multiple degrees of freedom. In this article we compare currently available classic interferometry schemes with new techniques using phase modulations and complex readout algorithms. Based on a simple example we show that the new techniques have great potential to simplify interferometric readouts. DFG/SFB/1128 International Max-Planck Research School (IMPRS)
- Published
- 2016
14. The first observation of gravitational-waves
- Author
-
Moutounet Cartan, Pierre and Moutounet-Cartan, Pierre G. B.
- Subjects
Gravitational-wave detection ,Ondes gravitationnelles ,Trou noir ,[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Black hole ,LIGO ,LIGO-Virgo ,[PHYS.ASTR.HE] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,[PHYS.PHYS.PHYS-POP-PH] Physics [physics]/Physics [physics]/Popular Physics [physics.pop-ph] - Abstract
Popular science article about the first direct observation of the merger of two black holes and the gravitational-waves that this merger generated., Article de vulgarisation portant sur la première observation directe de la fusion de deux trous noirs et des ondes gravitationnelles que cette fusion a générée.
- Published
- 2016
15. Overview and Status of Advanced Interferometers for Gravitational Wave Detection
- Author
-
Hartmut Grote, Fornengo, Nicolao, Regis, Marco, and Zechlin, Hannes-S.
- Subjects
Status updates ,History ,Gravitational-wave observatory ,Gravity waves ,01 natural sciences ,Education ,Advanced detector ,Laser interferometry ,Gravitational-wave detection ,Optics ,0103 physical sciences ,Astronomical interferometer ,ddc:530 ,Aerospace engineering ,010306 general physics ,Laser interferometer ,Konferenzschrift ,Dewey Decimal Classification::500 | Naturwissenschaften ,Physics ,Gravitationswelle ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,Interferometers ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gravitational effects ,Second generation ,LIGO ,Computer Science Applications ,ddc:500 ,World-wide networks ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,business - Abstract
The world-wide network of km-scale laser interferometers is aiming at the detection of gravitational waves of astrophysical origin. The second generation of these instruments, called advanced detectors has been, or is in the process of being completed, and a first observational run with the Advanced LIGO interferometers has been performed late in 2015. The basic functionality of advanced detectors is discussed, along with specific features and status updates of the individual projects.
- Published
- 2016
- Full Text
- View/download PDF
16. The LISA Pathfinder Mission
- Author
-
Armano, M, Audley, H, Auger, G, Baird, J, Binetruy, P, Born, M, Bortoluzzi, D, Brandt, N, Bursi, A, Caleno, M, Cavalleri, A, Cesarini, A, Cruise, M, Danzmann, K, Diepholz, I, Dolesi, R, Dunbar, N, Ferraioli, L, Ferroni, V, Fitzsimons, E, Freschi, M, Gallegos, J, Marirrodriga, C García, Gerndt, R, Gesa, L I, Gibert, F, Giardini, D, Giusteri, R, Grimani, C, Harrison, I, Heinzel, G, Hewitson, M, Hollington, D, Hueller, M, Huesler, J, Inchauspé, H, Jennrich, O, Jetzer, P, Johlander, B, Karnesis, N, Kaune, B, Korsakova, N, Killow, C., Lloro, I, Maarschalkerweerd, R, Madden, S, Mance, D, Martín, V, Martin-Porqueras, F, Mateos, I, McNamara, P, Mendes, J, Mendes, L, Moroni, A, Nofrarias, M, Paczkowski, S, Perreur-Lloyd, M., Petiteau, A, Pivato, P, Plagnol, E, Prat, P, Ragnit, U, Ramos-Castro, J, Reiche, J, Perez, J A Romera, Robertson, D., Rozemeijer, H, Russano, G, Sarra, P, Schleicher, A, Slutsky, J, Sopuerta, C F, Sumner, T, Texier, D, Thorpe, J, Trenkel, C, Tu, H B, Vetrugno, D, Vitale, S, Wanner, G, Ward, H., Waschke, S, Wass, P, Wealthy, D, Wen, S, Weber, W, Wittchen, A, Zanoni, C, Ziegler, T, and Zweifel, P
- Subjects
History ,Critical technologies ,Lisa technology packages ,Gravity waves ,Propulsion ,01 natural sciences ,7. Clean energy ,Education ,Gravitational wave detectors ,Gravitational-wave detection ,0103 physical sciences ,ddc:530 ,Free flight ,010303 astronomy & astrophysics ,Konferenzschrift ,Physical principles ,010308 nuclear & particles physics ,Gravitational effects ,Measurement concepts ,Technology validations ,Computer Science Applications ,Low pass filters ,Inertial navigation systems ,European Space Agency ,Space probes ,Gravitation - Abstract
ISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter.\ud \ud The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper.
- Published
- 2015
17. Design of a speed meter interferometer proof-of-principle experiment
- Author
-
Gräf, C, Barr, B W, Bell, A S, Campbell, F, Cumming, A V, Danilishin, S L, Gordon, N A, Hammond, G D, Hennig, J, Houston, E A, Huttner, S H, Jones, R A, Leavey, S.S., Lück, H, Macarthur, J, Marwick, M, Rigby, S, Schilling, R, Sorazu, B, Spencer, A, Steinlechner, S, Strain, K A, and Hild, S
- Subjects
noise ,quantum non-demolition ,SAGNAC INTERFEROMETER ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,coatings ,General Relativity and Quantum Cosmology ,NOISE ,gravitational-wave detection ,conceptual design ,ddc:530 ,detectors ,Gravitationswelle ,gravitational wave detector ,Quantum Physics ,laser interferometer ,Sagnac speed meter ,quantum noise ,Astrophysics::Instrumentation and Methods for Astrophysics ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,sagnac interferometer ,optical cavities ,QND ,Quantum Physics (quant-ph) ,Optics (physics.optics) ,Physics - Optics - Abstract
The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory., Revised version: 16 pages, 6 figures
- Published
- 2014
18. Measurements of Superattenuator seismic isolation by Virgo interferometer
- Author
-
N. Letendre, M. A. Bizouard, F. Marion, R. Passaquieti, G. Vedovato, L. Bonelli, G. A. Prodi, F. Antonucci, F. Frasconi, F. Travasso, A. Viceré, G. Gemme, M. Drago, P. La Penna, A. Colla, R. Flaminio, M. Yvert, M. Davier, Luca Gammaitoni, G. Cella, Christine Michel, C. Palomba, N. Morgado, Igor Neri, Riccardo Sturani, Silvio Pardi, C. N. Colacino, A. Pasqualetti, M. Tonelli, E. Tournefier, A. Brillet, M. Del Prete, A. Królak, Julien Moreau, D. Rosi ska, F. Piergiovanni, K. G. Arun, S. Frasca, J. Colas, Gianluca Persichetti, M. Blom, J.-M. Mackowski, L. Rolland, Fabrizio Barone, L. Pinard, A. Di Virgilio, M. Mohan, B. L. Swinkels, Gianpietro Cagnoli, F. Cleva, N. Man, O. Rabaste, Elena Cesarini, F. Ricci, A. Morgia, V. Fafone, G. Losurdo, M. Was, R. De Rosa, M. Colombini, Alessandra Toncelli, E. Genin, V. Moscatelli, F. Paoletti, H. Vocca, D. Verkindt, P. Ruggi, L. Bosi, F. Garufi, E. Chassande-Mottin, F. Vetrano, Benoit Sassolas, M. Lorenzini, Alessandra Corsi, V. Brisson, A. Dietz, Rosa Poggiani, M. Punturo, E. Campagna, N. Leroy, M. Pichot, S. Birindelli, Enrico Calloni, J. F. J. van den Brand, G. Vajente, Fabio Marchesoni, J. Marque, Patrice Hello, J. Franc, Piotr Jaranowski, Florent Robinet, Tania Regimbau, D. Sentenac, Tomasz Bulik, P. Astone, F. Fidecaro, G. M. Guidi, Leopoldo Milano, François Bondu, S. Van Der Putten, Stefano Bigotta, V. Dattilo, H. Heitmann, Stefan Hild, A. Giazotto, A. Gennai, I. Ferrante, Y. Minenkov, Fausto Acernese, R. Day, V. Loriette, H. J. Bulten, J-Y. Vinet, M. Mantovani, L. Di Fiore, B. Mours, C. Bradaschia, S. D'Antonio, Mirko Prato, M. Barsuglia, Andrea Chincarini, E. Cuoco, Anna Dari, P. Puppo, Ettore Majorana, F. Nocera, F. Cavalier, A. Rocchi, G. Ballardin, Sofiane Aoudia, C. Greverie, M. Pietka, M. Bitossi, Tenglin Li, I. Kowalska, Christian Corda, Th. S. Bauer, R. Budzy ski, D. Passuello, Simona Mosca, S. Braccini, M. Vavoulidis, E. Coccia, A. Di Lieto, G. Pagliaroli, F. Carbognani, M. Di Paolo Emilio, D. Huet, Andreas Freise, V. Re, M. Granata, F. Martelli, Claude Boccara, M. Parisi, M. G. Beker, F. Salemi, D. S. Rabeling, Rocco Romano, Benjamin Canuel, D. Buskulic, R. Cavalieri, F. Menzinger, J.-P. Coulon, J.-D. Fournier, I. Fiori, P. Rapagnani, A. Masserot, J. Trummer, Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Physique de Rennes ( IPR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Gravitation ( APC-Gravitation ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, Istituto Nazionale di Fisica Nucleare [Milano] ( INFN ), Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), ESPCI ParisTech, Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Istituto Nazionale di Fisica Nucleare, Sezione di Milano (INFN), Istituto Nazionale di Fisica Nucleare (INFN), Laboratoire des matériaux avancés (LMA), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), (Astro)-Particles Physics, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Istituto Nazionale di Fisica Nucleare [Milano] (INFN), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), F., Acernese, F., Antonucci, S., Aoudia, K. G., Arun, P., Astone, G., Ballardin, F., Barone, M., Barsuglia, Bauer, T. h. S., M. G., Beker, S., Bigotta, S., Birindelli, M., Bitossi, M. A., Bizouard, M., Blom, C., Boccara, F., Bondu, L., Bonelli, L., Bosi, S., Braccini, C., Bradaschia, A., Brillet, V., Brisson, R., Budzynski, T., Bulik, H. J., Bulten, D., Buskulic, G., Cagnoli, Calloni, Enrico, E., Campagna, B., Canuel, F., Carbognani, F., Cavalier, R., Cavalieri, G., Cella, E., Cesarini, E., Chassande Mottin, A., Chincarini, F., Cleva, E., Coccia, C. N., Colacino, J., Cola, A., Colla, M., Colombini, C., Corda, A., Corsi, J. P., Coulon, E., Cuoco, S., D’Antonio, A., Dari, V., Dattilo, M., Davier, R., Day, DE ROSA, Rosario, M., Del Prete, L., Di Fiore, A., Di Lieto, M., Di Paolo Emilio, A., Di Virgilio, A., Dietz, M., Drago, V., Fafone, I., Ferrante, F., Fidecaro, I., Fiori, R., Flaminio, J. D., Fournier, J., Franc, S., Frasca, F., Frasconi, A., Freise, L., Gammaitoni, Garufi, Fabio, G., Gemme, E., Genin, A., Gennai, A., Giazotto, M., Granata, C., Greverie, G., Guidi, H., Heitmann, P., Hello, S., Hild, D., Huet, P., Jaranowski, I., Kowalska, A., Królak, P., La Penna, N., Leroy, N., Letendre, T. G. F., Li, M., Lorenzini, V., Loriette, G., Losurdo, J. M., Mackowski, E., Majorana, N., Man, M., Mantovani, F., Marchesoni, F., Marion, J., Marque, F., Martelli, A., Masserot, F., Menzinger, C., Michel, Milano, Leopoldo, Y., Minenkov, M., Mohan, J., Moreau, N., Morgado, A., Morgia, Mosca, Simona, V., Moscatelli, B., Mour, I., Neri, F., Nocera, G., Pagliaroli, C., Palomba, F., Paoletti, Pardi, Silvio, Parisi, Maria, A., Pasqualetti, R., Passaquieti, D., Passuello, G., Persichetti, M., Pichot, F., Piergiovanni, M., Pietka, L., Pinard, R., Poggiani, M., Prato, G. A., Prodi, M., Punturo, P., Puppo, O., Rabaste, D. S., Rabeling, P., Rapagnani, V., Re, T., Regimbau, F., Ricci, F., Robinet, A., Rocchi, L., Rolland, R., Romano, D., Rosinska, P., Ruggi, F., Salemi, B., Sassola, D., Sentenac, R., Sturani, B., Swinkel, A., Toncelli, M., Tonelli, E., Tournefier, F., Travasso, J., Trummer, G., Vajente, J. F. J., van den Brand, S., van der Putten, M., Vavoulidi, G., Vedovato, D., Verkindt, F., Vetrano, A., Viceré, J. Y., Vinet, H., Vocca, M., Wa, and M., Yvert
- Subjects
[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Virgo interferometer ,ADVANCED LIGO ,GRAVITATIONAL-WAVE DETECTION ,01 natural sciences ,BAND ,NOISE ,Gravitational wave detectors ,Optics ,Settore FIS/05 - Astronomia e Astrofisica ,Suspensions ,0103 physical sciences ,010306 general physics ,DETECTOR ,seismic isolation ,suspensions ,gravitational wave detectors ,Physics ,Einstein Telescope ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,Attenuation ,Settore FIS/01 - Fisica Sperimentale ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astronomy and Astrophysics ,Seismic isolation ,PERFORMANCE ,GEO ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Vibration ,Interferometry ,SUSPENSION SYSTEM ,Antenna (radio) ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,business - Abstract
Each mirror of the interferometric gravitational wave antenna Virgo is attached to a Superattenuator, a chain of mechanical filters designed to suppress seismic vibrations, starting from a few Hz. The filter chain attenuation has been measured by exciting its suspension point with sinuisodal forces and using the interferometer as sensor. The attenuation, measured at different frequencies, is compliant with the requirements of the next generation antenna Advanced Virgo. In the third generation detector Einstein Telescope, the attenuation is sufficient above 3 Hz, independently of the underground site choice. © 2010 Elsevier B.V. All rights reserved.
- Published
- 2010
- Full Text
- View/download PDF
19. Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)-A class-M fundamental physics mission proposal for Cosmic Vision 2015-2025
- Author
-
Sergei A. Klioner, Li Wang, Thierry Appourchaux, Qiuhe Peng, Etienne Samain, Bernard Foulon, Andreas Wicht, H. A. Klein, Sergei M. Kopeikin, Hansjoerg Dittus, R. Burston, Xiaomin Zhang, Helen S. Margolis, Ernst M. Rasel, Yanbei Chen, Xinlian Luo, Albrecht Rüdiger, A. Lobo, Laurent Gizon, Hans Krüger, Stephan Theil, Haitao Wang, Hanns Selig, Claus Lämmerzahl, Michael Cruise, Ji Wu, Antonio Pulido Paton, Slava G. Turyshev, D. Shaul, T. J. Sumner, Linqing Wen, Achim Peters, Wei-Tou Ni, Cheng Zhao, Patrick Gill, Pierre Touboul, and Science and Technology Facilities Council (STFC)
- Subjects
Cosmic Vision ,General relativity ,ASTROD-I ,FOS: Physical sciences ,Exploring the microscopic origin of gravity ,NASA Deep Space Network ,General Relativity and Quantum Cosmology (gr-qc) ,Astronomy & Astrophysics ,ACCELERATION ,Astrophysics ,General Relativity and Quantum Cosmology ,Gravitational-wave detection ,High Energy Physics - Phenomenology (hep-ph) ,GRAVITY ,LASER LINK ,Solar g-mode detection ,GENERAL-RELATIVITY ,SOLAR ,Physics ,LISA ,Science & Technology ,Spacecraft ,business.industry ,Gravitational wave ,Astrophysics (astro-ph) ,Probing the fundamental laws of spacetime ,Astronomy ,Astronomy and Astrophysics ,Solar physics ,Probing the fundamental laws mof spacetime ,Gravitational constant ,High Energy Physics - Phenomenology ,0201 Astronomical And Space Sciences ,Mapping solar-system gravity ,Space and Planetary Science ,ASTROD ,ASTROD I ,Physical Sciences ,DISTURBANCES ,Physics::Space Physics ,Gravitational wave detection ,Testing relativistic gravity ,Astrophysics::Earth and Planetary Astrophysics ,business ,Heliocentric orbit - Abstract
ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD II is envisaged as a three-spacecraft mission which would test General Relativity to one part per billion, enable detection of solar g-modes, measure the solar Lense-Thirring effect to 10 parts per million, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth., Comment: 26 pages, 11 figures, shortened from the original cosmic vision proposal, submitted to Experimental Astronomy; this version, shortened to 25 pages, re-organized and added references, is accepted for publication in Experimental Astronomy
- Published
- 2009
20. Laser with an in-loop relative frequency stability of 1.0x10(-21) on a 100-ms time scale for gravitational-wave detection
- Author
-
Acernese, F., Alshourbagy, M., Antonucci, F., Aoudia, S., Arun, K. G., Astone, P., Ballardin, G., Barone, F., Barsotti, L., Barsuglia, M., Bauer, T. S., Bigotta, S., Birindelli, S., Bizouard, M. A., Boccara, C., Bondu, F., Bonelli, L., Bosi, L., Braccini, S., Bradaschia, C., Brillet, A., Brisson, V., Bulten, H. J., Buskulic, D., Cagnoli, G., Calloni, E., Campagna, E., Canuel, B., Carbognani, F., Carbone, L., Cavalier, F., Cavalieri, R., Cella, G., Cesarini, E., Chassande Mottin, E., Chatterji, S., Cleva, F., Coccia, E., Colas, J., Colombini, M., Corda, C., Corsi, A., Cottone, F., Coulon, J. P., Cuoco, E., D'Antonio, S., Dari, A., Dattilo, V., Davier, M., Rosa, R. D., Prete, M. D., Fiore, L. D., Lieto, A. D., Paolo, M. D., Virgilio, A. D., Fafone, V., Ferrante, I., Fidecaro, F., Fiori, I., Flaminio, R., Fournier, J. D., Frasca, S., Frasconi, F., Gammaitoni, L., Garufi, F., Gemme, G., Genin, E., Gennai, A., Giazotto, A., Granata, M., Granata, V., Greverie, C., Guidi, G., Heitmann, H., Hello, P., Hild, S., Huet, D., Penna, P. L., Laval, M., Leroy, N., Letendre, N., Lorenzini, M., Loriette, V., Losurdo, G., Mackowski, J. M., Majorana, E., Man, N., Mantovani, M., Marchesoni, Fabio, Marion, F., Marque, J., Martelli, F., Masserot, A., Menzinger, F., Michel, C., Milano, L., Minenkov, Y., Mitra, S., Mohan, M., Moreau, J., Morgado, N., Morgia, A., Mosca, S., Mours, B., Neri, I., Nocera, F., Pagliaroli, G., Palomba, C., Paoletti, F., Pardi, S., Pasqualetti, A., Passaquieti, R., Passuello, D., Persichetti, G., Piergiovanni, F., Pinard, L., Poggiani, R., Punturo, M., Puppo, P., Rabaste, O., Rapagnani, P., Regimbau, T., Ricci, F., Rocchi, A., Rolland, L., Romano, R., Ruggi, P., Sassolas, B., Sentenac, D., Swinkels, B. L., Terenzi, R., Toncelli, A., Tonelli, M., Tournefier, E., Travasso, F., Trummer, J., Vajente, G., J. F. J., Der, S. v., Verkindt, D., Vetrano, F., Vicere, A., Vinet, J. Y., Vocca, H., Was, M., and Yvert, M.
- Subjects
1064 nm lasers ,Allan standard deviation ,Frequency noise ,Gravitational wave detectors ,Gravitational waves ,Gravitational-wave detection ,Laser frequency ,Relative frequencies ,Time-scale ,Detectors ,Gravitation ,Gravity waves ,Lasers ,Settore FIS/01 - Fisica Sperimentale - Published
- 2009
21. Lock acquisition of the Virgo gravitational wave detector
- Author
-
G. Losurdo, G. Cagnoli, D. Passuello, M. A. Bizouard, M. Alshourbagy, F. Antonucci, Fabio Marchesoni, F. Paoletti, P. Ruggi, F. Frasconi, R. Flaminio, Tania Regimbau, J. F. J. van den Brand, L. Baggio, R. De Rosa, Frédérique Marion, V. Fafone, F. Travasso, M. Laval, C. Palomba, A. Rocchi, S. Kreckelbergh, P. Rapagnani, D. Grosjean, G. Ballardin, V. Brisson, Luca Gammaitoni, P. Puppo, F. Cavalier, L. Bosi, N. Letendre, L. Rolland, P. Amico, Fabrizio Barone, M. Mohan, A. Gennai, A. Di Virgilio, P. La Penna, M. Del Prete, S. Frasca, Anna Dari, Stefano Bigotta, S. Hamdani, Salvatore Solimeno, K.G. Arun, A. Di Lieto, F. Garufi, S. Hebri, A. Viceré, G. Cella, F. Vetrano, S. Birindelli, A. Giazotto, I. Ferrante, J.-Y. Vinet, Rosa Poggiani, Shourov Chatterji, D. Sentenac, Igor Neri, E. Tournefier, M. Punturo, O. Rabaste, V. Loriette, S. Van Der Putten, M. Tonelli, Elena Cesarini, F. Ricci, Iolanda Ricciardi, B. Mours, S. D'Antonio, Lisa Barsotti, C. N. Man, Alessandra Toncelli, V. Granata, F. Carbognani, H. Vocca, Francesco Cottone, L. Pinard, E. Coccia, F. Fidecaro, G. M. Guidi, N. Leroy, Simona Mosca, J.-M. Mackowski, A. Masserot, M. Di Paolo Emilio, Alessandra Corsi, G. Vajente, N. Morgado, François Bondu, L. Di Fiore, A. Pasqualetti, M. Barsuglia, Saverio Avino, Fausto Acernese, R. Passaquieti, Silvio Pardi, D. Huet, Th. S. Bauer, E. Cuoco, B. Lopez, M. Mantovani, B. L. Swinkels, Rocco Romano, M. Lorenzini, E. Genin, L. Milano, H. Heitmann, M. Yvert, D. Buskulic, M. Davier, F. Menzinger, E. Chassande-Mottin, Julien Moreau, F. Piergiovanni, E. Campagna, Matthew Evans, Claude Boccara, Ettore Majorana, R. Cavalieri, J.-P. Coulon, J.-D. Fournier, I. Fiori, Y. Minenkov, Sofiane Aoudia, F. Cleva, Patrice Hello, G. Pagliaroli, C. Greverie, Christian Corda, R. Terenzi, C. Bradaschia, S. Mitra, D. Verkindt, Enrico Calloni, P. Astone, J. Marque, F. Nocera, S. Braccini, V. Dattilo, C. Michel, A. Brillet, Ecole Supérieure de Physique et de Chimie Industrielles ( ESPCI ), Mairie de Paris, Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux ( ARTEMIS ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France ( PCC ), Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -Collège de France ( CdF ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ) -AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire de Paris-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), APC - Gravitation ( APC-Gravitation ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Max-Planck-Institut-Max-Planck-Institut, Laboratoire des matériaux avancés ( LMA ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Virgo, Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), VIRGO, Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL), Astrophysique Relativiste Théories Expériences Métrologie Instrumentation Signaux (ARTEMIS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire des matériaux avancés (LMA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), F., Acernese, M., Alshourbagy, P., Amico, F., Antonucci, S., Aoudia, K. G., Arun, P., Astone, Avino, Saverio, L., Baggio, G., Ballardin, F., Barone, L., Barsotti, M., Barsuglia, Bauer, T. h. S., S., Bigotta, S., Birindelli, M. A., Bizouard, C., Boccara, F., Bondu, L., Bosim, S., Braccini, C., Bradaschia, A., Brillet, V., Brisson, D., Buskulic, G., Cagnoli, Calloni, Enrico, E., Campagna, F., Carbognani, F., Cavalier, R., Cavalieri, G., Cella, E., Cesarini, E., Chassande Mottin, S., Chatterji, F., Cleva, E., Coccia, C., Corda, A., Corsi, F., Cottone, J. P., Coulon, E., Cuoco, S., D’Antonio, A., Dari, V., Dattilo, M., Davier, DE ROSA, Rosario, M., Del Prete, L., Di Fiore, A., Di Lieto, M., Di Paolo Emilio, A., Di Virgilio, M., Evan, V., Fafone, I., Ferrante, F., Fidecaro, I., Fiori, R., Flaminio, J. D., Fournier, S., Frasca, F., Frasconi, L., Gammaitoni, Garufi, Fabio, E., Genin, A., Gennai, A., Giazotto, V., Granata, C., Greverie, D., Grosjean, G., Guidi, S., Hamdani, S., Hebri, H., Heitmann, P., Hello, D., Huet, S., Kreckelbergh, P., La Penna, M., Laval, N., Leroy, N., Letendre, B., Lopez, M., Lorenzini, V., Loriette, G., Losurdo, J. M., Mackowski, E., Majorana, C. N., Man, M., Mantovani, F., Marchesoni, F., Marion, J., Marque, A., Masserot, F., Menzinger, C., Michel, Milano, Leopoldo, Y., Minenkov, S., Mitra, M., Mohan, J., Moreau, N., Morgado, Mosca, Simona, B., Mour, I., Neri, F., Nocera, G., Pagliaroli, C., Palomba, F., Paoletti, Pardi, Silvio, A., Pasqualetti, R., Passaquieti, D., Passuello, F., Piergiovanni, L., Pinard, R., Poggiani, M., Punturo, P., Puppo, O., Rabaste, P., Rapagnani, T., Regimbau, F., Ricci, I., Ricciardi, A., Rocchi, L., Rolland, R., Romano, P., Ruggi, D., Sentenac, Solimeno, Salvatore, B. L., Swinkel, R., Terenzi, A., Toncelli, M., Tonelli, E., Tournefier, F., Travasso, G., Vajente, J. F. J., van den Brand, S., van der Putten, D., Verkindt, F., Vetrano, A., Viceré, J. Y., Vinet, H., Vocca, M., Yvert, Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and (Astro)-Particles Physics
- Subjects
Gravitational-wave observatory ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Physics::Instrumentation and Detectors ,Physics::Optics ,Optical instruments ,01 natural sciences ,VIRGO detector ,Gravitational wave detectors ,Finesse ,Data acquisition ,Gravitational-wave detector ,Lock acquisition ,Working point ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics ,Fabry-Perot interferometers ,Gravitational effects ,Gravity waves ,Interferometers ,Interferometry ,Mergers and acquisitions ,Control systems ,Fabry-Perot cavities ,Gravitational-wave detection ,Optical configurations ,Scientific data ,Virgo interferometer ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Detector ,Settore FIS/01 - Fisica Sperimentale ,Astrophysics::Instrumentation and Methods for Astrophysics ,[ SDU.ASTR.CO ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Record locking ,[ PHYS.ASTR.CO ] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,010309 optics ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Optics ,control systems ,gravitational wave detectors ,interferometry ,lock acquisition ,0103 physical sciences ,SDG 7 - Affordable and Clean Energy ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,Astronomy and Astrophysics ,business ,INTERFEROMETER - Abstract
The Virgo interferometer for gravitational wave detection has concluded four months of scientific data acquisition in its final optical configuration (a power-recycled interferometer with Fabry-Perot cavities in the arms). The lock acquisition technique developed to bring and keep the Virgo detector on its working point largely proved to be very efficient and robust. In this paper we describe the variable finesse lock acquisition technique and we discuss the performance of the whole locking system. (C) 2008 Elsevier B.V. All rights reserved.
- Published
- 2008
- Full Text
- View/download PDF
22. Optomechanical coupling, back-action and quantum limits in ultrasensitive optical measurements
- Author
-
Caniard, Thomas, Laboratoire Kastler Brossel (LKB (Jussieu)), Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, Antoine Heidmann(heidmann@spectro.jussieu.fr), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Caniard, Thomas
- Subjects
Couplage optomécanique ,Limite Quantique Standard ,Détection des ondes gravitationnelles ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Gravitational-wave detection ,Cavité de grande finesse ,Standard Quantum Limit ,Small displacement measurement ,Back-action noise in a measurement ,Thermal noise of a mirror ,Optomechanical coupling ,[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Bruit thermique d'un miroir ,High-finesse cavity ,Mesure de petits déplacements ,Action en retour de la mesure - Abstract
We present a very sensitive optical measurement of small displacements of a mirror. Thanks to the use of a very high-finesse cavity, we have reached a sensitivity of 10-20 m.Hz-1/2 over a wide frequency band (severalhundreds of kilohertz).Our setup allows us to study accurately the noise sources in an optical measurement and the resulting limits. We are particularly interested in the optomechanical coupling induced by the radiation pressure exerted by light on a movable mirror. The mirror can move in response to the quantum fluctuations of radiation pressure, leading to an additional position noise. This back-action of the measurement on the system is responsible for quantum limits in the measurement.Among the improvements made on the experimental setup, we have injected two laser beams into the cavity in order to study the quantum effects of optomechanical coupling. We have demonstrated a cancellation of back-action noise in the measurement resulting from a destructive interference between the displacements of both mirrors of the cavity. We present the potential applications of this effect for the improvement of the sensitivity in optical measurements, especially in gravitational-wave detectors based on dual resonators., Nous présentons une expérience de mesure optique ultrasensible de petits déplacements d'un miroir. Grâce à l'utilisation d'une cavité Fabry-Perot de très grande finesse, nous avons atteint une sensibilité de 10-20 m.Hz-1/2 sur une plage de plusieurs centaines de kilohertz.Notre montage permet de mener une étude approfondie des sources de bruit dans une mesure optique et des limites de sensibilité associées. Nous nous intéressons en particulier au couplage optomécanique résultant de l'action réciproque entre la lumière et un miroir mobile. Par l'intermédiaire de la force de pression de radiation, les fluctuations quantiques d'intensité du faisceau génèrent un bruit de position supplémentaire du miroir. Ce bruit constitue l'action en retour de la mesure de position et entraîne l'existence de limites quantiques de sensibilité.Parmi les améliorations réalisées sur le montage, nous avons mis en place un système de double injection de faisceaux laser dans la cavité afin d'étudier les effets quantiques du couplage optomécanique. Nous avons mis en évidence une suppression de l'action en retour de la mesure par interférence destructive entre les réponses des deux miroirs formant la cavité. Nous discutons des applications potentielles de cet effet afin d'améliorer la sensibilité des mesures optiques, notamment pour les détecteurs doublement résonnants d'ondes gravitationnelles.
- Published
- 2007
23. Formulation of instrument noise analysis techniques and their use in the commissioning of the gravitational wave observatory, GEO 600
- Author
-
Smith, Joshua Ryan
- Subjects
Gravitational-wave detection ,noise analysis ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,control systems - Abstract
[no abstract]
- Published
- 2006
24. The LISA Pathfinder Mission
- Author
-
Armano, M., Audley, H., Auger, G., Baird, J., Binetruy, P., Born, M., Bortoluzzi, D., Brandt, N., Bursi, A., Caleno, M., Cavalleri, A., Cesarini, A., Cruise, M., Danzmann, K., Diepholz, I., Dolesi, R., Dunbar, N., Ferraioli, L., Ferroni, V., Fitzsimons, E., Freschi, M., Gallegos, J., Marirrodriga, C.G., Gerndt, R., Gesa, L.I., Gibert, F., Giardini, D., Giusteri, R., Grimani, C., Harrison, I., Heinzel, G., Hewitson, M., Hollington, D., Hueller, M., Huesler, J., Inchauspé, H., Jennrich, O., Jetzer, P., Johlander, B., Karnesis, N., Kaune, B., Korsakova, N., Killow, C., Lloro, I., Maarschalkerweerd, R., Madden, S., Mance, D., Martín, V., Martin-Porqueras, F., Mateos, I., McNamara, P., Mendes, J., Mendes, L., Moroni, A., Nofrarias, M., Paczkowski, S., Perreur-Lloyd, M., Petiteau, A., Pivato, P., Plagnol, E., Prat, P., Ragnit, U., Ramos-Castro, J., Reiche, J., Perez, J.A.R., Robertson, D., Rozemeijer, H., Russano, G., Sarra, P., Schleicher, A., Slutsky, J., Sopuerta, C.F., Sumner, T., Texier, D., Thorpe, J., Trenkel, C., Tu, H.B., Vetrugno, D., Vitale, S., Wanner, G., Ward, H., Waschke, S., Wass, P., Wealthy, D., Wen, S., Weber, W., Wittchen, A., Zanoni, C., Ziegler, T., and Zweifel, P.
- Subjects
Critical technologies ,Physical principles ,Lisa technology packages ,Gravitational effects ,Measurement concepts ,Gravity waves ,Propulsion ,7. Clean energy ,Technology validations ,Gravitational wave detectors ,Gravitational-wave detection ,Low pass filters ,Free flight ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Inertial navigation systems ,European Space Agency ,Space probes ,Konferenzschrift ,Gravitation - Abstract
LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper.
25. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
- Author
-
Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adhikari, R.X., Adya, V.B., LIGO Scientific Collaboration And Virgo Collaboration, Affeldt, Christoph, Aufmuth, Peter, Bergmann, G., Bisht, Aparna, Bode, N., Booker, Phillip, Brinkmann, M., Cabero, M., Danilishin, Stefan L., Danzmann, Karsten, Dent, Thomas, De Varona, Omar, Doravari, S., Hanke, Manuela Melanie, Hennig, J., Heurs, M., Hochheim, Sven, Junker, J., Karvinen, K.S., Khan, S., Kaufer, S., Kirchhoff, R., Koch, P., Koehlenbeck, S.M., Koper, N., Kringel, V., Kuehn, G., Leavey, S., Lehmann, J., Lück, Harald, Mehmet, M., Mukherjee, Arunava, Nery, M., Ohme, F., Oppermann, P., Papa, M.A., Phelps, M., Puncken, O., Rüdiger, A., Schreiber, E., Schulte, B.W., Setyawati, Y., Standke, M., Steinke, M., Steinmeyer, D., Wei, L.-W., Weinert, M., Wellmann, F., Weßels, P., Wilken, D.M., Willke, B., Wimmer, M.H., Winkler, W., Wittel, H., Woehler, J., and Wu, D.S.
- Subjects
Neutrons ,Binary neutron stars ,Astrophysics::High Energy Astrophysical Phenomena ,Confidence interval ,Gravitational effects ,Flocculation ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravity waves ,False alarm rate ,Population statistics ,Stars ,Merging ,Upper limits ,Neutron stars ,Gravitational wave detectors ,General Relativity and Quantum Cosmology ,Gravitational-wave detection ,13. Climate action ,Wave transients ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Signal detection - Abstract
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1. © 2019 authors. Published by the American Physical Society.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.