1. Towards a scalable load balancing for productivity-aware tree-search
- Author
-
Helbecque, Guillaume, Gmys, Jan, Carneiro, Tiago, Melab, Nouredine, Bouvry, Pascal, Université de Lille, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria), Université du Luxembourg (Uni.lu), and ANR-22-CE46-0011,UltraBO,Calcul ultra-scale pour la résolution de problèmes d'optimisation de grande taille(2022)
- Subjects
Productivity-awareness ,Distributed programming ,Chapel ,Depth-first search ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Load balancing ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] - Abstract
International audience; In the context of exascale programming, we investigate a parallel distributed productivity-aware tree-search for exact optimization in Chapel. To this end, we present the DistBag-DFS distributed data structure, which is our revisited version of the Chapel’s DistBag data structure for depth-first search. The latter implements a distributed multi-pool, as well as an underlying locality-aware load balancing mechanism. Extensive experiments on large unbalanced tree-based problems are performed, and the competitiveness of our approach is reported against MPI+X implementations in terms of performance. For our best results, we achieve 94% of the ideal speed-up, using up to 64 computer nodes (8192 cores).
- Published
- 2023