41 results on '"Eric Lamaud"'
Search Results
2. Comparison between eddy‐covariance and flux‐gradient size‐resolved dust fluxes during wind erosion events
- Author
-
Béatrice Marticorena, Sylvain Dupont, B. Khalfallah, Christel Bouet, Gilles Bergametti, Royston Fernandes, Mohamed Labiadh, J.‐l. Rajot, Eric Lamaud, Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris ), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut des Régions Arides (IRA), ANR-15-CE02-0013,WIND-O-V,Erosion éolienne en présence de végétation éparse(2015), Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,dust flux ,Field experiment ,Eddy covariance ,Astrophysics::Cosmology and Extragalactic Astrophysics ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,Physics::Geophysics ,Atmosphere ,Flux (metallurgy) ,Earth and Planetary Sciences (miscellaneous) ,Astrophysics::Solar and Stellar Astrophysics ,wind erosion ,flux-gradient ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Geophysics ,13. Climate action ,Space and Planetary Science ,[SDE]Environmental Sciences ,Erosion ,Particle ,Environmental science ,Aeolian processes ,eddy-covariance ,Astrophysics::Earth and Planetary Astrophysics ,Particle counter - Abstract
International audience; Estimating accurately dust emission flux during aeolian erosion events is crucial for quantifying the amount of dust in the atmosphere. The rare existing field experiments quantifying such flux were mainly performed using the flux-gradient (FG) method. Here, we present the first intercomparison of the size-resolved dust fluxes estimated by both the FG and the eddy-covariance (EC) methods during several erosion events. Both methods were applied simultaneously during the WIND-O-V (WIND erOsion in presence of sparse Vegetation)'s 2017 field experiment over an isolated erodible bare plot in South Tunisia. Overall, both methods predict similar dust fluxes for particle smaller than about 4 μm. For coarser particles, the EC method predicts a smaller dust flux than the FG method. Factors explaining this difference are discussed such as the different sampling heads used by the dust particle counters of both methods, or the possible weakening of the constant dust flux layer at the location of the upper dust particle counter of the FG method. This intercomparison highlights the difficulties and advantages of each method as well as their complementarity.
- Published
- 2021
- Full Text
- View/download PDF
3. Origins of Turbulent Transport Dissimilarity Between Dust and Momentum in Semiarid Regions
- Author
-
Eric Lamaud, Royston Fernandes, Sylvain Dupont, Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and ANR-15-CE02-0013,WIND-O-V,Erosion éolienne en présence de végétation éparse(2015)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Fetch ,Astrophysics::Cosmology and Extragalactic Astrophysics ,010502 geochemistry & geophysics ,01 natural sciences ,Earth and Planetary Sciences (miscellaneous) ,Large eddy simulations ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,Dust suspension model ,Momentum (technical analysis) ,Dust transport dissimilarity ,Turbulence ,Mechanics ,Semiarid erosion ,Dust emission intermittency ,Geophysics ,13. Climate action ,Space and Planetary Science ,[SDE]Environmental Sciences ,Environmental science ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Turbulent transport of mineral dust away from erodible plots is usually assumed similar to the momentum transport. However, observations from the WIND-O-V (WIND erOsion in presence of sparse Vegetation's) 2017 field experiment over an isolated flat surface in Tunisia showed a dissimilar turbulent transport between dust and momentum. Here, the origin of this dissimilarity is explored from a numerical experiment using a detailed physically based erosion model based on a large-eddy simulation airflow model. Simulations support the findings of the WIND-O-V campaign, confirming the key role played by the dust emission intermittency to the transport dissimilarity with the momentum, this later one being more continuously absorbed at the surface. Simulations reveal that this dissimilarity diminishes with height as the intermittency of dust emission is progressively lost during the turbulent transport-mixing process. With wind intensity, the dissimilarity diminishes as well, with dust emissions becoming more spatially homogeneous, and thus less intermittent. Our simulations further highlight the additional role played by the fetch length limitation of the erodible plot to the turbulent transport dissimilarity. In presence of a short fetch, the dissimilarity between dust and momentum turbulent transports increases with height as the dust flux footprint integrates dust emission conditions from different surrounding surfaces. This latter process depends on the characteristics of the surrounded surfaces and is expected to be significant in semiarid regions.
- Published
- 2020
- Full Text
- View/download PDF
4. Investigating the role of deposition on the size distribution of near-surface dust flux during erosion events
- Author
-
Sylvain Dupont, Royston Fernandes, Eric Lamaud, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), ANR WIND-O-V, ANR-15-CE02-0013,WIND-O-V,Erosion éolienne en présence de végétation éparse(2015), and Interactions Sol Plante Atmosphère (ISPA)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Dust deposition ,Flux ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Fetch ,Dust flux Size distribution ,Deposition velocity ,Mineral dust ,010502 geochemistry & geophysics ,01 natural sciences ,Dust emission ,Dust transport ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,0105 earth and related environmental sciences ,Earth-Surface Processes ,[PHYS]Physics [physics] ,Dust emission flux ,Turbulence ,Geology ,Computational physics ,Dust near-surface flux ,Deposition (aerosol physics) ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Particle-size distribution ,[SDE]Environmental Sciences ,Erosion ,Intensity (heat transfer) - Abstract
Predicting the particle size distribution (PSD) of near-surface turbulent dust flux ( F wc ) is a key issue for estimating the size of atmospheric mineral dust. Existing dust emission schemes differ in their parametrization of the emitted dust ( F emi ) PSD, defining differently the surface inter-particle cohesive force and the influence of wind intensity. Moreover, these schemes have often been validated-fitted against field measurements, assuming PSD similarity between F wc and F emi . Here, we investigate numerically the main factors influencing F wc -PSD during erosion events. To this effect, we developed a 1D dust-dispersal model. After evaluating the model against published results, it is shown that F wc -PSD is influenced by both deposition and F emi -PSD. This latter one is shaped by the inter-particle cohesive bond exponent and the surface dust PSD. A time-to-space conversion of the dust flux variations reveals an increasing enrichment of F wc in small particles compared to F emi . This enrichment remains lower than a few percent of the total dust flux (in number) for fetch lower than 100 m, but it can rise to more than 10% for fetch longer than 1 km. This fetch dependence of F wc -PSD is explained by the slow deposition of particles having the lowest deposition velocities. Importantly, this difference between F wc and F emi PSDs is accentuated with wind intensity, with F emi -PSD dominated by particles with large deposition velocities, and in presence of a large-scale background dust concentration. The role played by the deposition process in shaping the F wc -PSD should be considered when evaluating dust emission schemes against near-surface field measurements.
- Published
- 2019
- Full Text
- View/download PDF
5. Biogenic volatile organic compounds (BVOCs) reactivity related to new particle formation (NPF) over the Landes forest
- Author
-
Pierre-Marie Flaud, Eric Villenave, A. Chazeaubeny, Julien Kammer, Eric Lamaud, Raluca Ciuraru, Emilie Perraudin, Emmanuel Geneste, K. Le Menach, Hélène Budzinski, J.M. Bonnefond, Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), and AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Atmospheric Science ,Ozone ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Climate change ,010501 environmental sciences ,Landes forest ,01 natural sciences ,Gas phase ,chemistry.chemical_compound ,Foret ,Cloud condensation nuclei ,BVOCs ,Air quality index ,Field campaign ,0105 earth and related environmental sciences ,Changement climatique ,Atmosphere ,Diurnal temperature variation ,Particulates ,[SDE.ES]Environmental Sciences/Environmental and Society ,chemistry ,Landes - France ,13. Climate action ,Environmental chemistry ,Monoterpenes ,Environmental science ,Nighttime NPF ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Oxidation products - Abstract
International audience; Atmospheric particles play a major role in both air quality and climate change. Formation of secondary particles in the atmosphere has been observed over many different environments and is believed to provide up to half of the atmospheric cloud condensation nuclei (CCN) at a global scale. However, high uncertainties are still remaining in the description of mechanisms involved in new particle formation (NPF). Especially, more evidences of the implication of biogenic volatile organic compounds (BVOCs) in NPF from field studies are still needed. To investigate this question, two field campaigns have been set up during July 2014 and July 2015, in the French Landes forest (south west of France). Summer 2015 was characterized by a strong hydric stress, whereas summer 2014 was rainy. In 2015, frequent nocturnal NPF was observed, reaching a frequency of occurrence of similar to 55% of the nights, while only one event was observed in 2014. In July 2015, monoterpene mixing ratios (dominated by alpha- and beta-pinene) were higher, mostly due to high ambient temperatures and drought. A focus was made on the 2015 field campaign, where NPF was mostly observed. The mean diurnal variation of the ratio between alpha- and beta-pinene mixing ratios highlighted in-canopy reactivity of monoterpenes with ozone in the early night. This hypothesis was reinforced by the increasing gas phase levels of pinonaldehyde and nopinone, the main first-generation products arising from alpha- and beta-pinene ozonolysis, at night, before NPF started. It strongly suggests that monoterpene oxidation further generated very-low volatility gases involved in NPF. This finding is also supported by the high concentrations of the SOA traditional biogenic tracers, e.g. pinic and pinonic acids, quantified in the particulate phase. The role of BVOCs in NPF is thus highlighted, as well as the importance of nighttime NPF.
- Published
- 2020
- Full Text
- View/download PDF
6. Soil ozone deposition: Dependence of soil resistance to soil texture
- Author
-
Angelo Finco, Raluca Ciuraru, Giacomo Gerosa, Patrick Stella, Benjamin Loubet, Eric Lamaud, Eric Ceschia, C. de Berranger, Dominique Serça, Xavier Charrier, Christian George, Sciences pour l'Action et le Développement : Activités, Produits, Territoires (SADAPT), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Unité Expérimentale Fourrages et Environnement de Lusignan (UEFE), Institut National de la Recherche Agronomique (INRA), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Matematica e Fisica 'Niccol, Università Cattolica del Sacro Cuore, Brescia (UCSC), Interactions Sol Plante Atmosphère (ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Laboratoire d'aérologie (LA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Università cattolica del Sacro Cuore [Brescia] (Unicatt), Interactions Sol Plante Atmosphère (UMR ISPA), Laboratoire d'aérologie (LAERO), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,Ozone ,010504 meteorology & atmospheric sciences ,Soil texture ,[SDV]Life Sciences [q-bio] ,Soil science ,010501 environmental sciences ,01 natural sciences ,complex mixtures ,Atmosphere ,chemistry.chemical_compound ,Specific surface area ,Settore BIO/07 - ECOLOGIA ,Clay content ,Relative humidity ,Soil resistance ,Tropospheric ozone ,Settore FIS/06 - FISICA PER IL SISTEMA TERRA E IL MEZZO CIRCUMTERRESTRE ,0105 earth and related environmental sciences ,General Environmental Science ,Humidity ,15. Life on land ,chemistry ,Environmental science ,Deposition (chemistry) - Abstract
Soil deposition is an essential pathway for tropospheric ozone (O3) removal, but its controlling factors remain unclear. Here, we explored the variability of soil O3 resistance in response to soil texture. To this aim, data of O3 deposition over bare soil obtained from micrometeorological measurements under contrasted meteorological conditions for five sites were used. The results obtained are twofold: (i) soil resistance (Rsoil) increased with soil surface relative humidity (RHsurf), but (ii) this relationship exhibited large site-by-site variability. Further analysis showed that the minimum soil resistance (corresponding to completely dry soil surface or RHsurf = 0%) and the increase of Rsoil with RHsurf are both linked to soil clay content. These results can be explained by (i) the soil surface available for O3 deposition at a microscopic scale which is a function of the soil specific surface area, and (ii) the capacity of a soil to adsorb water according to its clay content and therefore to reduce the surface active for O3 deposition. From these results, a new parameterization has been established to estimate Rsoil as a function of RHsurf and soil clay fraction.
- Published
- 2019
- Full Text
- View/download PDF
7. Ozone production in a maritime pine forest in water-stressed conditions
- Author
-
D. Garrigou, Julien Kammer, Eric Lamaud, Pierre-Marie Flaud, Eric Villenave, Emilie Perraudin, J.M. Bonnefond, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,Daytime ,ozone production ,Ozone ,010504 meteorology & atmospheric sciences ,[SDV]Life Sciences [q-bio] ,Water stress ,Pine forest ,Eddy covariance ,Growing season ,010501 environmental sciences ,maritime pine ,Residual ,Atmospheric sciences ,01 natural sciences ,ozone fluxes ,chemistry.chemical_compound ,Flux (metallurgy) ,chemistry ,13. Climate action ,[SDE]Environmental Sciences ,eddy covariance ,Environmental science ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
International audience; During two growing seasons of a maritime pine stand, in 2014 and 2015, ozone (O-3) fluxes have been determined using the eddy covariance (EC) method and compared to the outputs of a big-leaf O-3 deposition model including stomatal, cuticular and soil pathways. The model developed in this study generally allowed to properly reproduce the measured ozone deposition. Ozone fluxes showed a strong reduction during two water stressed periods in September 2014 and July 2015. The model partly explain this fall due to the reduction of stomatal deposition. Despite this stomatal closure, measured O-3 fluxes presented systematically lower negative values than the model outputs, and sometimes even positive values around midday during periods marked by strong water stress. In other words, the difference between observed and modelled O-3 fluxes (hereinafter referred to as the residual O-3 flux) is systematically positive on daytime during these water-stressed periods. This positive residual flux traduced the existence of an O-3 source below the flux measurement level, responsible for positive fluxes that counterbalance deposition fluxes. We developed an O-3 production module based on a terpene emission algorithm and an OH concentration proxy, to try to explain the observed ozone production. As this parametrisation allowed us to reproduce well the daily and inter-daily dynamics of the residual O-3 flux, it confirms that the latter actually resulted from O-3 production processes. This ozone production is here highlighted for the first time using O-3 fluxes measurements by the EC method. The chemical reactions possibly involved in O-3 production processes in this maritime pine forest have been discussed and different mechanisms are proposed, based on peroxy radicals chemistry or stress-induced BVOCs.
- Published
- 2019
- Full Text
- View/download PDF
8. Impact of parameterization choices on the restitution of ozone deposition over vegetation
- Author
-
Aurélie Le Morvan-Quéméner, Patrick Stella, Eric Lamaud, Benjamin Loubet, Isabelle Coll, Erwan Personne, Julien Kammer, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS), Interactions Sol Plante Atmosphère (ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Sciences pour l'Action et le Développement : Activités, Produits, Territoires (SADAPT), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Interactions Sol Plante Atmosphère (UMR ISPA), Laboratoire inter-universitaire des systèmes atmosphèriques ( LISA ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Centre National de la Recherche Scientifique ( CNRS ), Interactions Sol Plante Atmosphère ( ISPA ), Institut National de la Recherche Agronomique ( INRA ) -Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine ( Bordeaux Sciences Agro ), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes ( ECOSYS ), AgroParisTech-Institut National de la Recherche Agronomique ( INRA ), Université Paris Saclay, and Sciences pour l'Action et le Développement : Activités, Produits, Territoires ( SADAPT )
- Subjects
Atmospheric Science ,Stomatal conductance ,Ozone ,010504 meteorology & atmospheric sciences ,[SDV]Life Sciences [q-bio] ,Air pollution ,010501 environmental sciences ,Atmospheric sciences ,medicine.disease_cause ,01 natural sciences ,Ozone dry deposition ,Atmosphere ,chemistry.chemical_compound ,11. Sustainability ,medicine ,Ecosystem ,0105 earth and related environmental sciences ,General Environmental Science ,2. Zero hunger ,Pollutant ,Vegetation ,[ SDV ] Life Sciences [q-bio] ,15. Life on land ,Deposition (aerosol physics) ,chemistry ,13. Climate action ,CHIMERE - Abstract
Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.
- Published
- 2018
- Full Text
- View/download PDF
9. Observation of nighttime new particle formation over the French Landes forest
- Author
-
J. Kammer, Pierre-Marie Flaud, Eric Villenave, Eric Lamaud, Emilie Perraudin, J.M. Bonnefond, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), and Université de Bordeaux (UB)
- Subjects
Environmental Engineering ,010504 meteorology & atmospheric sciences ,Meteorology ,landes forest ,aerosol ,[SDV]Life Sciences [q-bio] ,010501 environmental sciences ,Nocturnal ,Sunset ,Atmospheric sciences ,01 natural sciences ,Atmosphere ,new particle formation ,Atmospheric instability ,Environmental Chemistry ,biogenic volatile organic compounds ,Relative humidity ,Ecosystem ,Waste Management and Disposal ,0105 earth and related environmental sciences ,Chemistry ,15. Life on land ,Sea spray ,Pollution ,Aerosol ,13. Climate action ,[SDE]Environmental Sciences - Abstract
International audience; Improving the understanding of processes related to atmospheric particle sources is essential to better assess future climate. Especially, how biogenic volatile organic compounds (BVOCs) are involved in new particle formation (NPF) is still unclear, highlighting the need for field studies in sites that have not yet been explored. Weakly anthropised, mostly composed of maritime pines (known as strong monoterpene emitters), vast and under the influence of sea spray inputs, the Landes forest (located in the southwestern part of France) is a suitable ecosystem to explore these questions. The aim of the present work was to investigate for the first time NPF in the Landes forest, and to identify the conditions for NPF. During a field campaign conducted in July 2015, clear NPF was observed during nighttime, at a high frequency rate (37.5%), whereas only two daytime episodes were observed. Growth rates during NPF events were in the range 9.0-15.7 nm h(-1), and nucleation rates (J(10)) in the range 0.8-8 particles cm(3) s(-1), typically in the range of reported values from rural sites. Nocturnal NPF started at sunset, lagging the reductions of temperature and ozone concentration as well as the increase of relative humidity, atmospheric stability and monoterpene concentration. We established that NPF occurred during more stratified atmosphere episodes, reflecting that NPF is more influenced by local processes at the Landes forest site (Bilos). Concentration of the sum of monoterpenes, here mainly alpha- and beta-pinene, was observed to be maximal during NPF episodes. On the contrary, ozone concentration was lower, which may indicate a larger consumption during nights where NPF episodes occur. Results strongly suggest the contribution of BVOC oxidation to nocturnal NPF, in both nucleation and the growth stages.
- Published
- 2018
- Full Text
- View/download PDF
10. Assessment of the total, stomatal, cuticular, and soil 2 year ozone budgets of an agricultural field with winter wheat and maize crops
- Author
-
Patrick Stella, Ivonne Trebs, Benjamin Loubet, Erwan Personne, Eric Lamaud, and Pierre Cellier
- Subjects
0106 biological sciences ,Canopy ,Atmospheric Science ,Ozone ,010504 meteorology & atmospheric sciences ,Soil Science ,Aquatic Science ,01 natural sciences ,chemistry.chemical_compound ,Flux (metallurgy) ,Ecosystem ,0105 earth and related environmental sciences ,Water Science and Technology ,Ecology ,business.industry ,Phenology ,Crop yield ,Paleontology ,Forestry ,Agronomy ,chemistry ,Agriculture ,Environmental science ,business ,Deposition (chemistry) ,010606 plant biology & botany - Abstract
[1] This study evaluates ozone (O3) deposition to an agricultural field over a period of 2 years. A two-layer soil-vegetation-atmosphere-transfer (Surfatm-O3) model is used to partition the O3 flux between the soil, the cuticular, and the stomatal pathways. The comparison between measured and modeled O3 fluxes exhibited a good agreement, independently of the canopy structure and coverage and the climatic conditions, which implicitly validates the O3 flux partitioning. The total, soil, cuticular, and stomatal O3 budgets are then established from the modeling. Total ecosystem O3 deposition over the 2 year period was 87.5 kg ha−1. Clearly, nonstomatal deposition dominates the deposition budget, especially the soil component which represented up to 50% of the total deposition. Nevertheless, the physiological and phenological differences of maize and winter wheat induced large difference in the stomatal deposition budgets of these two crops. Then, the effect of simplified parameterizations for soil and cuticular resistances currently used in other models on the O3 budget is tested. Independently, these simplified parameterizations cause an underestimation of the O3 deposition ranging between 0% and 11.2%. However, the combination of all simplifications resulted in an underestimation of the total O3 deposition by about 20%. Finally, crop yield loss was estimated to be 1.5–4.2% for the winter wheat, whereas maize was not affected by O3.
- Published
- 2013
- Full Text
- View/download PDF
11. LANDEX – Linking in canopy volatile organic compound reactivity to nocturnal new particle formation
- Author
-
Julien Kammer, M Flaud, P., Jean-Marc Bonnefond, Didier Garrigou, Perraudin, E., Eric Lamaud, Eric VILLENAVE, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Centre National de la Recherche Scientifique (CNRS), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2016
12. Remobilisation des radionucléides sous forme d’aérosols primaires et secondaires par vent faible à partir de couverts naturels (projet REMORA) : une nouvelle voie de transfert vers l’atmosphère
- Author
-
Maro, D., Aulagnier, C., Jean-Marc Bonnefond, Yves Brunet, Barbara D'Anna, Frédéric Delmas, M Flaud, P., Floriani, M., Didier Garrigou, Hébert, D., Julien Kammer, Laguionie, P., Eric Lamaud, Morillon, M., Perraudin, E., Pellerin, G., Solier, L., Villenave, E., Institut de Radioprotection et de Sûreté Nucléaire (IRSN), EDF CIDEN, Partenaires INRAE, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Biologie du fruit et pathologie (BFP), Université Bordeaux Segalen - Bordeaux 2-Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1, Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2016
13. Comparison of methods for the determination of NO-O3-NO2 fluxes and chemical interactions over a bare soil
- Author
-
Patrick Stella, Eric Lamaud, Ralf Kurtenbach, Nicolas Mascher, Patricia Laville, Benjamin Loubet, François Bernard, Mathieu Cazaunau, Sebastian Laufs, Pierre Cellier, Abdelwahid Mellouki, Benoit Grosselin, and J. Kleffmann
- Subjects
Atmospheric Science ,Ozone ,010504 meteorology & atmospheric sciences ,Reactive nitrogen ,Chemistry ,Eddy covariance ,010501 environmental sciences ,15. Life on land ,Atmospheric sciences ,01 natural sciences ,Trace gas ,chemistry.chemical_compound ,Flux (metallurgy) ,13. Climate action ,Environmental chemistry ,Nitrogen dioxide ,Tropospheric ozone ,Water vapor ,0105 earth and related environmental sciences - Abstract
Tropospheric ozone (O3) is a known greenhouse gas responsible for impacts on human and animal health and ecosystem functioning. In addition, O3 plays an important role in tropospheric chemistry, together with nitrogen oxides. The determination of surface-atmosphere exchange fluxes of these trace gases is a prerequisite to establish their atmospheric budget and evaluate their impact onto the biosphere. In this study, O3, nitric oxide (NO) and nitrogen dioxide (NO2) fluxes were measured using the aerodynamic gradient method over a bare soil in an agricultural field. Ozone and NO fluxes were also measured using eddy-covariance and automatic chambers, respectively. The aerodynamic gradient measurement system, composed of fast response sensors, was capable to measure significant differences in NO and O3 mixing ratios between heights. However, due to local advection, NO2 mixing ratios were highly non-stationary and NO2 fluxes were, therefore, not significantly different from zero. The chemical reactions between O3, NO and NO2 led to little ozone flux divergence between the surface and the measurement height (less than 1% of the flux on average), whereas the NO flux divergence was about 10% on average. The use of fast response sensors allowed reducing the flux uncertainty. The aerodynamic gradient and the eddy-covariance methods gave comparable O3 fluxes. The chamber NO fluxes were down to 70% lower than the aerodynamic gradient fluxes, probably because of either the spatial heterogeneity of the soil NO emissions or the perturbation due to the chamber itself.
- Published
- 2012
- Full Text
- View/download PDF
14. Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions
- Author
-
M. Irvine, Jean-Marc Bonnefond, Yves Brunet, Sylvain Dupont, Eric Lamaud, Écologie fonctionnelle et physique de l'environnement (EPHYSE), and Institut National de la Recherche Agronomique (INRA)
- Subjects
Canopy ,PLANE MIXING-LAYER FLOW QUADRANT ANALYSIS ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,Meteorology ,[SDE.MCG]Environmental Sciences/Global Changes ,COHERENT EDDY STRUCTURE FOREST CANOPY ,Geometry ,Wake ,01 natural sciences ,MOMENTUM FLUX ,Wind speed ,010305 fluids & plasmas ,TRUNK SPACE ,Wind shear ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,0105 earth and related environmental sciences ,Tree canopy ,Turbulence ,WIND SPECTRA ,PIN MARITIME ,15. Life on land ,LARGE-EDDY SIMULATION MARITIME PINE ,TURBULENCE ,Spatial variability ,AUTO-CORRELATION ,Geology ,Large eddy simulation - Abstract
International audience; Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may impact canopy-atmosphere ex- changes through its action on the development of turbulent structures. Here we inves- tigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterised by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the outputs of large-eddy simulations are used and analysed together. In stand conditions, far from the edge, canopy-top structures appear stronlgy damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, auto-correlation and spectral analyses are not quite appropriate to characterise the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange re- gion, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addi- tion to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite di- rection and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.
- Published
- 2012
- Full Text
- View/download PDF
15. Spatial and temporal CO2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production
- Author
-
Bruno Delille, Jean-Marc Bonnefond, V. Lafon, Jonathan Deborde, Eric Lamaud, P. Bretel, Denis Loustau, Gwenaël Abril, and Pierre Polsenaere
- Subjects
0106 biological sciences ,010504 meteorology & atmospheric sciences ,biology ,010604 marine biology & hydrobiology ,Eddy covariance ,Intertidal zone ,Primary production ,15. Life on land ,biology.organism_classification ,01 natural sciences ,Seagrass ,Oceanography ,13. Climate action ,Phytoplankton ,Temperate climate ,Environmental science ,Ecosystem ,14. Life underwater ,Zostera ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Measurements of carbon dioxide fluxes were performed over a temperate intertidal mudflat in southwestern France using the micrometeorological Eddy Covariance (EC) technique. EC measurements were carried out in two contrasting sites of the Arcachon flat during four periods and in three different seasons (autumn 2007, summer 2008, autumn 2008 and spring 2009). In addition, satellite images of the tidal flat at low tide were used to link the net ecosystem CO2 exchange (NEE) with the occupation of the mudflat by primary producers, particularly by Zostera noltii meadows. CO2 fluxes during the four deployments showed important spatial and temporal variations, with the flat rapidly shifting from sink to source with the tide. Absolute CO2 fluxes showed generally small negative (influx) and positive (efflux) values, with larger values up to −13 μmol m−2 s−1 for influxes and 19 μmol m−2 s−1 for effluxes. Low tide during the day was mostly associated with a net uptake of atmospheric CO2. In contrast, during immersion and during low tide at night, CO2 fluxes where positive, negative or close to zero, depending on the season and the site. During the autumn of 2007, at the innermost station with a patchy Zostera noltii bed (cover of 22 ± 14% in the wind direction of measurements), CO2 influx was −1.7 ± 1.7 μmol m−2 s−1 at low tide during the day, and the efflux was 2.7 ± 3.7 μmol m−2 s−1 at low tide during the night. A gross primary production (GPP) of 4.4 ± 4.1 μmol m−2 s−1 during emersion could be attributed to microphytobenthic communities. During the summer and autumn of 2008, at the central station with a dense eelgrass bed (92 ± 10%), CO2 uptakes at low tide during the day were −1.5 ± 1.2 and −0.9 ± 1.7 μmol m−2 s−1, respectively. Night time effluxes of CO2 were 1.0 ± 0.9 and 0.2 ± 1.1 μmol m−2 s−1 in summer and autumn, respectively, resulting in a GPP during emersion of 2.5 ± 1.5 and 1.1 ± 2.0 μmol m−2 s−1, respectively, attributed primarily to the seagrass community. At the same station in April 2009, before Zostera noltii started to grow, the CO2 uptake at low tide during the day was the highest (−2.7 ± 2.0 μmol m−2 s−1). Influxes of CO2 were also observed during immersion at the central station in spring and early autumn and were apparently related to phytoplankton blooms occurring at the mouth of the flat, followed by the advection of CO2-depleted water with the flooding tide. Although winter data as well as water carbon measurements would be necessary to determine a precise CO2 budget for the flat, our results suggest that tidal flat ecosystems are a modest contributor to the CO2 budget of the coastal ocean.
- Published
- 2012
- Full Text
- View/download PDF
16. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth
- Author
-
Virginie Moreaux, Denis Loustau, Eric Lamaud, Jean-Marc Bonnefond, Alexandre Bosc, Belinda E. Medlyn, Écologie fonctionnelle et physique de l'environnement (EPHYSE), Institut National de la Recherche Agronomique (INRA), Department of Biological Sciences, and Macquarie University
- Subjects
0106 biological sciences ,Canopy ,010504 meteorology & atmospheric sciences ,Physiology ,Weed Control ,Eddy covariance ,Plant Science ,CARBON EXCHANGES ,01 natural sciences ,[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry ,Evapotranspiration ,Botany ,Photosynthesis ,Ecosystem ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Transpiration ,Dehydration ,biology ,AJONC COMMUN ,ENERGY BALANCE ,Water ,GORSE ,Primary production ,Carbon sink ,Plant Transpiration ,Carbon Dioxide ,15. Life on land ,Pinus ,biology.organism_classification ,Carbon ,YOUNG FOREST STAND ,Pinus ponderosa ,Plant Leaves ,Agronomy ,WATER BUDGET ,Pinus pinaster ,Environmental science ,Phytolacca americana ,France ,Seasons ,Ecosystem respiration ,Energy Metabolism ,010606 plant biology & botany - Abstract
The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.
- Published
- 2011
- Full Text
- View/download PDF
17. Simultaneous measurements of CO2 and water exchanges over three agroecosystems in South-West France
- Author
-
Jean-Marc Bonnefond, Eric Lamaud, Yves Brunet, M. Irvine, Patrick Stella, and Denis Loustau
- Subjects
2. Zero hunger ,0106 biological sciences ,010504 meteorology & atmospheric sciences ,Vapour Pressure Deficit ,Carbon sink ,Primary production ,Vegetation ,15. Life on land ,Carbon sequestration ,01 natural sciences ,Deciduous ,Agronomy ,Environmental science ,Water-use efficiency ,Ecology, Evolution, Behavior and Systematics ,Water use ,010606 plant biology & botany ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
During the last few decades, many studies have been performed to determine water and carbon budgets of broadleaf and deciduous forests, crops and grasslands. However, since most measurements have been made in different regions and at different periods, it is difficult to compare the results directly. In order to evaluate accurately the respective contribution of various agroecosystems to global water and carbon exchanges, it is necessary to compare data obtained in similar climatic and weather conditions. To address this question, we present the results from simultaneous measurements carried out during one year over three typical agroecosystems of the Les Landes region in South-West France:~an agricultural field with maize from 29 May to 18 October, a young (5 year-old) pine forest and a mature (37 year-old) pine forest. All measurements were collected as part of the Regional Experiment component of the CarboEurope-IP project. During most of the year, the agricultural field without vegetation is a source of CO2, but from late June to early September the maize crop becomes a stronger carbon sink than the forests. Over the whole measurement period the three agroecosystems behave as CO2 sinks with carbon storage of about 335, 210 and 160 g C m−2 for the young forest, the mature forest and the agricultural field, respectively. We investigated the influence of climatic conditions on Gross Primary Production (GPP) of the three ecosystems and observed a predominant role of vapour pressure deficit (VPD) for forests and of photosynthetic photon flux density (FPP) for maize. Daily Water Use Efficiencies (WUE) of the three ecosystems were evaluated and expressed as functions of the mean daily vapour pressure deficit (VPD). Similar trends were observed for the two forests, which suggests that for a given species WUE is independent of stand age. The WUE of the maize crop at maturity was also found to depend upon VPD, but it is about twice as large as for the forests, owing to the physiological advantages of C4 species.
- Published
- 2009
- Full Text
- View/download PDF
18. Multilayer modelling of ozone fluxes on winter wheat reveals large deposition on wet senescing leaves
- Author
-
Benjamin Loubet, Erwan Personne, Jérôme Ogée, Julien Jouanguy, Eric Lamaud, Elise Potier, Nicolas Mascher, Brigitte Durand, Patrick Stella, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Département de Recherche en Ingéniérie des Véhicules pour l'Environnement (DRIVE), Université de Bourgogne (UB), Sciences pour l'Action et le Développement : Activités, Produits, Territoires (SADAPT), INRA infrastructure ICOS, the French national projects ANR VULNOZ, and INSU-CNRS PHOTONA., Interactions Sol Plante Atmosphère (ISPA), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes ( ECOSYS ), Institut National de la Recherche Agronomique ( INRA ) -AgroParisTech, Interactions Sol Plante Atmosphère ( ISPA ), Institut National de la Recherche Agronomique ( INRA ) -Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine ( Bordeaux Sciences Agro ), Département de Recherche en Ingéniérie des Véhicules pour l'Environnement ( DRIVE ), Université de Bourgogne ( UB ), and Sciences pour l'Action et le Développement : Activités, Produits, Territoires ( SADAPT )
- Subjects
Atmospheric Science ,Ozone ,senescence ,010504 meteorology & atmospheric sciences ,[SDV]Life Sciences [q-bio] ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,water film ,chemistry.chemical_compound ,MuSICA ,ozone deposition ,Evapotranspiration ,wheat ,0105 earth and related environmental sciences ,Hydrology ,Global and Planetary Change ,[ SDV ] Life Sciences [q-bio] ,Forestry ,Vegetation ,15. Life on land ,chemistry ,13. Climate action ,Greenhouse gas ,Environmental science ,Dew ,cuticle ,Interception ,Agronomy and Crop Science ,Deposition (chemistry) ,Water vapor - Abstract
Understanding how ozone is deposited on vegetation canopies is needed to perform tropospheric greenhouse gas budgets and evaluate the associated damage on vegetation. In this study, we propose a new multilayer scheme of ozone deposition on vegetation canopies that predicts stomatal, cuticular and soil deposition pathways separately. This mechanistic ozone deposition scheme is based on the multi-layer, multi-leaf mass and energy transfer model MuSICA. This model was chosen because it explicitly simulates the processes of rain interception, through fall and evaporation at different depths within the vegetation canopy, so that ozone deposition on wet leaf cuticles can be explicitly modelled with ozone dissolution, diffusion and chemical reaction inside the water films. The model was evaluated against a 3-year dataset of ozone, CO2 and evapotranspiration flux measurements over a winter wheat field near Paris, France (ICOS Fr-GRI). Only periods with fully developed canopies (including senescence) were considered to minimise the contribution of soil deposition to the total ozone flux. Before senescence, the model could reproduce the measured ozone deposition rates as well as the CO2 and water vapour fluxes. During senescence, large ozone deposition rates were observed under wet canopy conditions that could only be explained by first-order reaction rates in the water film of around 105 s−1. Such reaction rates are not compatible with the chemical composition of rainwater. We therefore hypothesise that, during senescence, the cell content leaks out of the leaves when they become wet, exposing anti-oxidants to ozone. These results provide for the first time a mechanistic explanation of the commonly observed increase in ozone deposition rates during rain or dew formation.
- Published
- 2015
- Full Text
- View/download PDF
19. A long-term study of soil heat flux under a forest canopy
- Author
-
Yves Brunet, Paul Berbigier, Eric Lamaud, Jérôme Ogée, Jean-Marc Bonnefond, Unité de bioclimatologie, and Institut National de la Recherche Agronomique (INRA)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Energy balance ,Sensible heat ,Thermal energy storage ,Atmospheric sciences ,01 natural sciences ,soil heat flux ,understorey ,Soil thermal properties ,Thermal conductivity ,Water content ,0105 earth and related environmental sciences ,Hydrology ,Global and Planetary Change ,Forestry ,04 agricultural and veterinary sciences ,15. Life on land ,long-term energy budget ,forest canopy ,Heat flux ,13. Climate action ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,Agronomy and Crop Science - Abstract
International programmes such as EUROFLUX focus on the analysis of long-term fluxes and energy budgets in the biosphere. Reliable estimates of hourly energy budgets require an accurate estimation of soil heat flux, that is often non-negligible even in a forest, and can be predominant during the night. Over long periods of time such as one to several months, its contribution can also be significant. The present work has been carried out to get good estimates of the soil heat flux in a maritime pine stand in the southwest of France, one of the 15 EUROFLUX sites. Using a whole year’s worth of data, soil heat flux was estimated by a two-step version of the null-alignment method using soil temperature, water content and bulk density measurements between the soil surface and a depth of 1 m. A data subset was firstly used to estimate and model the soil thermal conductivity at various depths. The full data set was then used with the modelled conductivity to estimate heat storage between the surface and a reference depth, and calculate the heat flux at the soil surface. Throughout the investigated year and at a 30 min time scale, the soil heat flux represents 5‐10% of the incident net radiation, i.e. 30‐50% of the net radiation over the understorey. Cumulative values from September 1997 to March 1998 reach a maximum of 70 MJ m 2 , which represents nearly 50% of the cumulative values of transmitted net radiation (140 MJ m 2 ) over the same period. These estimates of soil heat flux allowed the energy budgets of the whole stand and the understorey to be closed, and showed that the storage terms are significant not only at a 30 min time scale but also at longer time scales (a few weeks). An attempt was finally made to model soil heat flux from meteorological data, which has rarely been done for a forest soil and over a long-term data set. In most of the existing models, soil heat flux is taken as a fraction of net radiation or sensible heat flux. Here, the litter acts as a mulch at the soil surface so that the only significant terms of the energy balance at this level are soil heat flux, transmitted net radiation and turbulent sensible heat flux. Soil heat flux is shown to be a linear combination of (1) net radiation above the understorey with a clear dependence of the coefficient on the soil cover fraction, and (2) the difference between the air and litter temperatures, with little influence of soil water content or wind speed on the coefficient. © 2001 Elsevier Science B.V. All rights reserved.
- Published
- 2001
- Full Text
- View/download PDF
20. Investigating discrepancies in heat, CO2 fluxes and O-3 deposition velocity over maize as measured by the eddy-covariance and the aerodynamic gradient methods
- Author
-
Brigitte Durand, Christophe Flechard, Erwan Personne, Eric Lamaud, Jean-François Castell, Pierre Cellier, Romain Roche, Didier Garrigou, Sylvie Masson, Olivier Zurfluh, Patricia Laville, Patrick Stella, Dominique Flura, Michaël Chelle, Benjamin Loubet, M. Irvine, Environnement et Grandes Cultures (EGC), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Sol Agro et hydrosystème Spatialisation (SAS), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Écologie fonctionnelle et physique de l'environnement (EPHYSE - UR1263), Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and Écologie fonctionnelle et physique de l'environnement (EPHYSE)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Atmospheric Science ,Flux divergence ,Materials science ,Ozone ,010504 meteorology & atmospheric sciences ,water-vapor ,Eddy covariance ,sonic anemometer ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,chemistry.chemical_compound ,Flux (metallurgy) ,Aerodynamic gradient ,Tropospheric ozone ,0105 earth and related environmental sciences ,roughness sublayer ,tropospheric ozone ,Global and Planetary Change ,long-term ,Energy ,model ,Forestry ,deciduous forest ,balance deficit ,ozone fluxes ,Trace gas ,chemistry ,13. Climate action ,Carbon dioxide ,energy-balance closure ,Agronomy and Crop Science ,Gradient method ,Water vapor - Abstract
The eddy covariance (EC) method is widely considered as the reference method for heat and trace gas exchange flux measurements. However, for some species of interest, the aerodynamic gradient method (AG) is still a valuable method. Furthermore, some useful datasets are based on the AG method. In this study we compare the EC and the AG methods for latent (LE) and sensible (H) heat, carbon dioxide (Fc) fluxes and ozone deposition velocity ( V d O 3 ) over a maize field near Paris. The AG method gave roughly 15% smaller Fc and LE, similar H, and 40% larger V d O 3 than the EC method. The differences between the two methods are discussed. In particular, the effects of the displacement height and heights of measurements on the AG fluxes are explored and the similarity among heat, CO2, H2O and O3 is tested. Furthermore, the vertical divergence of the flux above the canopy is estimated with the AG method.
- Published
- 2013
- Full Text
- View/download PDF
21. Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: the Surfatm-O3 model
- Author
-
Patrick Stella, Pierre Béziat, Erwan Personne, Nicolas Mascher, Eric Ceschia, Eric Lamaud, Jean-Marc Bonnefond, Benjamin Loubet, M. Irvine, Pascal Keravec, and Pierre Cellier
- Subjects
2. Zero hunger ,geography ,geography.geographical_feature_category ,Ozone ,010504 meteorology & atmospheric sciences ,Phenology ,Crop yield ,Sowing ,15. Life on land ,010501 environmental sciences ,01 natural sciences ,Sink (geography) ,chemistry.chemical_compound ,chemistry ,Agronomy ,13. Climate action ,Environmental science ,Terrestrial ecosystem ,Ecosystem ,Tropospheric ozone ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Terrestrial ecosystems represent a major sink for ozone (O3) and also a critical control of tropospheric O3 budget. However, due to its deleterious effects, plant functioning is affected by the ozone absorbed. It is thus necessary to both predict total ozone deposition to ecosystems and partition the fluxes in stomatal and non-stomatal pathways. The Surfatm-O3 model was developed to predict ozone deposition to agroecosystems from sowing to harvest, taking into account each deposition pathways during bare soil, growth, maturity, and senescence periods. An additional sink was added during senescence: stomatal deposition for yellow leaves, not able to photosynthesise but transpiring. The model was confronted to measurements performed over three maize crops in different regions of France. Modelled and measured fluxes agreed well for one dataset for any phenological stage, with only 3 % difference over the whole cropping season. A larger discrepancy was found for the two other sites, 16 % and 19 % over the entire study period, especially during bare soil, early growth and senescence. This was attributed to site-specific soil resistance to ozone and possible chemical reactions between ozone and volatile organic compounds emitted during late senescence. Considering both night-time and daytime conditions, non-stomatal deposition was the major ozone sink, from 100 % during bare soil period to 70–80 % on average during maturity. However, considering only daytime conditions, especially under optimal climatic conditions for plant functioning, stomatal flux could represent 75 % of total ozone flux. This model could improve estimates of crop yield losses and projections of tropospheric ozone budget.
- Published
- 2011
- Full Text
- View/download PDF
22. Long-distance edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments
- Author
-
Jean-Marc Bonnefond, Eric Lamaud, M. Irvine, Yves Brunet, Sylvain Dupont, Écologie fonctionnelle et physique de l'environnement (EPHYSE), Institut National de la Recherche Agronomique (INRA), GENCI-IDRIS [2009-i2009011833], and Ephyse cluster
- Subjects
Canopy ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,[SDV]Life Sciences [q-bio] ,Mesoscale meteorology ,Flux ,Edge (geometry) ,Atmospheric sciences ,01 natural sciences ,010305 fluids & plasmas ,TRUNK SPACE ,SECONDARY WIND MAXIMUM ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Pressure gradient ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Hydrology ,Global and Planetary Change ,Jet (fluid) ,Tree canopy ,LARGE-EDDY SIMULATION ,Turbulence ,PIN MARITIME ,Forestry ,15. Life on land ,[SDE]Environmental Sciences ,MOMENTUM FLUX BUDGET ,EDGE FLOW ,FOREST CANOPY ,Agronomy and Crop Science ,Geology - Abstract
As forest edges are a major source of heterogeneity in fragmented landscapes, the atmospheric flow over forested areas is often under their influence. Understanding how far the upstream edge has an impact on the turbulent wind flow in a forest canopy is important, in particular for scalar flux measurement. In this study, edge and stand flows over a maritime pine forest characterized by a dense crown layer located above a deep and sparse trunk space are analysed in detail from in situ measurements and large-eddy simulations (LES). The LES model used here appears to simulate remarkably well most characteristics of the turbulent wind flow for this particular canopy structure. It is shown that the main characteristics of the edge flow in this case differ from those usually observed in forests with a more uniform vertical foliage distribution. The main differences are (i) the development of turbulence above the canopy occurring closer to the edge, (ii) the absence of a well-defined enhanced gust zone around the top of the canopy, (iii) the presence of a large secondary wind maximum within the trunk space, and (iv) the development of a positive momentum flux layer below the crown layer. Most of these differences are related to the presence of a substantial sub-canopy wind jet induced by the wind flow through the trunk space at the edge. The secondary velocity maximum induced by this wind jet differs from that observed in homogeneous stand conditions, where it seems to be related to the mesoscale pressure gradient. The wind jet appears to decrease very slowly with distance from the edge, so that edge effects are still significant at 9 h from the edge (where h is the mean canopy height). The length of the adjustment region is shown to be greater than 10–15 h , and to depend on the depth of the trunk space. In very fragmented forested areas with deep and sparse trunk space, within-canopy flow may always be under the influence of edges.
- Published
- 2011
- Full Text
- View/download PDF
23. Ozone deposition onto bare soil: A new parameterisation
- Author
-
Pierre Cellier, Patricia Laville, Eric Lamaud, Benjamin Loubet, Patrick Stella, Environnement et Grandes Cultures (EGC), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Écologie fonctionnelle et physique de l'environnement (EPHYSE - UR1263), Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, and Écologie fonctionnelle et physique de l'environnement (EPHYSE)
- Subjects
Atmospheric Science ,Ozone ,010504 meteorology & atmospheric sciences ,Eddy covariance ,Biometeorology ,O3 ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,Sink (geography) ,chemistry.chemical_compound ,[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry ,bare soil ,nitric oxide ,eddy covariance ,paramétrisation ,Relative humidity ,0105 earth and related environmental sciences ,Hydrology ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Forestry ,15. Life on land ,Deposition (aerosol physics) ,chemistry ,13. Climate action ,Soil water ,Environmental science ,resistances ,Nitrogen oxide ,Agronomy and Crop Science - Abstract
The variables controlling ozone deposition onto bare soil are still unknown and it is necessary to understand this pathway well, as it represents a significant sink for ozone. Eddy-covariance measurements of ozone (O3) fluxes were performed over bare soils in agricultural land. Three datasets with contrasted meteorological conditions and soil nitric oxide (NO) emissions were used to study the factors controlling soil deposition. It is considered that ozone deposition can be represented with an aerodynamic resistance (Ra), a quasi-laminar boundary layer resistance (Rb O3), and an additional resistance, named soil resistance (Rsoil). Although it is assumed in previous studies that soil resistance is a function of soil water content (SWC) and could be considered constant as variation of SWC at monthly scale are generally weak, the results of this study indicate that SWC is not the main factor controlling Rsoil which shows daily and hourly variations. The main factor controlling soil resistance is the surface relative humidity which is positively correlated with Rsoil, contrary to non stomatal resistance onto canopies which show a negative correlation with relative humidity. The relationship between Rsoil and the surface relative humidity is probably due to a decrease in the surface available for ozone deposition, due to an increasing adsorption of water molecules onto the ground with relative humidity. A new parameterisation of Rsoil was established, where Rsoil is a function of the surface relative humidity only (Rsoil = Rsoil min × e(k×RHsurf), and Rsoil min = 21 ± 1.01 s m−1 and k = 0.024 ± 0.001, mean ± SD). The measured and parameterised ozone deposition velocities agree well when soil NO emissions are negligible. However, when there are large soil NO emissions, the parameterised ozone deposition strongly underestimates the measured deposition velocity even if the chemical destruction of ozone by reaction with NO in the air column was evaluated to be negligible. This suggests that soil NO emissions enhance soil ozone deposition by chemical reaction at or near the soil surface. The new parameterisation allows a better estimation of soil deposition, especially during daytime when Rsoil is overestimated using previously published parameterisations. It is an important step towards a better parameterisation of the non-stomatal uptake of ozone.
- Published
- 2011
- Full Text
- View/download PDF
24. Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes, using eddy-covariance flux measurements and modelling
- Author
-
Eric Lamaud, Patrick Stella, Erwan Personne, Pierre Cellier, Benjamin Loubet, M. Irvine, Écologie fonctionnelle et physique de l'environnement (EPHYSE - UR1263), Institut National de la Recherche Agronomique (INRA), Environnement et Grandes Cultures (EGC), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Écologie fonctionnelle et physique de l'environnement (EPHYSE), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
Canopy ,Atmospheric Science ,Ozone ,010504 meteorology & atmospheric sciences ,Eddy covariance ,010501 environmental sciences ,Atmospheric sciences ,01 natural sciences ,RELATION PLANTE-ATMOSPHERE ,chemistry.chemical_compound ,[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry ,Relative humidity ,FLUX ATMOSPHERIQUES ,0105 earth and related environmental sciences ,Hydrology ,Global and Planetary Change ,OZONE ,STOMATAL AND NO STOMATAL UPTAKES ,Humidity ,Conductance ,Forestry ,15. Life on land ,Canopy conductance ,NITROGEN MONOXIDE ,Deposition (aerosol physics) ,chemistry ,SOIL CUTICULAR AND IN-CANOPY AERODYNAMICS RESISTANCES ,Environmental science ,Agronomy and Crop Science ,HUMIDITY - Abstract
Ozone (O-3) flux measurements, obtained by eddy-covariance technique, over a developed maize crop were used to partition the overall O-3 deposition between stomatal and non-stomatal uptakes. Data were analysed using a big-leaf model, which was developed from current knowledge on O-3 deposition. The classical parameters used in dry deposition models (i.e. the in-canopy aerodynamic resistance R-ac, the intrinsic ground resistance R-ig and the cuticular resistance R-cut) were determined for the maize crop from the relationship between the experimental non-stomatal conductance (g(ns)) and the friction velocity (u(*)) in dry conditions (relative humidity (RH) < 60%). g. was determined as the difference between the O-3 canopy conductance (g(c)) and the O-3 stomatal conductance (g(s)), where g(s) was estimated by a method which combines the Penman-Monteith approach and the use of the CO2 assimilation flux. Data analysis revealed that chemical reactions between O-3 and nitrogen monoxide (NO) between the canopy top and the O-3 flux measurement level (z(m)) could induce high values of the observed O-3 conductance, not representative of ozone deposition to the canopy. The actual O-3 canopy conductance was derived from the observed O-3 conductance by including a correction term function of z(m) and the NO concentration at this height, based on the previous studies on O-3 destruction above canopies. The estimations of R-ac, R-ig and R-cut given by the non-linear regression of g(ns) vs u(*) are in agreement with previously published results. Our analysis also confirms previous studies which have shown that the cuticular conductance (g(cut)) increases exponentially with RH, and we propose a new parameterization of g(cut) as a function of RH, based on experimental evidence. Using our model to partition the total O-3 deposition to the canopy, we showed that the relative contributions of stomatal and non-stomatal uptakes varied strongly with the physiological activity of the maize and the meteorological conditions. This point is of major importance for studies dedicated to the impact of ozone on plant physiology, since it emphasizes the necessity to determine accurately the amount of O-3 actually absorbed by the plants via their stomatal activity. (C) 2009 Elsevier B.V. All rights reserved.
- Published
- 2009
- Full Text
- View/download PDF
25. Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability
- Author
-
Denis Loustau, Eric Lamaud, Jean-Marc Bonnefond, M. Irvine, Nathalie Jarosz, Yves Brunet, Écologie fonctionnelle et physique de l'environnement (EPHYSE - UR1263), Institut National de la Recherche Agronomique (INRA), and Écologie fonctionnelle et physique de l'environnement (EPHYSE)
- Subjects
0106 biological sciences ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,conifer forest ,Eddy covariance ,Sensible heat ,01 natural sciences ,Sink (geography) ,Latent heat ,eddy covariance ,H2O ,Ecosystem ,WUE ,Water content ,0105 earth and related environmental sciences ,Hydrology ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Forestry ,15. Life on land ,13. Climate action ,Soil water ,Environmental science ,CO2 ,GPP ,Ecosystem respiration ,Agronomy and Crop Science ,respiration ,010606 plant biology & botany - Abstract
International audience; Carbon dioxide, water vapour and energy fluxes were measured above and within a maritime pine forest during an atypical year with long-lasting reduced soil water availibility. Energy balance closure was adequately good at both levels. As compared with what is usually observed at this site the ecosystem dissipated less energy via latent heat flux and more via sensible heat flux. The understorey canopy was responsible for a variable, significant component of the whole canopy fluxes of water vapour and carbon dioxide. The annual contribution of the understorey was 38% (154 mm) of the overall evaporation (399 mm) and 32% (89 mm) of the overall sensible heat flux (274 mm). The participation of the understorey reached 45% of the overall evaporation and 30% of the daytime overall assimilation during significant soil water deficit periods in summertime. Even during winter, understorey photosynthesis was consistent as it compensated soil and understorey respiration. The ecosystem behaved as a sink of carbon, with a negative annual carbon budget (-57 gC m-2). However, due to high soil water deficit, the annual ecosystem GPP was 40% less than usually observed at this site. This budget resulted from a sink of -131 gC m-2 for the overstorey and a source of +74 gC m-2 for the understorey. Moreover, on an annual basis the overstorey layer contributed to almost two thirds of the ecosystem respiration. Finally, the effect of long-lasting soil water deficit on the maritime pine forest was found more important than the effect of the heat wave and drought of summer 2003.
- Published
- 2008
- Full Text
- View/download PDF
26. Temperature-humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio
- Author
-
M. Irvine, Eric Lamaud, Écologie fonctionnelle et physique de l'environnement (EPHYSE), and Institut National de la Recherche Agronomique (INRA)
- Subjects
Atmospheric Science ,Materials science ,010504 meteorology & atmospheric sciences ,Meteorology ,Planetary boundary layer ,[SDV]Life Sciences [q-bio] ,Evaporation ,Thermodynamics ,Sensible heat ,eddy correlation ,01 natural sciences ,010305 fluids & plasmas ,Latent heat ,0103 physical sciences ,Bowen ratio ,heterogeneous surfaces ,similarity ,0105 earth and related environmental sciences ,scalar transport ,Humidity ,15. Life on land ,13. Climate action ,Heat transfer ,[SDE]Environmental Sciences ,flux varianc emethod ,Water vapor - Abstract
Over the past 15 years atmospheric surface-layer experiments over heterogeneous canopies have shown that the vertical transfer of sensible heat and water vapour exhibit a strong dissimilarity. In particular, the sensible-heat-to-water-vapour transport efficiencies generally exceed unity. One of the main consequences is that evaporation (latent heat flux) computed by the flux-variance method is overestimated, as persistently demonstrated by comparisons with evaporation obtained with the eddy-correlation method. Various authors proposed to take into account the temperature–humidity dissimilarity to extend the applicability of the flux-variance method in order to compute evaporation from non-uniform surfaces. They attempted to connect the sensible-heat-to-water-vapour transport efficiency (λ) to the correlation coefficient between temperature and humidity turbulent fluctuations (R Tq ). This approach was found to be successful over ‘wet’ surfaces for which λ can be approximated by R Tq and ‘dry’ surfaces for which λ can be approximated by 1/R Tq . However, no solution has been proposed until now for intermediate hydrological conditions. We investigated this question using eddy-correlation measurements above and inside a pine forest canopy. For both levels, our data present a strong likeness with previously published results over heterogeneous surfaces. In particular, they confirm that λ is R Tq in wet conditions and 1/R Tq in dry conditions. Moreover, we defined the range of the Bowen ratio (Bo) values for which those two approximations are valid (below 0.1 and greater than 1, respectively) and established a relationship between λ, R Tq and Bo for the intermediate range of Bo. We are confident that this new parameterization will enlarge the applicability of the flux-variance method to all kinds of heterogeneous surfaces in various hydrological conditions
- Published
- 2006
- Full Text
- View/download PDF
27. The CarboEurope regional experiment strategy
- Author
-
Bruno Piguet, Vincenzo Magliulo, G. Facon, Bruno Neininger, L. F. Tolk, R. Ronda, R. Macatangay, María José Sanz, S. Körner, Eric Lamaud, Denis Loustau, A. J. Dolman, Yves Brunet, Michel Ramonet, C. Sarrat, Philippe Ciais, Marco Esposito, Ronald Hutjes, Joël Noilhan, Jan Elbers, Aurore Brut, Pierre Béziat, Nathalie Jarosz, Y. Scholz, Patrick Durand, G. Pérez-Landa, Beniamino Gioli, A. Butet, Franco Miglietta, Eric Ceschia, P. Glademard, Christoph Gerbig, O. Schrems, VU University Amsterdam, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'aérologie (LAERO), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Écologie fonctionnelle et physique de l'environnement (EPHYSE), Institut National de la Recherche Agronomique (INRA), Consiglio Nazionale delle Ricerche (CNR), Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-RAMCES (ICOS-RAMCES), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), MetAir AG, Wageningen University and Research Centre (WUR), University of Bremen, Centro de Estudios Ambientales del Mediterraneo, University of Stuttgart, Centre National d’Etudes Spatiales, Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Vrije Universiteit Amsterdam [Amsterdam] (VU), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Vrije universiteit = Free university of Amsterdam [Amsterdam] (VU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,atmospheric transport ,[SDV]Life Sciences [q-bio] ,Mesoscale meteorology ,Climate change ,hapex-mobilhy ,01 natural sciences ,scale ,greenhouse gases ,BOUNDARY-LAYER BUDGETS ,ATMOSPHERIC TRANSPORT ,HAPEX-MOBILHY ,CO2 ,CARBON ,SURFACE ,MODEL ,SCALE ,FLUX ,EXCHANGE ,Alterra - Centre for Water and Climate ,surface ,Wageningen Environmental Research ,meteorology ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,climatic change ,model ,carbon ,Carbon exchange ,exchange ,carbon dioxide ,frankrijk ,klimaatverandering ,04 agricultural and veterinary sciences ,boundary-layer budgets ,flux ,kooldioxide ,13. Climate action ,CARBOEUROPE ,Greenhouse gas ,Climatology ,meteorologie ,[SDE]Environmental Sciences ,040103 agronomy & agriculture ,co2 ,0401 agriculture, forestry, and fisheries ,Environmental science ,Concentration gradient ,france ,broeikasgassen ,Alterra - Centrum Water en Klimaat - Abstract
Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May¿June 2005, to determine the variability in concentration gradients and fluxes of CO2. The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to concentration sample the CO2 and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns. Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.
- Published
- 2006
- Full Text
- View/download PDF
28. Micrometeorology and flux partitioning between forest understorey and overstorey: a synthesis based on FLUXNET data
- Author
-
Laurent Misson, Baldocchi, D. D., Black, T. A., Yves Brunet, Dorsey, J. R., Falk, M., Goldstein, A. H., Granier, A., Mark Irvine, Nathalie Jarosz, Eric Lamaud, Law, B. E., Bernard Longdoz, Denis Loustau, Mckay, M., Paw, K. T., Vickers, D., Wilson, K. B., ProdInra, Migration, Unité de bioclimatologie, Institut National de la Recherche Agronomique (INRA), Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Unité d'écophysiologie forestière, and Écologie fonctionnelle et physique de l'environnement (EPHYSE)
- Subjects
[SDE.MCG] Environmental Sciences/Global Changes ,[SDE.MCG]Environmental Sciences/Global Changes - Abstract
International audience; Because most forests are multi-specific and vertically heterogeneous, understanding the functioning of such complex ecosystems remains a challenge for quantifying and modeling the fluxes of CO2 between the atmosphere and the vegetation at regional scale. In particular, there is lack of knowledge concerning flux partitioning between overstorey and understorey of forests across different climates and forest types. The main objective of this study is to compare the micrometeorology and the fluxes of CO2, water and sensible heat measured by the eddy-covariance method above and below the main canopy of different forests. The eight study sites are part of the Fluxnet network, and range through various climates and structural types. Across these different biomes, the leaf area index (LAI) of the overstorey is the main factor influencing flux footprint and turbulent mixing below the canopy, and flux partitioning between overstorey and understorey. Wind direction and rates of turbulent mixing generally differ between the two levels for close canopies and low wind speed in the boundary layer. Forcing of understorey turbulent mixing by overstorey conditions is stronger in case of low overstorey LAI, while trunk space flow tends to decouple from that in the boundary layer in closed canopies. Vertical light extinction is positively correlated with overstorey LAI. During the day, efflux of CO2 from the understorey is positively related to soil temperature. Uptake of CO2 by the understorey only occurs if a significant amount of light penetrates through the overstorey and reaches a significant amount of understorey leaf area. During the night, the probability that CO2 emitted from the soil reach the top of the canopy is negatively correlated with overstorey LAI. These results will help developing sound ecosystem modeling schemes for quantifying carbon budgets at regional scales, taking into account the wide variety of mixed and vertically complex forest canopies.
- Published
- 2005
29. Ozone fluxes above and within a pine forest canopy in dry and wet conditions
- Author
-
A. Lopez, Yves Brunet, Eric Lamaud, Aimé Druilhet, Arnaud Carrara, Unité de bioclimatologie, Institut National de la Recherche Agronomique (INRA), Laboratoire d'aérologie (LAERO), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Canopy ,Atmospheric Science ,Stomatal conductance ,Ozone ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,surface wetness ,Eddy covariance ,atmosphere-biosphere exchange ,010501 environmental sciences ,Sensible heat ,Atmospheric sciences ,01 natural sciences ,understorey ,chemistry.chemical_compound ,ozone dry deposition ,eddy covariance ,Relative humidity ,0105 earth and related environmental sciences ,General Environmental Science ,Hydrology ,15. Life on land ,trace gas flux ,Deposition (aerosol physics) ,chemistry ,13. Climate action ,Environmental science ,Dew - Abstract
International audience; The physiological and physical processes controlling ozone dry deposition to vegetated surfaces are still not fully understood. In particular, the role of the understorey and the possible action of dew on ozone deposition have not received much attention so far. This paper presents the results of an experiment aimed at quantifying ozone dry deposition to a maritime pine forest in the “Les Landes” area in France. Ozone deposition fluxes were measured using the eddy-covariance technique above and within the canopy. We investigate the factors acting on ozone deposition in both dew-wetted and dry conditions. The values obtained for the ozone deposition velocity are well in the range of previously published measurements over coniferous forests. For the present forest, ozone uptake by the understorey is a significant portion of ozone deposition to the whole pine stand. The understorey contributes more to the overall ozone flux than to the other measured scalar fluxes (sensible heat and water vapour). During dry nights the surface conductance for ozone and the friction velocity are strongly correlated, showing that ozone deposition is largely controlled by dynamical processes. During the day, in dry conditions, the canopy stomatal conductance is the major parameter controlling ozone deposition. However, in winter, when the stomatal conductance is low, the influence of dynamical processes persists during day-time. It is also found that surface wetness associated with dew significantly enhances ozone deposition, during the night as well as in the morning.
- Published
- 2002
- Full Text
- View/download PDF
30. Validation of eddy flux measurements above the understorey of a pine forest
- Author
-
Yves Brunet, Jérôme Ogée, Eric Lamaud, Paul Berbigier, Unité de bioclimatologie, and Institut National de la Recherche Agronomique (INRA)
- Subjects
Canopy ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,0207 environmental engineering ,Energy balance ,Eddy covariance ,02 engineering and technology ,Atmospheric sciences ,Residual ,01 natural sciences ,understorey ,Flux (metallurgy) ,020701 environmental engineering ,0105 earth and related environmental sciences ,Hydrology ,validation ,Global and Planetary Change ,Tree canopy ,Turbulence ,Forestry ,eddy flux ,15. Life on land ,energy balance ,forest canopy ,Closure (computer programming) ,Environmental science ,Agronomy and Crop Science - Abstract
Measurements of turbulent exchange in the understorey of a forest canopy are necessary to understand and model both the functioning of the lower stratum and its contribution to turbulent exchange at the whole canopy scale. Eddy covariance measurements of eddy fluxes just above the floor of a forest canopy must be thoroughly validated, given the particular conditions prevailing there. Our objective is two-fold: (i) check the overall quality of such eddy flux measurements through the analysis of the understorey energy balance closure and (ii) define quality criteria for each half-hourly sample, based on the residual term of the energy balance. A subset of the EUROFLUX data base, collected within a pine forest canopy in south-west France, was used for this purpose. During this experiment, all heat storage terms were carefully measured, which allowed the closure of the understorey energy balance to be rigorously tested. As in most experiments storage term measurements are not available, we also developed a method to estimate them, in order to apply the above-mentioned data selection method. The energy balance closure was found to be quite satisfactory (the slope of the sum of eddy fluxes and storage terms versus transmitted net radiation is 0.99, the intercept is less than 1 W m 2 , r 2 is 0.94, there is no deviation from a linear trend). The data selection procedure allows a fair description of the daily and day-to-day variation of turbulent fluxes while rejecting the most dubious data, whether experimental or estimated storage terms are used. This analysis proves the validity of eddy flux measurements in the lower part of the forest and offers tools for flux data selection, depending on the type of studies such data are intended for. © 2001 Elsevier Science B.V. All rights reserved.
- Published
- 2001
- Full Text
- View/download PDF
31. Radiation and water use efficiencies of two coniferous forest canopies
- Author
-
Eric Lamaud, Yves Brunet, Paul Berbigier, Unité de bioclimatologie, and Institut National de la Recherche Agronomique (INRA)
- Subjects
0106 biological sciences ,Hydrology ,Canopy ,Tree canopy ,010504 meteorology & atmospheric sciences ,[SDV]Life Sciences [q-bio] ,Flux ,PIN MARITIME ,SUD OUEST DE LA FRANCE ,COUVERTURE VEGETALE ,Understory ,15. Life on land ,Radiation ,Photosynthesis ,Atmospheric sciences ,01 natural sciences ,Linear relation ,General Earth and Planetary Sciences ,Environmental science ,Water use ,010606 plant biology & botany ,0105 earth and related environmental sciences - Abstract
International audience; Two experiments were performed in a confierous forest (maritime pine) in the southwest of France, one in 1994 and the other in 1995. Two sites were chosen, differing by age, height and structure of the trees, as well as the nature of the understorey. In both cases measurements of turbulent fluxes were made at two levels above and within the forest canopy, using sonic anemometers and open-path infrared CO2-H2O analysers. The flux differences derived from the two measurement levels allowed the Radiation and Water Use Efficiencies (RUE and WUE, respectively) to be evaluated for both canopy crowns. The results are based on the analysis of about ten days from each experiment. For both campaigns RUE is significantly larger during cloudy conditions when the fraction of diffuse radiation () increases. An empirical linear relation between RUE and is established for each site, with a smaller intercept and a larger slope for the older forest. In clear conditions (), RUE is about 30 % lower for this forest. Tree photosynthesis, estimated as the net CO2 flux of the foliated layer Fc, appears poorly correlated (r2 < 0.4) with transpiration (net water vapour flux E). This is shown to result from strong variations in the atmospheric saturation deficit D during both campaigns. At both sites WUE turns out to be a hyperbolic function of D (). The coefficient k is 50 % larger for the younger forest. This is in agreement with the values obtained for RUE, and indicates that photosynthetic rates decrease with the age of the trees.
- Published
- 1996
- Full Text
- View/download PDF
32. The Landes experiment - biosphere-atmosphere exchanges of ozone and aerosol-particles above a pine forest
- Author
-
A. Labatut, A. Lopez, Yves Brunet, Jacques Fontan, Eric Lamaud, Aimé Druilhet, Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Unité de bioclimatologie, Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Eddy covariance ,Soil Science ,momentum ,010501 environmental sciences ,Aquatic Science ,flux measurements ,Oceanography ,Atmospheric sciences ,01 natural sciences ,Atmosphere ,Geochemistry and Petrology ,dry deposition ,Earth and Planetary Sciences (miscellaneous) ,Atmospheric instability ,gases ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,Ecology ,Paleontology ,Forestry ,area ,Aerosol ,Boundary layer ,Geophysics ,Atmosphere of Earth ,Deposition (aerosol physics) ,13. Climate action ,Space and Planetary Science ,Atmospheric chemistry ,heat - Abstract
International audience; An experiment was conducted in a pine forest in southwestern France during late spring 1992. The aim was fourfold: testing various flux measurement methodologies for chemically reactive species; quantifying the exchanges between the forest and the atmosphere; analyzing the involved mechanisms; and studying their influence on the chemistry of the surface boundary layer. This paper presents preliminary results obtained on the dry deposition of ozone and submicronic aerosol particles, measured using eddy correlation. Once properly normalized, the spectra and cospectra of all scalar species exhibit universal shapes over the whole frequency range. However, evidence is provided that under some meteorological conditions the time series of turbulent variables can be affected by nonstationary trends, or low-frequency fluctuations that do not contribute to vertical transfer but whose presence can induce large errors in the calculated fluxes. The time variations of the deposition velocities for ozone and aerosol particles are then presented over 2 days with different meteorological conditions. The deposition velocities are shown to be consistent with other reported studies. Dry deposition of ozone appears to be mainly governed by the stomatal resistance, whereas friction velocity and atmospheric instability in the boundary layer seem to govern the deposition of aerosol particles.
- Published
- 1994
- Full Text
- View/download PDF
33. LANDEX-Episode zero : First observations of secondary organic aerosol formation from the landes forest (France)
- Author
-
Julien Kammer, M Flaud, P., Jean-Marc Bonnefond, Didier Garrigou, Perraudin, E., Eric Lamaud, Eric VILLENAVE, ProdInra, Migration, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
34. Érosion éolienne en présence de végétation éparse
- Author
-
Fernandes, Royston, Interactions Sol Plante Atmosphère (ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), ANR-15-CE02-0013 et INRA, Universite de Bordeaux, INRA Bordeaux-Aquitaine, 71 avenue Édouard Bourlaux, 33882 Villenave d'Ornon, Dr Sylvain Dupont, Dr Eric Lamaud, WIND-O-V, Interactions Sol Plante Atmosphère (UMR ISPA), Université des Sciences et Technologies (Bordeaux 1), Sylvain Dupont, and Eric Lamaud
- Subjects
[PHYS]Physics [physics] ,sandblasting ,Saltation ,[SDV]Life Sciences [q-bio] ,dust dispersion ,ABL ,dust emission ,Eddy Covariance measurement ,Field experiment ,Turbulence ,[STAT]Statistics [stat] ,Wind erosion ,[SDE]Environmental Sciences ,semi-arid erosion ,these ,LES simulation - Abstract
Atmospheric mineral dust resulting from aeolian soil erosion affects the Earth system. Their size-distribution (PSD) plays a key role on atmospheric radiation balance, cloud formation, atmospheric chemistry, and the productivity of terrestrial and marine ecosystems. However, climate models still fail to reproduce accurately the suspended dust PSD. This is explained by the poor representation of the dust emission mechanisms and the associated surface wind speed in these large-scale models. This is particularly true in the presence of surface roughnesses such as vegetation in semiarid regions. This thesis aims at improving the understanding of dust emission in semi-arid environments, characterized by heterogeneous surfaces with sparse seasonal vegetation. To this end, a combination of numerical and field experiments was employed, with investigations progressing from a bare erodible soil to surfaces with sparse vegetation.A review of the existing dust emission schemes showed ambiguities in the parametrization of the processes influencing the emitted dust. A sensitivity analysis, using a 1D dust dispersal model, demonstrated (i) the importance of surface dust PSD and inter-particle cohesive bondparametrization on the emitted dust PSD, and (ii) the importance of the deposition process on the net dust flux PSD. Based on this analysis, a new emission scheme was incorporated into a 3D erosion model, coupled with a Large Eddy Simulation (LES) airflow model, and evaluated first on a bare surface against the WIND-O-V’s 2017 field experiment in Tunisia. The model was able to reproduce the near-surface turbulent transport dissimilarity between dust and momentum observed during the experiment. This means that momentum and dust are not always transported by the same turbulent eddies. The model demonstrated that the main cause of this dissimilarity is the dust emission intermittency, which varies as a function of wind intensity and fetch. The role of sparse vegetation on the net emitted dust flux was then explored using the WINDO-V’s 2018 experiment, conducted at the same site as the 2017 experiment. The resulting field measurements were used to evaluate the 3D erosion model, including vegetation characteristics. A comparison between the 2017 and 2018 experiments confirmed that sparse vegetation reduces dust emission by increasing the erosion threshold friction velocity, which depends on vegetation characteristics and wind direction relative to the vegetation arrangement. During the 2018 experiment, the net emitted dust flux PSD varied continuously, unlike the 2017 experiment, with a progressive impoverishment in coarse particles (1.50 mm). This impoverishment was found independent of the vegetation, and resulted from the depletion of coarse particles at the surface due to longer emission periods in 2018 without surface tillage or precipitation. This non-influence of vegetation on the dust flux PSD was validated by the similarityof the dust flux PSD at the beginning of the 2018 experiment, when the vegetation was at its maximum height, with the one of the 2017 experiment without vegetation. It was further confirmed by the simulations that demonstrated (i) negligible re-deposition of coarse particles on to vegetation during emission events, and (ii) negligible effect of the turbulence induced by the vegetation on the PSD of the net emitted dust flux. Our 3D erosion model appears as a promising tool for characterizing dust emissions over heterogeneous surfaces typical of semi-arid regions and for deriving dust emission schemes for climate models as a function of surface roughness properties.; La poussière minérale atmosphérique résultant de l’érosion éolienne des sols affecte le système terrestre. Leur distribution en taille (PSD) joue un rôle clé dans le bilan radiatif et la chimie atmosphérique, la formation des nuages et la productivité des écosystèmes terrestres et marins. Néanmoins les modèles climatiques peinent à reproduire précisément la PSD de la poussière émise. Ceci vient de la mauvaise représentation dans ces modèles à grandes echelles des mécanismes d’émission de poussière et des vitesses de vent de surface associées. C’est particulièrement vrai en présence d’éléments de rugosité de surface comme la végétation en région semi-aride. Cette thèse vise à améliorer la compréhension de l’émission de poussière en environnement semi-aride, caractérisé par des surfaces hétérogènes liées à la végétation saisonnière éparse. A cette fin, une combinaison d’expériences numériques et de terrain a été employée, en partant d’un sol nu érodable, puis de surfaces couvertes en végétation éparse.Une revue des schémas existants a montré des ambiguïtés dans la paramétrisation des processus influençant l’émission de poussière. Une analyse de sensibilité utilisant un modèle 1D de dispersion de poussière a démontré (i) l’importance de la PSD de la poussière à la surface etde la paramétrisation de la cohésion entre les particules sur la PSD de la poussière émise, et (ii) l’importance du processus de dépôt sur la PSD du flux net de poussière. A partir de cette analyse, un nouveau schéma d’émission a été incorporé à un modèle 3D d’érosion, couplé à unmodèle turbulent Large Eddy Simulation (LES), et évalué sur une surface nue sur la base de l’expérimentation WIND-O-V 2017 en Tunisie. Le modèle a été capable de reproduire la dissimilarité entre les transports turbulents de la poussière et de la quantité de mouvement dans la couche de surface, telle que observée durant l’expérience. Cela signifie que la poussière et la quantité de mouvement ne sont pas toujours transportées par les mêmes tourbillons. Le modèle a démontré que la cause principale de cette dissimilarité est l’intermittence de l’émission des poussières, qui varie avec l’intensité du vent et le fetch.L’impact de la végétation éparse sur le flux net de poussière émis a ensuite été étudié sur la base de l’expérimentation WIND-O-V 2018, conduite sur le même site que celle de 2017. Les mesures ont été utilisées pour évaluer le modèle 3D d’érosion incluant les caractéristiques de la végétation. La comparaison entre les expérimentations 2017 et 2018 a confirmé que la végétation éparse réduit l’émission de poussière en augmentant la vitesse de frottement seuil de l’érosion, qui dépend des caractéristiques de la végétation et de la direction du vent par rapport à l’arrangement de la végétation. Nous avons observé que la PSD du flux net de poussière émis à varié au cours de l’expérimentation 2018, contrairement à 2017, avec un appauvrissement progressif en grosses particules (1.50 mm). Il s’est avéré que cet appauvrissement n’était pas lié à la présence de végétation, mais à l’épuisement du sol en grosses particules en raison de périodes d’émission plus longues en 2018 sans travail de la surface ou précipitations.Cette absence d’influence de la végétation sur la PSD du flux de poussière a été validée par la similarité entre la PSD du flux de poussière au début de l’expérimentation 2018, quand la végétation était à sa hauteur maximum, et celle de 2017 sans végétation. Elle a été aussi confirmée par les simulations qui ont montré (i) une re-déposition négligeable des grosses particules sur la végétation durant les émissions, et (ii) un effet négligeable de la turbulence induite par la végétation sur la PSD du flux net de poussière émis. Notre modèle 3D d’érosion apparaît comme un outil prometteur pour caractériser les émissions de poussière sur des surfaces hétérogènes représentatives des régions semi-arides et pour établir des schémas d’émission de poussière pour les modèles climatiques en fonction des propriétés de rugosité de la surface.
- Published
- 2019
35. Erosion éolienne en présence de végétation
- Author
-
Fernandes, Royston, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Université de Bordeaux, Sylvain Dupont, and Eric Lamaud
- Subjects
Turbulence ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Vegetation ,Saltation ,Dust Flux ,Wind erosion ,Large-Eddy Simulation ,Erosion éolienne ,Végétation ,Flux de poussière - Abstract
Atmospheric mineral dust resulting from aeolian soil erosion affects the Earth system. Their size-distribution (PSD) plays a key role on atmospheric radiation balance, cloud formation, atmospheric chemistry, and the productivity of terrestrial and marine ecosystems. However, climate models still fail to reproduce accurately the suspended dust PSD. This is explained by the poor representation of the dust emission mechanisms and the associated surface wind speed in these large-scale models. This is particularly true in the presence of surface roughnesses such as vegetation in semiarid regions. This thesis aims at improving the understanding of dust emission in semi-arid environments, characterized by heterogeneous surfaces with sparse seasonal vegetation. To this end, a combination of numerical and field experiments was employed, with investigations progressing from a bare erodible soil to surfaces with sparse vegetation.A review of the existing dust emission schemes showed ambiguities in the parametrization of the processes influencing the emitted dust. A sensitivity analysis, using a 1D dust dispersal model, demonstrated (i) the importance of surface dust PSD and inter-particle cohesive bond parametrization on the emitted dust PSD, and (ii) the importance of the deposition process on the net dust flux PSD. Based on this analysis, a new emission scheme was incorporated into a 3D erosion model, coupled with a Large Eddy Simulation (LES) airflow model, and evaluated first on a bare surface against the WIND-O-V’s 2017 field experiment in Tunisia. The model was able to reproduce the near-surface turbulent transport dissimilarity between dust and momentum observed during the experiment. This means that momentum and dust are not always transported by the same turbulent eddies. The model demonstrated that the main cause of this dissimilarity is the dust emission intermittency, which varies as a function of wind intensity and fetch.The role of sparse vegetation on the net emitted dust flux was then explored using the WIND-O-V’s 2018 experiment, conducted at the same site as the 2017 experiment. The resulting field measurements were used to evaluate the 3D erosion model, including vegetation characteristics. A comparison between the 2017 and 2018 experiments confirmed that sparse vegetation reduces dust emission by increasing the erosion threshold friction velocity, which depends on vegetation characteristics and wind direction relative to the vegetation arrangement. During the 2018 experiment, the net emitted dust flux PSD varied continuously, unlike the 2017 experiment, with a progressive impoverishment in coarse particles (1.50 μm). This impoverishment was found independent of the vegetation, and resulted from the depletion of coarse particles at the surface due to longer emission periods in 2018 without surface tillage or precipitation. This non-influence of vegetation on the dust flux PSD was validated by the similarity of the dust flux PSD at the beginning of the 2018 experiment, when the vegetation was at its maximum height, with the one of the 2017 experiment without vegetation. It was further confirmed by the simulations that demonstrated (i) negligible re-deposition of coarse particles on to vegetation during emission events, and (ii) negligible effect of the turbulence induced by the vegetation on the PSD of the net emitted dust flux.Our 3D erosion model appears as a promising tool for characterizing dust emissions over heterogeneous surfaces typical of semi-arid regions and for deriving dust emission schemes for climate models as a function of surface roughness properties.; La poussière minérale atmosphérique résultant de l’érosion éolienne des sols affecte le système terrestre. La distribution en taille (PSD) de cette poussière joue un rôle clé dans le bilan radiatif et la chimie atmosphérique, la formation des nuages et la productivité des écosystèmes terrestres et marins. Néanmoins les modèles climatiques peinent à reproduire précisément la PSD de la poussière émise. Ceci vient de la représentation imparfaite des mécanismes d’émission de poussières et des vitesses de vent de surface associées. C’est particulièrement vrai en présence d’éléments de rugosité de surface comme la végétation en régions semi-arides. Cette thèse vise à améliorer la compréhension de l’émission de poussière en environnements semi-arides, caractérisé par des surfaces hétérogènes liées à la végétation saisonnière éparse. A cette fin, une combinaison d’expériences numériques et de terrain a été employée, en partant d’un sol nu érodable à des surfaces couvertes de végétation éparse.Une revue des schémas existants a montré des ambiguïtés dans la paramétrisation des processus influençant l’émission de poussières. Une analyse de sensibilité utilisant un modèle 1D de dispersion de poussière a démontré l’importance (i) de la PSD de la poussière à la surface et de la paramétrisation de la cohésion interparticules qui affectent la PSD de la poussière émise, et (ii) des processus de dépôt qui influencent la PSD du flux net de poussière dans la couche de surface atmosphérique. A partir de cette analyse, un nouveau schéma d’émission a été incorporé à un modèle 3D d’érosion, couplé à un modèle turbulent Large Eddy Simulation (LES), et évalué d’abord sur une surface nue sur la base de l’expérimentation WIND-O-V 2017 en Tunisie. Le modèle a ainsi été capable de reproduire la dissimilarité entre les transports turbulents de poussière et de quantité de mouvement dans la couche de surface, observée durant l’expérience. Cela signifie que poussière et quantité de mouvement ne sont pas toujours transportées par les mêmes tourbillons. Le modèle a démontré que la cause principale de cette dissimilarité est l’intermittence de l’émission de poussières, qui varie avec l’intensité du vent et le fetch.L’impact de la végétation éparse sur le flux net de poussière émis a ensuite été étudié sur la base de l’expérimentation WIND-O-V 2018, conduite sur le même site que celle de 2017. Les mesures ont été utilisées pour évaluer le modèle 3D d’érosion incluant les caractéristiques de la végétation. La comparaison entre les expérimentations 2017 et 2018 a confirmé que la végétation éparse réduit l’émission en augmentant la vitesse de frottement seuil de l’érosion, qui dépend des caractéristiques de la végétation et de la direction du vent. Au cours de l’expérimentation 2018, nous avons observé que la PSD du flux net de poussière émis variait, contrairement à 2017, avec un appauvrissement progressif en grosses particules (1.50 µm). Il s’est avéré que cet appauvrissement n’était pas lié à la présence de végétation, mais à l'épuisement du sol en grosses particules en raison de périodes d’émission plus longues sans modification de la surface, comparé à 2017. Cette absence d’influence de la végétation a été validée par la similarité entre la PSD du flux de poussière au début de l’expérimentation 2018, quand la végétation était à sa hauteur maximum, et celle de 2017 sans végétation. Et elle a été confirmée par nos simulations qui montrent (i) une re-déposition négligeable des grosses particules sur la végétation durant les émissions, et (ii) un effet négligeable de la turbulence induite par la végétation sur la PSD du flux net de poussière émis.Notre modèle 3D d’érosion apparaît comme un outil prometteur pour caractériser les émissions de poussière sur des surfaces hétérogènes représentatives des régions semi-arides et pour établir des schémas d’émission de poussières pour les modèles climatiques en fonction des propriétés de rugosité de la surface.
- Published
- 2019
36. Érosion éolienne en présence de végétation éparse
- Author
-
Fernandes, Royston, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), ANR-15-CE02-0013 et INRA, Universite de Bordeaux, INRA Bordeaux-Aquitaine, 71 avenue Édouard Bourlaux, 33882 Villenave d'Ornon, Dr Sylvain Dupont, Dr Eric Lamaud, WIND-O-V, Interactions Sol Plante Atmosphère (ISPA), and Royston, Fernandes
- Subjects
[SDE] Environmental Sciences ,[PHYS]Physics [physics] ,sandblasting ,Saltation ,dust dispersion ,ABL ,dust emission ,[PHYS] Physics [physics] ,[STAT] Statistics [stat] ,Eddy Covariance measurement ,Field experiment ,Turbulence ,[STAT]Statistics [stat] ,Wind erosion ,[SDE]Environmental Sciences ,semi-arid erosion ,LES simulation - Abstract
Atmospheric mineral dust resulting from aeolian soil erosion affects the Earth system. Their size-distribution (PSD) plays a key role on atmospheric radiation balance, cloud formation, atmospheric chemistry, and the productivity of terrestrial and marine ecosystems. However, climate models still fail to reproduce accurately the suspended dust PSD. This is explained by the poor representation of the dust emission mechanisms and the associated surface wind speed in these large-scale models. This is particularly true in the presence of surface roughnesses such as vegetation in semiarid regions. This thesis aims at improving the understanding of dust emission in semi-arid environments, characterized by heterogeneous surfaces with sparse seasonal vegetation. To this end, a combination of numerical and field experiments was employed, with investigations progressing from a bare erodible soil to surfaces with sparse vegetation.A review of the existing dust emission schemes showed ambiguities in the parametrization of the processes influencing the emitted dust. A sensitivity analysis, using a 1D dust dispersal model, demonstrated (i) the importance of surface dust PSD and inter-particle cohesive bondparametrization on the emitted dust PSD, and (ii) the importance of the deposition process on the net dust flux PSD. Based on this analysis, a new emission scheme was incorporated into a 3D erosion model, coupled with a Large Eddy Simulation (LES) airflow model, and evaluated first on a bare surface against the WIND-O-V’s 2017 field experiment in Tunisia. The model was able to reproduce the near-surface turbulent transport dissimilarity between dust and momentum observed during the experiment. This means that momentum and dust are not always transported by the same turbulent eddies. The model demonstrated that the main cause of this dissimilarity is the dust emission intermittency, which varies as a function of wind intensity and fetch. The role of sparse vegetation on the net emitted dust flux was then explored using the WINDO-V’s 2018 experiment, conducted at the same site as the 2017 experiment. The resulting field measurements were used to evaluate the 3D erosion model, including vegetation characteristics. A comparison between the 2017 and 2018 experiments confirmed that sparse vegetation reduces dust emission by increasing the erosion threshold friction velocity, which depends on vegetation characteristics and wind direction relative to the vegetation arrangement. During the 2018 experiment, the net emitted dust flux PSD varied continuously, unlike the 2017 experiment, with a progressive impoverishment in coarse particles (1.50 mm). This impoverishment was found independent of the vegetation, and resulted from the depletion of coarse particles at the surface due to longer emission periods in 2018 without surface tillage or precipitation. This non-influence of vegetation on the dust flux PSD was validated by the similarityof the dust flux PSD at the beginning of the 2018 experiment, when the vegetation was at its maximum height, with the one of the 2017 experiment without vegetation. It was further confirmed by the simulations that demonstrated (i) negligible re-deposition of coarse particles on to vegetation during emission events, and (ii) negligible effect of the turbulence induced by the vegetation on the PSD of the net emitted dust flux. Our 3D erosion model appears as a promising tool for characterizing dust emissions over heterogeneous surfaces typical of semi-arid regions and for deriving dust emission schemes for climate models as a function of surface roughness properties., La poussière minérale atmosphérique résultant de l’érosion éolienne des sols affecte le système terrestre. Leur distribution en taille (PSD) joue un rôle clé dans le bilan radiatif et la chimie atmosphérique, la formation des nuages et la productivité des écosystèmes terrestres et marins. Néanmoins les modèles climatiques peinent à reproduire précisément la PSD de la poussière émise. Ceci vient de la mauvaise représentation dans ces modèles à grandes echelles des mécanismes d’émission de poussière et des vitesses de vent de surface associées. C’est particulièrement vrai en présence d’éléments de rugosité de surface comme la végétation en région semi-aride. Cette thèse vise à améliorer la compréhension de l’émission de poussière en environnement semi-aride, caractérisé par des surfaces hétérogènes liées à la végétation saisonnière éparse. A cette fin, une combinaison d’expériences numériques et de terrain a été employée, en partant d’un sol nu érodable, puis de surfaces couvertes en végétation éparse.Une revue des schémas existants a montré des ambiguïtés dans la paramétrisation des processus influençant l’émission de poussière. Une analyse de sensibilité utilisant un modèle 1D de dispersion de poussière a démontré (i) l’importance de la PSD de la poussière à la surface etde la paramétrisation de la cohésion entre les particules sur la PSD de la poussière émise, et (ii) l’importance du processus de dépôt sur la PSD du flux net de poussière. A partir de cette analyse, un nouveau schéma d’émission a été incorporé à un modèle 3D d’érosion, couplé à unmodèle turbulent Large Eddy Simulation (LES), et évalué sur une surface nue sur la base de l’expérimentation WIND-O-V 2017 en Tunisie. Le modèle a été capable de reproduire la dissimilarité entre les transports turbulents de la poussière et de la quantité de mouvement dans la couche de surface, telle que observée durant l’expérience. Cela signifie que la poussière et la quantité de mouvement ne sont pas toujours transportées par les mêmes tourbillons. Le modèle a démontré que la cause principale de cette dissimilarité est l’intermittence de l’émission des poussières, qui varie avec l’intensité du vent et le fetch.L’impact de la végétation éparse sur le flux net de poussière émis a ensuite été étudié sur la base de l’expérimentation WIND-O-V 2018, conduite sur le même site que celle de 2017. Les mesures ont été utilisées pour évaluer le modèle 3D d’érosion incluant les caractéristiques de la végétation. La comparaison entre les expérimentations 2017 et 2018 a confirmé que la végétation éparse réduit l’émission de poussière en augmentant la vitesse de frottement seuil de l’érosion, qui dépend des caractéristiques de la végétation et de la direction du vent par rapport à l’arrangement de la végétation. Nous avons observé que la PSD du flux net de poussière émis à varié au cours de l’expérimentation 2018, contrairement à 2017, avec un appauvrissement progressif en grosses particules (1.50 mm). Il s’est avéré que cet appauvrissement n’était pas lié à la présence de végétation, mais à l’épuisement du sol en grosses particules en raison de périodes d’émission plus longues en 2018 sans travail de la surface ou précipitations.Cette absence d’influence de la végétation sur la PSD du flux de poussière a été validée par la similarité entre la PSD du flux de poussière au début de l’expérimentation 2018, quand la végétation était à sa hauteur maximum, et celle de 2017 sans végétation. Elle a été aussi confirmée par les simulations qui ont montré (i) une re-déposition négligeable des grosses particules sur la végétation durant les émissions, et (ii) un effet négligeable de la turbulence induite par la végétation sur la PSD du flux net de poussière émis. Notre modèle 3D d’érosion apparaît comme un outil prometteur pour caractériser les émissions de poussière sur des surfaces hétérogènes représentatives des régions semi-arides et pour établir des schémas d’émission de poussière pour les modèles climatiques en fonction des propriétés de rugosité de la surface.
- Published
- 2019
37. Wind erosion in presence of vegetation
- Author
-
Fernandes, Royston, STAR, ABES, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Université de Bordeaux, Sylvain Dupont, and Eric Lamaud
- Subjects
[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Turbulence ,[SDV.EE] Life Sciences [q-bio]/Ecology, environment ,Vegetation ,Saltation ,Dust Flux ,Wind erosion ,Large-Eddy Simulation ,Erosion éolienne ,Végétation ,Flux de poussière - Abstract
Atmospheric mineral dust resulting from aeolian soil erosion affects the Earth system. Their size-distribution (PSD) plays a key role on atmospheric radiation balance, cloud formation, atmospheric chemistry, and the productivity of terrestrial and marine ecosystems. However, climate models still fail to reproduce accurately the suspended dust PSD. This is explained by the poor representation of the dust emission mechanisms and the associated surface wind speed in these large-scale models. This is particularly true in the presence of surface roughnesses such as vegetation in semiarid regions. This thesis aims at improving the understanding of dust emission in semi-arid environments, characterized by heterogeneous surfaces with sparse seasonal vegetation. To this end, a combination of numerical and field experiments was employed, with investigations progressing from a bare erodible soil to surfaces with sparse vegetation.A review of the existing dust emission schemes showed ambiguities in the parametrization of the processes influencing the emitted dust. A sensitivity analysis, using a 1D dust dispersal model, demonstrated (i) the importance of surface dust PSD and inter-particle cohesive bond parametrization on the emitted dust PSD, and (ii) the importance of the deposition process on the net dust flux PSD. Based on this analysis, a new emission scheme was incorporated into a 3D erosion model, coupled with a Large Eddy Simulation (LES) airflow model, and evaluated first on a bare surface against the WIND-O-V’s 2017 field experiment in Tunisia. The model was able to reproduce the near-surface turbulent transport dissimilarity between dust and momentum observed during the experiment. This means that momentum and dust are not always transported by the same turbulent eddies. The model demonstrated that the main cause of this dissimilarity is the dust emission intermittency, which varies as a function of wind intensity and fetch.The role of sparse vegetation on the net emitted dust flux was then explored using the WIND-O-V’s 2018 experiment, conducted at the same site as the 2017 experiment. The resulting field measurements were used to evaluate the 3D erosion model, including vegetation characteristics. A comparison between the 2017 and 2018 experiments confirmed that sparse vegetation reduces dust emission by increasing the erosion threshold friction velocity, which depends on vegetation characteristics and wind direction relative to the vegetation arrangement. During the 2018 experiment, the net emitted dust flux PSD varied continuously, unlike the 2017 experiment, with a progressive impoverishment in coarse particles (1.50 μm). This impoverishment was found independent of the vegetation, and resulted from the depletion of coarse particles at the surface due to longer emission periods in 2018 without surface tillage or precipitation. This non-influence of vegetation on the dust flux PSD was validated by the similarity of the dust flux PSD at the beginning of the 2018 experiment, when the vegetation was at its maximum height, with the one of the 2017 experiment without vegetation. It was further confirmed by the simulations that demonstrated (i) negligible re-deposition of coarse particles on to vegetation during emission events, and (ii) negligible effect of the turbulence induced by the vegetation on the PSD of the net emitted dust flux.Our 3D erosion model appears as a promising tool for characterizing dust emissions over heterogeneous surfaces typical of semi-arid regions and for deriving dust emission schemes for climate models as a function of surface roughness properties., La poussière minérale atmosphérique résultant de l’érosion éolienne des sols affecte le système terrestre. La distribution en taille (PSD) de cette poussière joue un rôle clé dans le bilan radiatif et la chimie atmosphérique, la formation des nuages et la productivité des écosystèmes terrestres et marins. Néanmoins les modèles climatiques peinent à reproduire précisément la PSD de la poussière émise. Ceci vient de la représentation imparfaite des mécanismes d’émission de poussières et des vitesses de vent de surface associées. C’est particulièrement vrai en présence d’éléments de rugosité de surface comme la végétation en régions semi-arides. Cette thèse vise à améliorer la compréhension de l’émission de poussière en environnements semi-arides, caractérisé par des surfaces hétérogènes liées à la végétation saisonnière éparse. A cette fin, une combinaison d’expériences numériques et de terrain a été employée, en partant d’un sol nu érodable à des surfaces couvertes de végétation éparse.Une revue des schémas existants a montré des ambiguïtés dans la paramétrisation des processus influençant l’émission de poussières. Une analyse de sensibilité utilisant un modèle 1D de dispersion de poussière a démontré l’importance (i) de la PSD de la poussière à la surface et de la paramétrisation de la cohésion interparticules qui affectent la PSD de la poussière émise, et (ii) des processus de dépôt qui influencent la PSD du flux net de poussière dans la couche de surface atmosphérique. A partir de cette analyse, un nouveau schéma d’émission a été incorporé à un modèle 3D d’érosion, couplé à un modèle turbulent Large Eddy Simulation (LES), et évalué d’abord sur une surface nue sur la base de l’expérimentation WIND-O-V 2017 en Tunisie. Le modèle a ainsi été capable de reproduire la dissimilarité entre les transports turbulents de poussière et de quantité de mouvement dans la couche de surface, observée durant l’expérience. Cela signifie que poussière et quantité de mouvement ne sont pas toujours transportées par les mêmes tourbillons. Le modèle a démontré que la cause principale de cette dissimilarité est l’intermittence de l’émission de poussières, qui varie avec l’intensité du vent et le fetch.L’impact de la végétation éparse sur le flux net de poussière émis a ensuite été étudié sur la base de l’expérimentation WIND-O-V 2018, conduite sur le même site que celle de 2017. Les mesures ont été utilisées pour évaluer le modèle 3D d’érosion incluant les caractéristiques de la végétation. La comparaison entre les expérimentations 2017 et 2018 a confirmé que la végétation éparse réduit l’émission en augmentant la vitesse de frottement seuil de l’érosion, qui dépend des caractéristiques de la végétation et de la direction du vent. Au cours de l’expérimentation 2018, nous avons observé que la PSD du flux net de poussière émis variait, contrairement à 2017, avec un appauvrissement progressif en grosses particules (1.50 µm). Il s’est avéré que cet appauvrissement n’était pas lié à la présence de végétation, mais à l'épuisement du sol en grosses particules en raison de périodes d’émission plus longues sans modification de la surface, comparé à 2017. Cette absence d’influence de la végétation a été validée par la similarité entre la PSD du flux de poussière au début de l’expérimentation 2018, quand la végétation était à sa hauteur maximum, et celle de 2017 sans végétation. Et elle a été confirmée par nos simulations qui montrent (i) une re-déposition négligeable des grosses particules sur la végétation durant les émissions, et (ii) un effet négligeable de la turbulence induite par la végétation sur la PSD du flux net de poussière émis.Notre modèle 3D d’érosion apparaît comme un outil prometteur pour caractériser les émissions de poussière sur des surfaces hétérogènes représentatives des régions semi-arides et pour établir des schémas d’émission de poussières pour les modèles climatiques en fonction des propriétés de rugosité de la surface.
- Published
- 2019
38. LANDEX : study of Secondary Organic Aerosols (SOAs) generated by the Landes forest
- Author
-
Kammer, Julien, Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Université de Bordeaux, Eric Villenave, Émilie Perraudin, Eric Lamaud, Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Interactions Sol Plante Atmosphère (ISPA), Emilie Perraudin, Villenave, Eric, Perraudin, Emilie, Lamaud, Eric, Coll, Isabelle, Locoge, Nadine, Loubet, Benjamin, Sellegri, Karine, Poisson, Nathalie, Staudt, Michael, Université des Sciences et Technologies (Bordeaux 1), and STAR, ABES
- Subjects
[CHIM.ANAL] Chemical Sciences/Analytical chemistry ,[SDV]Life Sciences [q-bio] ,Monoterpene ,Landes forest ,Monoterpènes ,Forêt des Landes ,Ozone ,Pollution atmosphérique ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Climate change ,Composés Organiques Volatils (COV) ,Volatile Organic Compounds (VOCs) ,Aérosols Organiques Secondaires (AOS) ,organiques secondaires (AOS) ,Changement climatique ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Atmospheric pollution ,Qualité de l'air ,Secondary Organic Aerosols (SOAs) ,aérosols ,composés organiques volatils (COV) ,pollution atmosphérique ,qualité de l'air ,changement climatique ,particules ,monoterpènes ,ozone ,formation de nouvelles particules ,[SDV.EE] Life Sciences [q-bio]/Ecology, environment ,Particles ,[SDE]Environmental Sciences ,Air quality ,Particules ,New particle formation ,Formation de nouvelles particules - Abstract
Forest ecosystems affect air quality and climate, especially through the emissions and the reactions of biogenic volatile organic compounds (BVOCs) with the atmospheric oxidants, known to generate Secondary Organic Aerosols (SOAs). This work aims to improve our knowledge on the processes involved in biogenic SOA formation and fate. Two field campaigns have been conducted in the Landes forest. In a first step, the measurement site was characterized by a statistical study of local meteorological conditions. During these campaigns, complementary physical and chemical measurements have been carried out, implying measurements of fluxes and concentrations of particles, BVOCs and oxidants. The results evidenced nocturnal new particle formation, which is an original result as this process was usually only reported during daytime. The strong contribution of BVOCs (dominated by α- and β-pinene) ozonolysis to nocturnal new particle formation has been demonstated. Particle flux measurements suggested that particles are transfered from the canopy to the higher atmospheric surface layer. The comparison between ozone fluxes and a physical ozone deposition model also highlighted an ozone production source. This ozone production might be related to BVOC photooxidation., L’objectif de ce travail de thèse est d’améliorer l’état de nos connaissances sur les processus de formation et du devenir de l’AOS, en lien avec la réactivité des COVB avec les oxydants de l’atmosphère et en particulier l’ozone, en utilisant le potentiel de l’écosystème landais en tant que source d'AOS biogénique. Pour cela, des campagnes de terrain ont été menées sur un site de mesure en forêt landaise, écosystème particulièrement approprié pour l’étude de la formation et du devenir des AOS. Au cours de ces campagnes, différents paramètres physico-chimiques complémentaires ont été mesurés, tels que les concentrations et les flux de particules, d’oxydants et de COVB. Des épisodes nocturnes de formation de nouvelles particules ont été mis en évidence, ce qui constitue un résultat original car les évènements rapportés jusqu’ici dans la littérature étaient principalement diurnes. La contribution importante de l’ozonolyse des monoterpènes émis par les pins maritimes, dominés par l’α- et le β-pinène, à la formation nocturne de nouvelles particules a également été démontrée. Les mesures de flux de particules réalisées suggèrent que les particules formées au cours de la nuit sont transférées depuis la canopée vers les plus hautes couches de l’atmosphère. Une production d’ozone a également été démontrée par la comparaison des mesures de flux d’ozone à un modèle physique de dépôt. Cette source d’ozone pourrait être liée à la photooxidation des COVB
- Published
- 2016
39. LANDEX : étude des aérosols organiques secondaires (AOS) générés par la forêt des Landes
- Author
-
Kammer, Julien, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Université des Sciences et Technologies (Bordeaux 1), Eric Villenave, Emilie Perraudin, and Eric Lamaud
- Subjects
ozone ,changement climatique ,particules ,formation de nouvelles particules ,qualité de l'air ,[SDV]Life Sciences [q-bio] ,pollution atmosphérique ,[SDE]Environmental Sciences ,aérosols ,monoterpènes ,composés organiques volatils (COV) ,organiques secondaires (AOS) ,Forêt des Landes - Abstract
Forest ecosystems affect air quality and climate, especially through the emissions and the reactions of biogenic volatile organic compounds (BVOCs) with the atmospheric oxidants, known to generate Secondary Organic Aerosols (SOAs). This work aims to improve our knowledge on the processes involved in biogenic SOA formation and fate. Two field campaigns have been conducted in the Landes forest. In a first step, the measurement site was characterized by a statistical study of local meteorological conditions. During these campaigns, complementary physical and chemical measurements have been carried out, implying measurements of fluxes and concentrations of particles, BVOCs and oxidants. The results evidenced nocturnal new particle formation, which is an original result as this process was usually only reported during daytime. The strong contribution of BVOCs (dominated by α- and β-pinene) ozonolysis to nocturnal new particle formation has been demonstated. Particle flux measurements suggested that particles are transfered from the canopy to the higher atmospheric surface layer. The comparison between ozone fluxes and a physical ozone deposition model also highlighted an ozone production source. This ozone production might be related to BVOC photooxidation.; L’objectif de ce travail de thèse est d’améliorer l’état de nos connaissances sur les processus de formation et du devenir de l’AOS, en lien avec la réactivité des COVB avec les oxydants de l’atmosphère et en particulier l’ozone, en utilisant le potentiel de l’écosystème landais en tant que source d'AOS biogénique. Pour cela, des campagnes de terrain ont été menées sur un site de mesure en forêt landaise, écosystème particulièrement approprié pour l’étude de la formation et du devenir des AOS. Au cours de ces campagnes, différents paramètres physico-chimiques complémentaires ont été mesurés, tels que les concentrations et les flux de particules, d’oxydants et de COVB. Des épisodes nocturnes de formation de nouvelles particules ont été mis en évidence, ce qui constitue un résultat original car les évènements rapportés jusqu’ici dans la littérature étaient principalement diurnes. La contribution importante de l’ozonolyse des monoterpènes émis par les pins maritimes, dominés par l’α- et le β-pinène, à la formation nocturne de nouvelles particules a également été démontrée. Les mesures de flux de particules réalisées suggèrent que les particules formées au cours de la nuit sont transférées depuis la canopée vers les plus hautes couches de l’atmosphère. Une production d’ozone a également été démontrée par la comparaison des mesures de flux d’ozone à un modèle physique de dépôt. Cette source d’ozone pourrait être liée à la photooxidation des COVB
- Published
- 2016
40. Observation et modélisation des échanges d’énergie et de masse de jeunes peuplements forestiers du Sud-Ouest de la France
- Author
-
Moreaux, Virginie, Écologie fonctionnelle et physique de l'environnement (EPHYSE), Institut National de la Recherche Agronomique (INRA), Université des Sciences et Technologies (Bordeaux 1), Denis Loustau, Eric Lamaud, Belinda Medlyn, Loustau, Denis, Lamaud, Eric, Medlyn, Belinda, Nouvellon, Yann, Bailly, Alain, Alard, Didier, Granier, André, and Viovy, Nicolas
- Subjects
Eucalyptus ,changement climatique ,[SDV]Life Sciences [q-bio] ,Bilan d'énergie ,PIN MARITIME ,Pinus pinaster ,bilan d’énergie ,bilan de carbone ,[SDE]Environmental Sciences ,bilan hydrique ,forêts intensifiées ,modélisation ,Cycle du carbone ,écosystème forestier - Abstract
Diplôme : Dr. d'Université
- Published
- 2012
41. Analyse comparative des flux stomatiques et non stomatiques de CO2 et d’ozone de trois agroécosystèmes aquitains
- Author
-
Stella, Patrick, Écologie fonctionnelle et physique de l'environnement (EPHYSE), Institut National de la Recherche Agronomique (INRA), Université des Sciences et Technologies (Bordeaux 1), Talence, FRA., and Eric Lamaud
- Subjects
analyse de données ,ozone ,dioxyde de carbone ,mesure de flux ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,conductance stomatique ,aquitaine ,écosystème - Abstract
Diplôme : Master
- Published
- 2008
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.