Ripani , Luigia, STAR, ABES, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Ivan Gentil, Christian Léonard, Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), and Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS )
In the past 20 years the optimal transport theory revealed to be an efficient tool to study the asymptotic behavior for diffusion equations, to prove functional inequalities, to extend geometrical properties in extremely general spaces like metric measure spaces, etc. The curvature-dimension of the Bakry-Émery theory appears as the cornerstone of those applications. Just think to the easier and most important case of the quadratic Wasserstein distance W2: contraction of the heat flow in W2 characterizes uniform lower bounds for the Ricci curvature; the transport Talagrand inequality, comparing W2 to the relative entropy is implied and implies via the HWI inequality the log-Sobolev inequality; McCann geodesics in the Wasserstein space (P2(Rn),W2) allow to prove important functional properties like convexity, and standard functional inequalities, such as isoperimetry, measure concentration properties, the Prékopa Leindler inequality and so on. However the lack of regularity of optimal maps, requires non-smooth analysis arguments. The Schrödinger problem is an entropy minimization problem with marginal constraints and a fixed reference process. From the Large deviation theory, when the reference process is driven by the Brownian motion, its minimal value A converges to W2 when the temperature goes to zero. The entropic interpolations, solutions of the Schrödinger problem, are characterized in terms of Markov semigroups, hence computation along them naturally involves Γ2 computations and the curvature-dimension condition. Dating back to the 1930s, and neglected for decades, the Schrödinger problem recently enjoys an increasing popularity in different fields, thanks to this relation to optimal transport, smoothness of solutions and other well performing properties in numerical computations. The aim of this work is twofold. First we study some analogy between the Schrödinger problem and optimal transport providing new proofs of the dual Kantorovich and the dynamic Benamou-Brenier formulations for the entropic cost A. Secondly, as an application of these connections we derive some functional properties and inequalities under curvature-dimensions conditions. In particular, we prove the concavity of the exponential entropy along entropic interpolations under the curvature-dimension condition CD(0, n) and regularity of the entropic cost along the heat flow. We also give different proofs the Evolutionary Variational Inequality for A and contraction of the heat flow in A, recovering as a limit case the classical results in W2, under CD(κ,∞) and also in the flat dimensional case. Finally we propose an easy proof of the Gaussian concentration property via the Schrödinger problem as an alternative to classical arguments as the Marton argument which is based on optimal transport, Au cours des 20 dernières années, la théorie du transport optimal s’est revelée être un outil efficace pour étudier le comportement asymptotique dans le cas des équations de diffusion, pour prouver des inégalités fonctionnelles et pour étendre des propriétés géométriques dans des espaces extrêmement généraux comme des espaces métriques mesurés, etc. La condition de courbure-dimension de la théorie Bakry-Emery apparaît comme la pierre angulaire de ces applications. Il suffit de penser au cas le plus simple et le plus important de la distance quadratique de Wasserstein W2 : la contraction du flux de chaleur en W2 caractérise les bornes inférieures uniformes pour la courbure de Ricci ; l’inégalité de Talagrand du transport, comparant W2 à l’entropie relative est impliquée et implique, par l’inégalité HWI, l’inégalité log-Sobolev ; les géodésiques de McCann dans l’espace de Wasserstein (P2(Rn),W2) permettent de prouver des propriétés fonctionnelles importantes comme la convexité, et des inégalités fonctionnelles standards telles que l’isopérymétrie, des propriétés de concentration de mesure, l’inégalité de Prékopa-Leindler et ainsi de suite. Néanmoins, le manque de régularité des plans minimisation nécessite des arguments d’analyse non lisse. Le problème de Schrödinger est un problème de minimisation de l’entropie avec des contraintes marginales et un processus de référence fixes. À partir de la théorie des grandes déviations, lorsque le processus de référence est le mouvement Brownien, sa valeur minimale A converge vers W2 lorsque la température est nulle. Les interpolations entropiques, solutions du problème de Schrödinger, sont caractérisées en termes de semigroupes de Markov, ce qui implique naturellement les calculs Γ2 et la condition de courbure-dimension. Datant des années 1930 et négligé pendant des décennies, le problème de Schrodinger connaît depuis ces dernières années une popularité croissante dans différents domaines, grâce à sa relation avec le transport optimal, à la regularité de ses solutions, et à d’autres propriétés performantes dans des calculs numériques. Le but de ce travail est double. D’abord, nous étudions certaines analogies entre le problème de Schrödinger et le transport optimal fournissant de nouvelles preuves de la formulation duale de Kantorovich et de celle, dynamique, de Benamou-Brenier pour le coût entropique A. Puis, en tant qu’application de ces connexions, nous dérivons certaines propriétés et inégalités fonctionnelles sous des conditions de courbure-dimension. En particulier, nous prouvons la concavité de l’entropie exponentielle le long des interpolations entropiques sous la condition de courbure-dimension CD(0, n) et la régularité du coût entropique le long du flot de la chaleur. Nous donnons également différentes preuves de l’inégalité variationnelle évolutionnaire pour A et de la contraction du flux de la chaleur en A, en retrouvant comme cas limite, les résultats classiques en W2, sous CD(κ,∞) et CD(0, n). Enfin, nous proposons une preuve simple de la propriété de concentration gaussienne via le problème de Schrödinger comme alternative aux arguments classiques tel que l’argument de Marton basé sur le transport optimal