11 results on '"Duquenne M"'
Search Results
2. CERN Yellow Reports: Monographs, Vol 2 (2018): The Compact Linear e+e− Collider (CLIC) : 2018 Summary Report
- Author
-
Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Blaising, J. -J., Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A. -S., Peiffer, P., Perić, I., de Jauregui, D. Saez, Emberger, L., Graf, C., Simon, F., Szalay, M., van der Kolk, N., Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., de Blas, J., Franceschini, R., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., van der Graaf, H., Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., Brückman de Renstrom, P., Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu., Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Milutinović Dumbelović, G., Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., Lee, D. -H., Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Blanch Gutierrez, C., Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomis, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch., Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Alipour Tehrani, N., Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Blaskovic Kraljevic, N., Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Catalan Lasheras, N., Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Cerqueira Bastos, M., Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., De Michele, G., De Oliveira, L., Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., Dias De Almeida, P. G., Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Duarte Ramos, F., Duquenne, M., Plaja, N. Egidos, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Gaddi, A., Gamba, D., Morales, L. Garcia Fajardo H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Koukovini Platia, E., Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Llopart Cudie, X., Magnoni, S., Maidana, C., Maier, A. A., Mainaud Durand, H., Mallows, S., Manosperti, E., Marelli, C., Marin Lacoma, E., Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Navarro Quirante, J. L., Del Busto, E. Nebo, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Perez Codina, E., Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Rodriguez Castro, E., Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Santin, J. Sandomierski E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Sobrino Mompean, P., Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Tomas, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Van Hoorne, J., Viazlo, O., Vicente Barreto Pinto, M., Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D. M. S., Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia., Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., Woodley, M., Philip N. Burrows, Nuria Catalán Lasheras, Lucie Linssen, Marko Petrič, Aidan Robson, Daniel Schulte, Eva Sicking, Steinar Stapnes, Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., Lediberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., Blaising, J. -J., Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A. -S., Peiffer, P., Perić, I., de Jauregui, D. Saez, Emberger, L., Graf, C., Simon, F., Szalay, M., van der Kolk, N., Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., de Blas, J., Franceschini, R., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., van der Graaf, H., Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., Brückman de Renstrom, P., Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu., Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Milutinović Dumbelović, G., Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., Lee, D. -H., Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Blanch Gutierrez, C., Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomi, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch., Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Alipour Tehrani, N., Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Blaskovic Kraljevic, N., Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Catalan Lasheras, N., Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Cerqueira Bastos, M., Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., De Michele, G., De Oliveira, L., Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., Dias De Almeida, P. G., Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Duarte Ramos, F., Duquenne, M., Plaja, N. Egido, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Gaddi, A., Gamba, D., Morales, L. Garcia Fajardo H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Koukovini Platia, E., Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Llopart Cudie, X., Magnoni, S., Maidana, C., Maier, A. A., Mainaud Durand, H., Mallows, S., Manosperti, E., Marelli, C., Marin Lacoma, E., Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Navarro Quirante, J. L., Del Busto, E. Nebo, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Perez Codina, E., Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Rodriguez Castro, E., Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Santin, J. Sandomierski E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Sobrino Mompean, P., Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Toma, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Van Hoorne, J., Viazlo, O., Vicente Barreto Pinto, M., Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D. M. S., Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia., Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., and Woodley, M.
- Published
- 2018
3. The Compact Linear Collider (CLIC) - 2018 Summary Report
- Author
-
CLIC, The, collaborations, CLICdp, Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerh��j, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Br��cken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggstr��m, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meril��inen, A., Montonen, R., Nordlund, K., ��sterberg, K., Saressalo, A., V��in��l��, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., LeDiberder, F., P��schl, R., Zerwas, D., Aimard, B., Balik, G., Blaising, J. -J., Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Br��ndermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., M��ller, A. -S., Peiffer, P., Peri��, I., de Jauregui, D. Saez, Emberger, L., Graf, C., Simon, F., Szalay, M., van der Kolk, N., Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., de Blas, J., Franceschini, R., D'Auria, G., Di Mitri, S., Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., van der Graaf, H., Eigen, G., Adli, E., Lindstr��m, C. A., Lillest��l, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moro��, J., ��wientek, K. P., de Renstrom, P. Br��ckman, Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojto��, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., ��arnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu., Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisav��i��, I. Bo��ovi��, Ka��arevi��, G., Dumbelovi��, G. Milutinovi��, Pandurovi��, M., Radulovi��, M., Stevanovi��, J., Vukasinovi��, N., Lee, D. -H., Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Fullana, E., Fuster, J., Garc��a, I., Gimeno, B., Lopez, P. Gomis, Gonz��lez, D., Perell��, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch., Brenner, R., Ekel��f, T., Jacewicz, M., Olveg��rd, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Tehrani, N. Alipour, Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Kraljevic, N. Blaskovic, Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., De Michele, G., De Oliveira, L., Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., de Almeida, P. G. Dias, Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Ramos, F. Duarte, Duquenne, M., Plaja, N. Egidos, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J-F., Gaddi, A., Gamba, D., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C-I., Kremastiotis, I., Kr��ger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Cudie, X. Llopart, Magnoni, S., Maidana, C., Maier, A. A., Durand, H. Mainaud, Mallows, S., Manosperti, E., Marelli, C., Lacoma, E. Marin, Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Quirante, J. L. Navarro, Del Busto, E. Nebo, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., N��rnberg, A., ��gren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petri��, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Sandomierski, J., Santin, E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Str��m, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Tomas, Tomoiaga, C. I., Valerio, P., Va����t, T., Vamvakas, A. L., Van Hoorne, J., Viazlo, O., Pinto, M. Vicente Barreto, Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D M S, Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, ��., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia., Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., Woodley, M., Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), CLICdp, CLIC, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Accelerator Physics (physics.acc-ph) ,detector: technology ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,costs ,programming ,microwaves: amplifier ,CERN CLIC ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Physics - Accelerator Physics ,accelerator: technology ,activity report ,detector: design ,accelerator: design - Abstract
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years., 112 pages, 59 figures; published as CERN Yellow Report Monograph Vol. 2/2018; corresponding editors: Philip N. Burrows, Nuria Catalan Lasheras, Lucie Linssen, Marko Petri\v{c}, Aidan Robson, Daniel Schulte, Eva Sicking, Steinar Stapnes
- Published
- 2018
4. Validation of the Crab-Cavities Internal Monitoring Strategy
- Author
-
Rude, V, Duquenne, M, Dijoud, T, Herty, A, Mainaud, H, and Sosin, M
- Subjects
Physics::Instrumentation and Detectors ,Physics::Accelerator Physics ,Accelerators and Storage Rings - Abstract
The high luminosity upgrade for the LHC at CERN (HL-LHC project[1], [2]) will extend the discovery potential of the LHC by a factor 10 [3]. It relies on key innovative technologies among which superconducting cavities for beam rotation, named “crab-cavities”. Alignment purposes of such RF cavities will involve apositioning to 0.5mm at 3σunder harsh conditions. Twoalignment monitoring systems have been compared and referenced to a laser tracker measurement in order to validatetheir accuracy under standard conditions (room temperature, atmospheric pressure, no radiation). In parallel, both systems are being validated regarding cryogenic and/or radiation aspect. This document presents the main results of thetestcampaign conductedin laboratory in order to validate the alignment strategy.
- Published
- 2016
5. The Compact Linear Collider (CLIC) - 2018 Summary Report
- Author
-
CLICdp collaborations, The CLIC, Charles, T. K., Giansiracusa, P. J., Lucas, T. G., Rassool, R. P., Volpi, M., Balazs, C., Afanaciev, K., Makarenko, V., Patapenka, A., Zhuk, I., Collette, C., Boland, M. J., Hoffman, A. C. Abusleme, Diaz, M. A., Garay, F., Chi, Y., He, X., Pei, G., Pei, S., Shu, G., Wang, X., Zhang, J., Zhao, F., Zhou, Z., Chen, H., Gao, Y., Huang, W., Kuang, Y. P., Li, B., Li, Y., Meng, X., Shao, J., Shi, J., Tang, C., Wang, P., Wu, X., Zha, H., Ma, L., Han, Y., Fang, W., Gu, Q., Huang, D., Huang, X., Tan, J., Wang, Z., Zhao, Z., Uggerhøj, U. I., Wistisen, T. N., Aabloo, A., Aare, R., Kuppart, K., Vigonski, S., Zadin, V., Aicheler, M., Baibuz, E., Brücken, E., Djurabekova, F., Eerola, P., Garcia, F., Haeggström, E., Huitu, K., Jansson, V., Kassamakov, I., Kimari, J., Kyritsakis, A., Lehti, S., Meriläinen, A., Montonen, R., Nordlund, K., Österberg, K., Saressalo, A., Väinölä, J., Veske, M., Farabolini, W., Mollard, A., Peauger, F., Plouin, J., Bambade, P., Chaikovska, I., Chehab, R., Delerue, N., Davier, M., Faus-Golfe, A., Irles, A., Kaabi, W., LeDiberder, F., Pöschl, R., Zerwas, D., Aimard, B., Balik, G., J. -J. Blaising, Brunetti, L., Chefdeville, M., Dominjon, A., Drancourt, C., Geoffroy, N., Jacquemier, J., Jeremie, A., Karyotakis, Y., Nappa, J. M., Serluca, M., Vilalte, S., Vouters, G., Bernhard, A., Bründermann, E., Casalbuoni, S., Hillenbrand, S., Gethmann, J., Grau, A., Huttel, E., Müller, A.-S., Peiffer, P., Perić, I., Jauregui, D. Saez de, Emberger, L., Graf, C., Simon, F., Szalay, M., Kolk, N. van der, Brass, S., Kilian, W., Alexopoulos, T., Apostolopoulos, T., Gazis, E. N., Gazis, N., Kostopoulos, V., Kourkoulis, S., Heilig, B., Lichtenberger, J., Shrivastava, P., Dayyani, M. K., Ghasem, H., Hajari, S. S., Shaker, H., Ashkenazy, Y., Popov, I., Engelberg, E., Yashar, A., Abramowicz, H., Benhammou, Y., Borysov, O., Borysova, M., Levy, A., Levy, I., Alesini, D., Bellaveglia, M., Buonomo, B., Cardelli, A., Diomede, M., Ferrario, M., Gallo, A., Ghigo, A., Giribono, A., Piersanti, L., Stella, A., Vaccarezza, C., Blas, J. de, Franceschini, R., D’Auria, G., Mitri, S. Di, Abe, T., Aryshev, A., Fukuda, M., Furukawa, K., Hayano, H., Higashi, Y., Higo, T., Kubo, K., Kuroda, S., Matsumoto, S., Michizono, S., Naito, T., Okugi, T., Shidara, T., Tauchi, T., Terunuma, N., Urakawa, J., Yamamoto, A., Raboanary, R., Luiten, O. J., Stragier, X. F. D., Hart, R., Graaf, H. van der, Eigen, G., Adli, E., Lindstrøm, C. A., Lillestøl, R., Malina, L., Pfingstner, J., Sjobak, K. N., Ahmad, A., Hoorani, H., Khan, W. A., Bugiel, S., Bugiel, R., Firlej, M., Fiutowski, T. A., Idzik, M., Moroń, J., Świentek, K. P., Renstrom, P. Brückman de, Krupa, B., Kucharczyk, M., Lesiak, T., Pawlik, B., Sopicki, P., Turbiarz, B., Wojtoń, T., Zawiejski, L. K., Kalinowski, J., Nowak, K., Żarnecki, A. F., Firu, E., Ghenescu, V., Neagu, A. T., Preda, T., Zgura, I. S., Aloev, A., Azaryan, N., Boyko, I., Budagov, J., Chizhov, M., Filippova, M., Glagolev, V., Gongadze, A., Grigoryan, S., Gudkov, D., Karjavine, V., Lyablin, M., Nefedov, Yu, Olyunin, A., Rymbekova, A., Samochkine, A., Sapronov, A., Shelkov, G., Shirkov, G., Soldatov, V., Solodko, E., Trubnikov, G., Tyapkin, I., Uzhinsky, V., Vorozhtov, A., Zhemchugov, A., Levichev, E., Mezentsev, N., Piminov, P., Shatilov, D., Vobly, P., Zolotarev, K., Jelisavčić, I. Božović, Kačarević, G., Dumbelović, G. Milutinović, Pandurović, M., Radulović, M., Stevanović, J., Vukasinović, N., D. -H. Lee, Ayala, N., Benedetti, G., Guenzel, T., Iriso, U., Marti, Z., Perez, F., Pont, M., Trenado, J., Ruiz-Jimeno, A., Vila, I., Calero, J., Dominguez, M., Garcia-Tabares, L., Gavela, D., Lopez, D., Toral, F., Gutierrez, C. Blanch, Boronat, M., Esperante, D., Fullana, E., Fuster, J., García, I., Gimeno, B., Lopez, P. Gomis, González, D., Perelló, M., Ros, E., Villarejo, M. A., Vnuchenko, A., Vos, M., Borgmann, Ch, Brenner, R., Ekelöf, T., Jacewicz, M., Olvegård, M., Ruber, R., Ziemann, V., Aguglia, D., Gonzalvo, J. Alabau, Leon, M. Alcaide, Tehrani, N. Alipour, Anastasopoulos, M., Andersson, A., Andrianala, F., Antoniou, F., Apyan, A., Arominski, D., Artoos, K., Assly, S., Atieh, S., Baccigalupi, C., Sune, R. Ballabriga, Caballero, D. Banon, Barnes, M. J., Garcia, J. Barranco, Bartalesi, A., Bauche, J., Bayar, C., Belver-Aguilar, C., Morell, A. Benot, Bernardini, M., Bett, D. R., Bettoni, S., Bettencourt, M., Bielawski, B., Garcia, O. Blanco, Kraljevic, N. Blaskovic, Bolzon, B., Bonnin, X. A., Bozzini, D., Branger, E., Brondolin, E., Brunner, O., Buckland, M., Bursali, H., Burkhardt, H., Caiazza, D., Calatroni, S., Campbell, M., Lasheras, N. Catalan, Cassany, B., Castro, E., Soares, R. H. Cavaleiro, Bastos, M. Cerqueira, Cherif, A., Chevallay, E., Cilento, V., Corsini, R., Costa, R., Cure, B., Curt, S., Gobbo, A. Dal, Dannheim, D., Daskalaki, E., Deacon, L., Degiovanni, A., Michele, G. De, Oliveira, L. De, Romano, V. Del Pozo, Delahaye, J. P., Delikaris, D., Almeida, P. G. Dias de, Dobers, T., Doebert, S., Doytchinov, I., Draper, M., Ramos, F. Duarte, Duquenne, M., Plaja, N. Egidos, Elsener, K., Esberg, J., Esposito, M., Evans, L., Fedosseev, V., Ferracin, P., Fiergolski, A., Foraz, K., Fowler, A., Friebel, F., Fuchs, J.-F., Gaddi, A., Gamba, D., Fajardo, L. Garcia, Morales, H. Garcia, Garion, C., Gasior, M., Gatignon, L., Gayde, J.-C., Gerbershagen, A., Gerwig, H., Giambelli, G., Gilardi, A., Goldblatt, A. N., Anton, S. Gonzalez, Grefe, C., Grudiev, A., Guerin, H., Guillot-Vignot, F. G., Gutt-Mostowy, M. L., Lutz, M. Hein, Hessler, C., Holma, J. K., Holzer, E. B., Hourican, M., Hynds, D., Ikarios, E., Levinsen, Y. Inntjore, Janssens, S., Jeff, A., Jensen, E., Jonker, M., Kamugasa, S. W., Kastriotou, M., Kemppinen, J. M. K., Khan, V., Kieffer, R. B., Klempt, W., Kokkinis, N., Kossyvakis, I., Kostka, Z., Korsback, A., Platia, E. Koukovini, Kovermann, J. W., Kozsar, C.-I., Kremastiotis, I., Kröger, J., Kulis, S., Latina, A., Leaux, F., Lebrun, P., Lefevre, T., Leogrande, E., Linssen, L., Liu, X., Cudie, X. Llopart, Magnoni, S., Maidana, C., Maier, A. A., Durand, H. Mainaud, Mallows, S., Manosperti, E., Marelli, C., Lacoma, E. Marin, Marsh, S., Martin, R., Martini, I., Martyanov, M., Mazzoni, S., Mcmonagle, G., Mether, L. M., Meynier, C., Modena, M., Moilanen, A., Mondello, R., Cabral, P. B. Moniz, Irazabal, N. Mouriz, Munker, M., Muranaka, T., Nadenau, J., Navarro, J. G., Quirante, J. L. Navarro, Busto, E. Nebo Del, Nikiforou, N., Ninin, P., Nonis, M., Nisbet, D., Nuiry, F. X., Nürnberg, A., Ögren, J., Osborne, J., Ouniche, A. C., Pan, R., Papadopoulou, S., Papaphilippou, Y., Paraskaki, G., Pastushenko, A., Passarelli, A., Patecki, M., Pazdera, L., Pellegrini, D., Pepitone, K., Codina, E. Perez, Fontenla, A. Perez, Persson, T. H. B., Petrič, M., Pitman, S., Pitters, F., Pittet, S., Plassard, F., Popescu, D., Quast, T., Rajamak, R., Redford, S., Remandet, L., Renier, Y., Rey, S. F., Orozco, O. Rey, Riddone, G., Castro, E. Rodriguez, Roloff, P., Rossi, C., Rossi, F., Rude, V., Ruehl, I., Rumolo, G., Sailer, A., Sandomierski, J., Santin, E., Sanz, C., Bedolla, J. Sauza, Schnoor, U., Schmickler, H., Schulte, D., Senes, E., Serpico, C., Severino, G., Shipman, N., Sicking, E., Simoniello, R., Skowronski, P. K., Mompean, P. Sobrino, Soby, L., Sollander, P., Solodko, A., Sosin, M. P., Spannagel, S., Sroka, S., Stapnes, S., Sterbini, G., Stern, G., Ström, R., Stuart, M. J., Syratchev, I., Szypula, K., Tecker, F., Thonet, P. A., Thrane, P., Timeo, L., Tiirakari, M., Garcia, R. Tomas, Tomoiaga, C. I., Valerio, P., Vaňát, T., Vamvakas, A. L., Hoorne, J. Van, Viazlo, O., Pinto, M. Vicente Barreto, Vitoratou, N., Vlachakis, V., Weber, M. A., Wegner, R., Wendt, M., Widorski, M., Williams, O. E., Williams, M., Woolley, B., Wuensch, W., Wulzer, A., Uythoven, J., Xydou, A., Yang, R., Zelios, A., Zhao, Y., Zisopoulos, P., Benoit, M., Sultan, D. M. S., Riva, F., Bopp, M., Braun, H. H., Craievich, P., Dehler, M., Garvey, T., Pedrozzi, M., Raguin, J. Y., Rivkin, L., Zennaro, R., Guillaume, S., Rothacher, M., Aksoy, A., Nergiz, Z., Yavas, Ö., Denizli, H., Keskin, U., Oyulmaz, K. Y., Senol, A., Ciftci, A. K., Baturin, V., Karpenko, O., Kholodov, R., Lebed, O., Lebedynskyi, S., Mordyk, S., Musienko, I., Profatilova, Ia, Storizhko, V., Bosley, R. R., Price, T., Watson, M. F., Watson, N. K., Winter, A. G., Goldstein, J., Green, S., Marshall, J. S., Thomson, M. A., Xu, B., You, T., Gillespie, W. A., Spannowsky, M., Beggan, C., Martin, V., Zhang, Y., Protopopescu, D., Robson, A., Apsimon, R. J., Bailey, I., Burt, G. C., Dexter, A. C., Edwards, A. V., Hill, V., Jamison, S., Millar, W. L., Papke, K., Casse, G., Vossebeld, J., Aumeyr, T., Bergamaschi, M., Bobb, L., Bosco, A., Boogert, S., Boorman, G., Cullinan, F., Gibson, S., Karataev, P., Kruchinin, K., Lekomtsev, K., Lyapin, A., Nevay, L., Shields, W., Snuverink, J., Towler, J., Yamakawa, E., Boisvert, V., West, S., Jones, R., Joshi, N., Bett, D., Bodenstein, R. M., Bromwich, T., Burrows, P. N., Christian, G. B., Gohil, C., Korysko, P., Paszkiewicz, J., Perry, C., Ramjiawan, R., Roberts, J., Coates, T., Salvatore, F., Bainbridge, A., Clarke, J. A., Krumpa, N., Shepherd, B. J. A., Walsh, D., Chekanov, S., Demarteau, M., Gai, W., Liu, W., Metcalfe, J., Power, J., Repond, J., Weerts, H., Xia, L., Zupan, J., Wells, J. D., Zhang, Z., Adolphsen, C., Barklow, T., Dolgashev, V., Franzi, M., Graf, N., Hewett, J., Kemp, M., Kononenko, O., Markiewicz, T., Moffeit, K., Neilson, J., Nosochkov, Y., Oriunno, M., Phinney, N., Rizzo, T., Tantawi, S., Wang, J., Weatherford, B., White, G., and Woodley, M.
- Subjects
Technology ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,ddc:600 ,Accelerators and Storage Rings ,physics.acc-ph - Abstract
The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improv The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^−$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively, for a site length ranging from 11 km to 50 km. CLIC uses a two-beam acceleration scheme, in which normal-conducting high-gradient 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in significant progress in recent years. Moreover, this has led to an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept, which matches the physics performance requirements and the CLIC experimental conditions, has been refined using improved software tools for simulation and reconstruction. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations with overlay of beam-induced backgrounds, and through parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25–30 years. The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years.
6. Weakening osteopathies, chronic kidney disease, malabsorption, biological anomalies of calium/phosphorus metabolism: Appropriate indications for a reasoned reimbursement of serum vitamin D measurement | Ostéopathies fragilisantes, maladie rénale chronique, malabsorptions, anomalies biologiques du métabolisme phosphocalcique: Les bonnes indications pour un remboursement raisonné du dosage de vitamine D
- Author
-
Souberbielle, J. -C, Benhamou, C. L., Cortet, B., Rousière, M., Roux, C., Abitbol, V., Annweiler, C., Audran, M., Bacchetta, J., Bataille, P., Beauchet, O., Bardet, R., Benachi, A., Berenbaum, F., Blain, H., Borson-Chazot, F., Breuil, V., Briot, K., Brunet, P., Carel, J. -C, Caron, P., Chabre, O., Chanson, P., Chapurlat, R., Cochat, P., Coutant, R., Christin-Maitre, S., Cohen-Solal, M., Combe, C., Cormier, C., Courbebaisse, M., Debrus, G., Delemer, B., Deschenes, G., Duquenne, M., Fardellone, P., Fouque, D., Friedlander, G., Gauvain, J. -B, Groussin, L., Guggenbuhl, P., Houillier, P., Hannedouche, T., Jacot, W., Javier, R. -M, Jean, G., Jeandel, C., Joly, D., Kamenicky, P., Knebelmann, B., Lafage-Proust, M. -H, Lebouc, Y., Legrand, E., Levy-Weil, F., Linglart, A., Laurent Machet, Maheu, E., Mallet, E., Marcelli, C., Marès, P., Mariat, C., Maruani, G., Maugars, Y., Montagnon, F., Moulin, B., Orcel, P., Partouche, H., Personne, V., Pierrot-Deseilligny, C., Polak, M., Pouteil-Noble, C., Prié, D., Raynaud-Simon, A., Rolland, Y., Sadoul, J. -L, Salle, B., Sault, C., Schott, A. -M, Sermet-Gaudelus, I., Soubrier, M., Tack, I., Thervet, E., Tostivint, I., Touraine, P., Tremollières, F., Urena-Torres, P., Viard, J. -P, Wemeau, J. -L, Weryha, G., Winer, N., Young, J., and Thomas, T.
7. Introduction on themarket of tsipouro, a greek traditional liquor, precursor of ouzo
- Author
-
Vlontzos, G., Spyros Niavis, and Duquenne, M. -N
8. Transitional developments and spatial re-organization of spa tourism in Greece
- Author
-
Marilena Papageorgiou and Duquenne, M. -N
9. Assess cotton growers' willingness to use coated cotton seeds with insecticides. A field research in the Region of Thessaly, Greece
- Author
-
George Vlontzos, Athanassiou, C., and Duquenne, M. N.
10. Exploring the coherence and the meaning of territorial competition: Do national states behave in the same way as firms in case of default? the cases of greece and dubai
- Author
-
Kapitsinis, N., THEODORE METAXAS, and Duquenne, M. -N
- Subjects
HJ - Abstract
In the modern globalized economy there are some concepts which are very important for the current socio-economic system. One of them is competition. A specific field that competition has spread is geography; i.e. competition among territorial units (cities, regions or states). There are scholars who defend it and scholars who criticize it. This paper focuses on the overview of these opinions and on the weak issues of territorial competition which show its incoherence. Within this context, and through a broader study over the behaviour of a firm and a territory, the cases of Greece and Dubai present remarkable interest regarding their behaviour under bad economic performance and its comparison with the behaviour of a firm, particularly in case of default.
11. Weakening osteopathies, chronic kidney disease, malabsorption, biological anomalies of calium/phosphorus metabolism: Appropriate indications for a reasoned reimbursement of serum vitamin D measurement,Ostéopathies fragilisantes, maladie rénale chronique, malabsorptions, anomalies biologiques du métabolisme phosphocalcique: Les bonnes indications pour un remboursement raisonné du dosage de vitamine D
- Author
-
Souberbielle, J. -C, Benhamou, C. L., Cortet, B., Rousière, M., Roux, C., Abitbol, V., Annweiler, C., Audran, M., Bacchetta, J., Bataille, P., Beauchet, O., Bardet, R., Benachi, A., Berenbaum, F., Blain, H., Borson-Chazot, F., Breuil, V., Briot, K., Brunet, P., Carel, J. -C, Caron, P., Chabre, O., Chanson, P., Chapurlat, R., Cochat, P., Coutant, R., Christin-Maitre, S., Cohen-Solal, M., Combe, C., Cormier, C., Courbebaisse, M., Debrus, G., Delemer, B., Deschenes, G., Duquenne, M., Fardellone, P., Fouque, D., Friedlander, G., Gauvain, J. -B, Groussin, L., Pascal Guggenbuhl, Houillier, P., Hannedouche, T., Jacot, W., Javier, R. -M, Jean, G., Jeandel, C., Joly, D., Kamenicky, P., Knebelmann, B., Lafage-Proust, M. -H, Lebouc, Y., Legrand, E., Levy-Weil, F., Linglart, A., Machet, L., Maheu, E., Mallet, E., Marcelli, C., Marès, P., Mariat, C., Maruani, G., Maugars, Y., Montagnon, F., Moulin, B., Orcel, P., Partouche, H., Personne, V., Pierrot-Deseilligny, C., Polak, M., Pouteil-Noble, C., Prié, D., Raynaud-Simon, A., Rolland, Y., Sadoul, J. -L, Salle, B., Sault, C., Schott, A. -M, Sermet-Gaudelus, I., Soubrier, M., Tack, I., Thervet, E., Tostivint, I., Touraine, P., Tremollières, F., Urena-Torres, P., Viard, J. -P, Wemeau, J. -L, Weryha, G., Winer, N., Young, J., and Thomas, T.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.