Christopher Green, Antoaneta Bilyanska, Mags Bradley, Jason Dinsdale, Lorraine Hutt, Thomas Backhaus, Frank Boons, David Bott, Chris Collins, Sarah E. Cornell, Mark Craig, Michael Depledge, Bob Diderich, Richard Fuller, Tamara S. Galloway, Gary R. Hutchison, Nicola Ingrey, Andrew C. Johnson, Rachael Kupka, Peter Matthiessen, Robin Oliver, Stewart Owen, Susan Owens, John Pickett, Sam Robinson, Kerry Sims, Pete Smith, John P. Sumpter, Svetlana Tretsiakova‐McNally, Mengjiao Wang, Tom Welton, Katherine J. Willis, Iseult Lynch, Johnson, Andrew C [0000-0003-1570-3764], Sims, Kerry [0000-0001-6273-4083], Lynch, Iseult [0000-0003-4250-4584], and Apollo - University of Cambridge Repository
Data Availability Statement: All data are included in the Supporting Information for publication online. Supporting Information is available online at https://setac.onlinelibrary.wiley.com/doi/10.1002/etc.5620#support-information-section . Copyright © 2023 Crown copyright and The Authors. While chemicals are vital to modern society through materials, agriculture, textiles, new technology, medicines, and consumer goods, their use is not without risks. Unfortunately, our resources seem inadequate to address the breadth of chemical challenges to the environment and human health. Therefore, it is important we use our intelligence and knowledge wisely to prepare for what lies ahead. The present study used a Delphi-style approach to horizon-scan future chemical threats that need to be considered in the setting of chemicals and environmental policy, which involved a multidisciplinary, multisectoral, and multinational panel of 25 scientists and practitioners (mainly from the United Kingdom, Europe, and other industrialized nations) in a three-stage process. Fifteen issues were shortlisted (from a nominated list of 48), considered by the panel to hold global relevance. The issues span from the need for new chemical manufacturing (including transitioning to non-fossil-fuel feedstocks); challenges from novel materials, food imports, landfills, and tire wear; and opportunities from artificial intelligence, greater data transparency, and the weight-of-evidence approach. The 15 issues can be divided into three classes: new perspectives on historic but insufficiently appreciated chemicals/issues, new or relatively new products and their associated industries, and thinking through approaches we can use to meet these challenges. Chemicals are one threat among many that influence the environment and human health, and interlinkages with wider issues such as climate change and how we mitigate these were clear in this exercise. The horizon scan highlights the value of thinking broadly and consulting widely, considering systems approaches to ensure that interventions appreciate synergies and avoid harmful trade-offs in other areas. We recommend further collaboration between researchers, industry, regulators, and policymakers to perform horizon scanning to inform policymaking, to develop our ability to meet these challenges, and especially to extend the approach to consider also concerns from countries with developing economies. Environ Toxicol Chem 2023;00:1–17. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland. Department for Environment, Food and Rural Affairs