1. Termination of linear loops under commutative updates
- Author
-
Dong, R
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,Rings and Algebras (math.RA) ,FOS: Mathematics ,Mathematics - Rings and Algebras ,Logic in Computer Science (cs.LO) - Abstract
We consider the following problem: given $d \times d$ rational matrices $A_1, \ldots, A_k$ and a polyhedral cone $\mathcal{C} \subset \mathbb{R}^d$, decide whether there exists a non-zero vector whose orbit under multiplication by $A_1, \ldots, A_k$ is contained in $\mathcal{C}$. This problem can be interpreted as verifying the termination of multi-path while loops with linear updates and linear guard conditions. We show that this problem is decidable for commuting invertible matrices $A_1, \ldots, A_k$. The key to our decision procedure is to reinterpret this problem in a purely algebraic manner. Namely, we discover its connection with modules over the polynomial ring $\mathbb{R}[X_1, \ldots, X_k]$ as well as the polynomial semiring $\mathbb{R}_{\geq 0}[X_1, \ldots, X_k]$. The loop termination problem is then reduced to deciding whether a submodule of $\left(\mathbb{R}[X_1, \ldots, X_k]\right)^n$ contains a ``positive'' element., Comment: 6 pages
- Published
- 2023