1. Self-supervised learning with diffusion-based multichannel speech enhancement for speaker verification under noisy conditions
- Author
-
Dowerah, Sandipana, Kulkarni, Ajinkya, Serizel, Romain, Jouvet, Denis, Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,multichannel speech enhancement ,Sound (cs.SD) ,diffusion probabilistic models ,Audio and Speech Processing (eess.AS) ,self-supervised learning ,FOS: Electrical engineering, electronic engineering, information engineering ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,multichannel speech enhancement diffusion probabilistic models speaker verification self-supervised learning ,speaker verification ,Computer Science - Sound ,Electrical Engineering and Systems Science - Audio and Speech Processing - Abstract
International audience; The paper introduces Diff-Filter, a multichannel speech enhancement approach based on the diffusion probabilistic model, for improving speaker verification performance under noisy and reverberant conditions. It also presents a new two-step training procedure that takes the benefit of self-supervised learning. In the first stage, the Diff-Filter is trained by conducting timedomain speech filtering using a scoring-based diffusion model. In the second stage, the Diff-Filter is jointly optimized with a pre-trained ECAPA-TDNN speaker verification model under a self-supervised learning framework. We present a novel loss based on equal error rate. This loss is used to conduct selfsupervised learning on a dataset that is not labelled in terms of speakers. The proposed approach is evaluated on MultiSV, a multichannel speaker verification dataset, and shows significant improvements in performance under noisy multichannel conditions.
- Published
- 2023