9 results on '"Droguett, Enrique López"'
Search Results
2. Desarrollo-de-modelo-para-la-identificación-de-somnolencia-basado-en-redes-neuronales-convolucionales
- Author
-
Bräuning, Luis Felipe Guarda and Droguett, Enrique López
- Published
- 2018
- Full Text
- View/download PDF
3. A Deep Learning Based Framework for Physical Assets' Health Prognostics Under Uncertainty for Big Machinery Data
- Author
-
Droguett, Enrique López and Cofre-Martel, Sergio
- Published
- 2018
- Full Text
- View/download PDF
4. MODELO DE DETECCIÓN DE FALLAS Y FALTAS PARA SISTEMA NEUMÁTICO DE TURBINAS DE AVIONES BOEING 767 A TRAVÉS DE MACHINE LEARNING
- Author
-
Cofre-Martel, Sergio and Droguett, Enrique López
- Published
- 2017
- Full Text
- View/download PDF
5. Sensitivity Analysis of Scale Deposition on Equipment of Oil Wells Plants
- Author
-
Zio, Enrico, Maio, Francesco Di, Baraldi, Piero, Droguett, Enrique López, Sauco, Sergio, Chaire Sciences des Systèmes et Défis Energétiques EDF/ECP/Supélec (SSEC), Ecole Centrale Paris-Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-CentraleSupélec-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Dipartimento di Energia [Milano] (DENG), Politecnico di Milano [Milan] (POLIMI), Departmento de Engenharia de Produção, Centro de Estudos e Ensaios em Risco e Modelagem Ambiental, and Universidade Federal de Pernambuco [Recife] (UFPE)
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2012
6. A Reliability Data Collection and Analysis System for Products under Development
- Author
-
Groen, Frank J., Droguett, Enrique López, Jiang, Siyuan, and Mosleh, Ali
- Subjects
lcsh:Production management. Operations management ,lcsh:TS155-194 - Abstract
 
- Published
- 2010
7. ASSESSMENT OF THE RELIABILITY OF PRODUCTS UNDER DEVELOPMENT VIA ACCELERATED LIFE TESTING
- Author
-
Moura, Márcio José Das Chagas, Ferreira, Ricardo José, Droguett, Enrique López, and Jacinto, Carlos Magno Couto
- Published
- 2006
- Full Text
- View/download PDF
8. A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
- Author
-
SALES FILHO, Romero Luiz Mendonça and DROGUETT, Enrique López
- Subjects
Q-Exponencial ,Particle Swarm Optimization ,Confiabilidade Força-Estresse ,Estimador de Máxima Verossimilhaça ,Nelder-Mead - Abstract
CAPEs In recent years, a family of probability distributions based on Nonextensive Statistical Mechanics, known as q-distributions, has experienced a surge in terms of applications to several fields of science and engineering. In this work the _-Exponential distribution will be studied in detail. One of the features of this distribution is the capability of modeling data that have a power law behavior, since it has a heavy-tailed probability density function (PDF) for particular values of its parameters. This feature allows us to consider this distribution as a candidate to model data sets with extremely large values (e.g. cycles to failure). Once the analytical expressions for the maximum likelihood estimates (MLE) of _-Exponential are very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the _- Exponential using two different optimization methods: particle swarm optimization (PSO) and Nelder-Mead (NM), which are also coupled with parametric and non-parametric bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic intervals are also derived. Besides, we will make inference about a useful performance metric in system reliability, the called index __(_, where the stress _ and strength are independent q-Exponential random variables with different parameters. In fact, when dealing with practical problems of stress-strength reliability, one can work with fatigue life data and make use of the well-known relation between stress and cycles until failure. For some materials, this kind of data can involve extremely large values and the capability of the q- Exponential distribution to model data with extremely large values makes this distribution a good candidate to adjust stress-strength models. In terms of system reliability, the index _ is considered a topic of great interest, so we will develop the maximum likelihood estimator (MLE) for the index _ and show that this estimator is obtained by a function that depends on the parameters of the distributions for and _. The behavior of the MLE for the index _ is assessed by means of simulated experiments. Moreover, confidence intervals are developed based on parametric and non-parametric bootstrap. As an example of application, we consider two experimental data sets taken from literature: the first is related to the analysis of high cycle fatigue properties of ductile cast iron for wind turbine components, and the second one evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel. Nos últimos anos, tem sido notado em diversas áreas da ciência e engenharia, um aumento significativo na aplicabilidade da família q de distribuições de probabilidade que se baseia em Mecânica Estatística Não Extensiva. Uma das características da distribuição q-Exponencial é a capacidade de modelar dados que apresentam comportamento de lei de potência, uma vez que tal distribuição possui uma função densidade de probabilidade (FDP) que apresenta cauda pesada para determinados valores de parâmetros. Esta característica permite-nos considerar tal distribuição como candidata para modelar conjuntos de dados que apresentam valores extremamente grandes (Ex.: ciclos até a falha). Uma vez que expressões analíticas para os estimadores de máxima verossimilhança dos parâmetros não são facilmente encontradas, neste trabalho, iremos obter as estimativas de máxima verossimilhança dos parâmetros através de dois métodos de otimização: particle swarm optimization (PSO) e Nelder-Mead (NM), que além das estimativas pontuais, irão nos fornecer juntamente com abordagens bootstrap, intervalos de confiança para os parâmetros da distribuição; intervalos assintóticos também serão derivados. Além disso, faremos inferência sobre um importante índice de confiabilidade, o chamado Índice __(_, onde Y (estresse) e X (força) são variáveis aleatórias independentes. De fato, quando tratamos de problemas práticos de força-estresse, podemos trabalhar com dados de fadiga e fazer uso da bem conhecida relação entre estresse e ciclos até a falha. Para alguns materiais, esse tipo de variável pode apresentar dados com valores muito grandes e a capacidade da q-Exponencial em modelar esse tipo de dado torna essa uma distribuição a ser considerada para ajustar modelos de força-estresse. Em termos de confiabilidade de sistemas, o índice R é considerado um tópico de bastante interesse, assim iremos desenvolver os estimadores de máxima verossimilhança para esse índice e mostrar que esse estimador é obtido através de uma função que depende dos parâmetros da distribuição de X e Y. O comportamento do estimador é investigado através de experimentos simulados. Intervalos de confiança são desenvolvidos através de bootstrap paramétrico e nãoparamétrico. Duas aplicações envolvendo dados de ciclos até a falha e retiradas da literatura são consideradas: a primeira para ferro fundido e a segunda para aço de alta resistência.
- Published
- 2016
9. New Taxonomy and model of error sequence process for human error assessement in hydroelectric power systems
- Author
-
Teixeira, Rômulo Fernando and Droguett, Enrique López
- Subjects
Human Reliability Analysis (HRA) ,Redes Bayesianas ,Erro humano ,Performance ,Taxonomia ,Fatores de desempenho (PSFs) ,taxonomy ,Sistema Elétrico de Potência ,Bayesian networks ,Expert opinion ,Human error ,Opinião de especialistas ,Shaped Factors (PSFs) ,Análise de Confiabilidade Humana (HRA) ,Electric Power System - Abstract
Com os avanços em hardware, a engenharia de confiabilidade nos últimos 30 anos, tem nos mostrado equipamentos e sistemas complexos com níveis de falha muito baixos. Sistemas complexos na indústria nuclear, aeroespacial, química, elétrica entre outras possuem hoje em dia equipamentos e sistemas com níveis de confiabilidade que tem atendido adequadamente a sociedade. Entretanto, a operação e manutenção destes sistemas não dependem exclusivamente do desempenho intrínseco dos correspondentes equipamentos, dependem também da ação humana. Grandes acidentes no passado recente como Chernobyl, Bhopal, da nave Challenger e os grandes apagões no Brasil, colocaram em evidência a necessidade de redução do erro humano em sistemas complexos. A análise da confiabilidade humana surge assim como um apoio para a análise destes sistemas de operação e manutenção. Desde a década de 80 alguns avanços foram surgindo no estudo da confiabilidade humana. Técnicas como THERP, ATHEANA, CREAM e IDAC, se consolidaram ao longo do tempo como boas aplicações práticas para estudar, medir e prever o erro humano. Porém os fatores de desempenho utilizados em quase todas as técnicas supracitadas, tem se mostrado difíceis de serem estimados de um ponto de vista particular. Além disso, as particularidades do setor Hidroelétrico de Potência, definidas nos Procedimentos de Rede do Operador Nacional do Sistema (ONS) e nos instrumentos normativos da Agencia Reguladora ANEEL têm levado a necessidade de uma taxonomia que possa se adaptar a este importante e estratégico setor. Nesta tese, é proposta uma taxonomia e um modelo da sequência do processo de erro, para avaliação deste erro humano especificamente concebido para atender ao contexto de operação e manutencão do Sistema Hidroelétrico de Potência. Para ilustrar a nova taxonomia, foram coletados e analisados dados de cerca de dez anos de registro de erro humano de uma empresa de geração e transmissão de energia elétrica brasileira. Foram coletados 605 relatórios de desligamento por erro humano desde 1998 até 2009. Uma metodologia BBN-Base para a quantificação do erro humano é também discutida. A taxonomia e o modelo da sequência do processo de erro humano tanto quanto o modelo BBN-Based são ilustrados via um exemplo de uma aplicação no contexto de uma indústria Brasileira Hidroelétrica de Potência.-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------With advances in hardware reliability engineering in the last 30 years, we have seen equipment and complex systems with very low levels of failure. Complex systems in the nuclear industry, aerospatiale sector, chemical industries, electrical industries and others now have equipment and systems with levels of reliability that has adequately served the society. However, the operation and maintenance of these systems do not rely solely on intrinsec performance of the corresponding equipment, but they also depend on human action. Major accidents in the recent past such Chernobyl, Bhopal, the Challenger shuttle and major recent power blackouts in Brazil, highlighted the need to reduce human error in complex systems. The human reliability assessment emerges as a support to the analisys of the operation and maintenance of these type of systems. Since the late 80th some advances have emerged in the study of human reliability. Techniques such as THERP, ATHEANA, CREAM and IDAC, have been consolidated over time for the study, measure and prediction of human error. However performance shaped factors used in almost all the aforementioned techniques have proven difficult to be estimated from a practical standpoint. In addition, the specifics of the Hydroelectric Power Industry defined in the Grid Procedures of the National System Operator (Operador Nacional so Sistema, ONS) and the regulatory instruments of ANEEL (Agencia Nacional de Energia Eletrica) Regulatory Agency have led to the necessity of a taxonomy that can adapt for this important strategic sector. In this thesis, it is proposed a taxonomy and model of error sequence process for assessment of human error specifically designed to meet the context of operation and maintenance of Hydroelectric Power System. To illustrate the new taxonomy it was collected and analyzed data from about ten years of human error records related to the generation and transmission of Hydroelectric Power Company in Brazil. It was collected 605 reports by human error shutdown from 1998 to 2009. A BBN-Base methodology for the quantification of human error is also discusses. The taxonomy, model for error sequence process as well as the BBN-Based model are illustrated via an example of application in the context of the Brazilian Hydroelectric Power Industry.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.