1. New Reference Materials, Analytical Procedures and Data Reduction Strategies for Sr Isotope Measurements in Geological Materials by <scp>LA‐MC‐ICP‐MS</scp>
- Author
-
Jacob Mulder, Graham Hagen‐Peter, Teresa Ubide, Rasmus Andreasen, Ellen Kooijman, Melanie Kielman‐Schmitt, Yue‐Xing Feng, Bence Paul, Andreas Karlsson, Christian Tegner, Charles Lesher, and Fidel Costa
- Subjects
multi-collector ICP-MS ,microanalysis ,Geochemistry and Petrology ,laser ablation-inductively coupled plasma-mass spectrometry ,in situ techniques ,Geology ,strontium ,isotopes ,reference material ,interference correction - Abstract
Laser ablation multi-collector mass spectrometry (LA-MC-ICP-MS) has emerged as the technique of choice for in situ measurements of Sr isotopes in geological minerals. However, the method poses analytical challenges and there is no widely adopted standardised approach to collecting these data or correcting the numerous potential isobaric inferences. Here, we outline practical analytical procedures and data reduction strategies to help establish a consistent framework for collecting and correcting Sr isotope measurements in geological materials by LA-MC-ICP-MS. We characterise a new set of plagioclase reference materials, which are available for distribution to the community, and present a new data reduction scheme for the Iolite software package to correct isobaric interferences for different materials and analytical conditions. Our tests show that a combination of Kr-baseline subtraction, Rb-peak-stripping using βRb derived from a bracketing glass reference material, and a CaCa or CaAr correction for plagioclase and CaCa or CaAr + REE 2+ correction for rock glasses, yields the most accurate and precise 87Sr/ 86Sr measurements for these materials. Using the analytical and correction procedures outlined herein, spot analyses using a beam diameter of 100 μm or rastering with a 50–65 μm diameter beam can readily achieve 87Sr/ 86Sr measurements for materials with -1 Sr.
- Published
- 2023