383 results on '"Davis, T"'
Search Results
2. The DES view of the Eridanus supervoid and the CMB cold spot
- Author
-
Kovács, A, Jeffrey, N, Gatti, M, Chang, C, Whiteway, L, Hamaus, N, Lahav, O, Pollina, G, Bacon, D, Kacprzak, T, Mawdsley, B, Nadathur, S, Zeurcher, D, García-Bellido, J, Alarcon, A, Amon, A, Bechtol, K, Bernstein, G M, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Cawthon, R, Chen, R, Choi, A, Cordero, J, Davis, C, Derose, J, Doux, C, Drlica-Wagner, A, Eckert, K, Elsner, F, Elvin-Poole, J, Everett, S, Ferté, A, Giannini, G, Gruen, D, Gruendl, R A, Harrison, I, Hartley, W G, Herner, K, Huff, E M, Huterer, D, Kuropatkin, N, Jarvis, M, Leget, P F, Maccrann, N, Mccullough, J, Muir, J, Myles, J, Navarro-Alsina, A, Pandey, S, Prat, J, Raveri, M, Rollins, R P, Ross, A J, Rykoff, E S, Sánchez, C, Secco, L F, Sevilla-Noarbe, I, Sheldon, E, Shin, T, Troxel, M A, Tutusaus, I, Varga, T N, Yanny, B, Yin, B, Zhang, Y, Zuntz, J, Aguena, M, Allam, S, Andrade-Oliveira, F, Annis, J, Bertin, E, Brooks, D, Burke, D, Carretero, J, Costanzi, M, da , Costa, L N, Pereira, M E S, Davis, T, Deundefined, Vicente, J, Desai, S, Diehl, H T, Ferrero, I, Flaugher, B, Fosalba, P, Frieman, J, Gaztañaga, E, Gerdes, D, Giannantonio, T, Gschwend, J, Gutierrez, G, Hinton, S, Hollowood, D L, Honscheid, K, James, D, Kuehn, K, Lima, M, Maia, M A G, Marshall, J L, Melchior, P, Menanteau, F, Miquel, R, Morgan, R, Ogando, R, Paz-Chinchon, F, Pieres, A, Plazas, A A, Monroy, M Rodriguez, Romer, K, Roodman, A, Sanchez, E, Schubnell, M, Serrano, S, Smith, M, Soares-Santos, M, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, C-H, To, Weller, J, UAM. Departamento de Física Teórica, Instituto de Astrofísica de Canarias (IAC), Tenerife, Univer Sité de Paris, University College London, The Barcelona Institute of Science and Technology, University of Pennsylvania, University of Chicago, Univer Sity of Chica Go, Ludwig-Maximilians Univer- Sität München, University of Portsmouth, ETH Zurich, Universidad Autonoma de Madrid, Argonne National Laboratory, Stanford University, University of Wisconsin- Madison, Carnegie Mellon University, Laboratório Interinstitucional de E-Astronomia - LIneA, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Duke University, The Ohio State Univer- Sity, University of Manchester, University of California, Santa Cruz Institute for Particle Physics, Fermi National Accelerator Laboratory, The Ohio State University, California Institute of Technology, SLAC National Accelerator Laboratory, University of Oxford, University of Gene Va, University of Michigan, University of Cambridge, Perimeter Institute for Theoretical Physics, Univer Sidade Estadual de Campinas, Medioambientales y Tecnológicas (CIEMAT), Brookhaven National Laboratory, Institut D'Estudis Espacials de Catalunya (IEEC), CSIC), Max Planck Institute for Extraterrestrial Physics, University of Edinb Urgh, Universidade de São Paulo (USP), Universidade Estadual Paulista (UNESP), Institut D'Astrophysique de Paris, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, University of Queensland, IIT Hyderabad, University of Oslo, Univer Sity of Cambridge, Harvard and Smithsonian, Lowell Observatory, Macquarie University, Texas A&M Univer Sity, Princeton University, Institució Catalana de Recerca i Estudis Avan C Ats, Univer Sity of Sussex, University of Southampton, Oak Ridge National Labo- Ratory, Kovács, A, Jeffrey, N, Gatti, M, Chang, C, Whiteway, L, Hamaus, N, Lahav, O, Pollina, G, Bacon, D, Kacprzak, T, Mawdsley, B, Nadathur, S, Zeurcher, D, García-Bellido, J, Alarcon, A, Amon, A, Bechtol, K, Bernstein, G M, Campos, A, Rosell, A Carnero, Kind, M Carrasco, Cawthon, R, Chen, R, Choi, A, Cordero, J, Davis, C, Derose, J, Doux, C, Drlica-Wagner, A, Eckert, K, Elsner, F, Elvin-Poole, J, Everett, S, Ferté, A, Giannini, G, Gruen, D, Gruendl, R A, Harrison, I, Hartley, W G, Herner, K, Huff, E M, Huterer, D, Kuropatkin, N, Jarvis, M, Leget, P F, Maccrann, N, Mccullough, J, Muir, J, Myles, J, Navarro-Alsina, A, Pandey, S, Prat, J, Raveri, M, Rollins, R P, Ross, A J, Rykoff, E S, Sánchez, C, Secco, L F, Sevilla-Noarbe, I, Sheldon, E, Shin, T, Troxel, M A, Tutusaus, I, Varga, T N, Yanny, B, Yin, B, Zhang, Y, Zuntz, J, Aguena, M, Allam, S, Andrade-Oliveira, F, Annis, J, Bertin, E, Brooks, D, Burke, D, Carretero, J, Costanzi, M, da , Costa, L N, Pereira, M E S, Davis, T, De , Vicente, J, Desai, S, Diehl, H T, Ferrero, I, Flaugher, B, Fosalba, P, Frieman, J, Gaztañaga, E, Gerdes, D, Giannantonio, T, Gschwend, J, Gutierrez, G, Hinton, S, Hollowood, D L, Honscheid, K, James, D, Kuehn, K, Lima, M, Maia, M A G, Marshall, J L, Melchior, P, Menanteau, F, Miquel, R, Morgan, R, Ogando, R, Paz-Chinchon, F, Pieres, A, Plazas, A A, Monroy, M Rodriguez, Romer, K, Roodman, A, Sanchez, E, Schubnell, M, Serrano, S, Smith, M, Soares-Santos, M, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, C-H, To, Weller, J, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), European Research Council, National Science Foundation (US), European Commission, and Agenzia Spaziale Italiana
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic Background Radiation ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,cosmic background radiation ,Surveys ,gravitational lensing: weak ,surveys ,Space and Planetary Science ,Weak [Gravitational Lensing] ,survey ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
A. Kovács et al., The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard ΛCDM model, only about 10–20 per cent of the observed temperature depression can be accounted for via its Integrated Sachs–Wolfe imprint. However, R ≳ 100 h−1Mpc supervoids elsewhere in the sky have shown ISW imprints AISW ≈ 5.2 ± 1.6 times stronger than expected from ΛCDM (AISW = 1), which warrants further inspection. Using the Year-3 redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant underdensity in the Cold Spot’s direction at z < 0.2. We also show, with S/N ≳ 5 significance, that the Eridanus supervoid appears as the most prominent large-scale underdensity in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about 30 per cent lower than expected from similar peaks found in N-body simulations based on the standard ΛCDM model with parameters Ωm = 0.279 and σ8 = 0.82. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region., AK has been supported by a Juan de la Cierva Incorporación fellowship with project number IJC2018-037730-I, and funding for this project was also available in part through SEV-2015-0548 and AYA2017-89891-P. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2).
- Published
- 2021
- Full Text
- View/download PDF
3. The Dark Energy Survey supernova program: cosmological biases from supernova photometric classification
- Author
-
Vincenzi, M., Sullivan, M., Möller, A., Armstrong, P., Bassett, B. A., Brout, D., Carollo, D., Carr, A., Davis, T. M., Frohmaier, C., Galbany, L., Glazebrook, K., Graur, O., Kelsey, L., Kessler, R., Kovacs, E., Lewis, G. F., Lidman, C., Malik, U., Nichol, R. C., Popovic, B., Sako, M., Scolnic, D., Smith, M., Taylor, G., Tucker, B. E., Wiseman, P., Aguena, M., Allam, S., Annis, J., Asorey, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., Des, Collaboration, Vincenzi, M., Sullivan, M., Möller, A., Armstrong, P., Bassett, B. A., Brout, D., Carollo, D., Carr, A., Davis, T. M., Frohmaier, C., Galbany, L., Glazebrook, K., Graur, O., Kelsey, L., Kessler, R., Kovacs, E., Lewis, G. F., Lidman, C., Malik, U., Nichol, R. C., Popovic, B., Sako, M., Scolnic, D., Smith, M., Taylor, G., Tucker, B. E., Wiseman, P., Aguena, M., Allam, S., Annis, J., Asorey, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., Des, Collaboration, UAM. Departamento de Física Teórica, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,cosmology observations ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Astrophysics Cosmology and Nongalactic Astrophysics ,Cosmology: Observations ,Supernovae: General ,surveys ,supernovae general ,Space and Planetary Science ,survey ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmology observation ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiere, This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record Monthly Notices of the Royal Astronomical Society Volume 518.1 (2023): 1106-1127 is available online at: https://academic.oup.com/mnras/article-abstract/518/1/1106/6601453, Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are, This work was supported by the Science and Technology Facilities Council [grant number ST/P006760/1] through the DISCnet Cen¬tre for Doctoral Training. MS acknowledges support from EU/FP7¬ERC grant 615929, and PW acknowledges support from STFC grant ST/R000506/1. TMD acknowledges support from ARC grant FL180100168. LG acknowledges financial support from the Span¬ish Ministry of Science, Innovation and Universities (MICIU) un¬der the 2019 Ramón y Cajal program RYC2019-027683 and from the Spanish MICIU project PID2020-115253GA-I00. RH and MS were supported by DOE grant DE-FOA-0001781 and NASA grant NNH15ZDA001N-WFIRST. The material is based upon work sup¬ported by NASA under award number 80GSFC17M0002. LK thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1. This paper has gone through internal review by the DES collab¬oration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the Uni¬versity of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fun¬damental Physics and Astronomy at Texas A&M University, Finan¬ciadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemein¬schaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cam¬bridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University Col¬lege London, the DES-Brazil Consortium, the University of Edin¬burgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State Uni-versity, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the Uni¬versity of Sussex, Texas A&M University, and the OzDES Member¬ship Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the Na¬tional Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016¬-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these re¬sults has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciên¬cia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014¬2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. De¬partment of Energy, Office of Science, Office of High Energy Physics. This work was completed in part with resources provided by the University of Chicago’s Research Computing Center. Finally, this work was based in part on data acquired at the Anglo-Australian Telescope, under program A/2013B/012. We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present
- Published
- 2023
- Full Text
- View/download PDF
4. ReveaLLAGN 0: First Look at JWST MIRI data of Sombrero and NGC 1052
- Author
-
Goold, K., Seth, A., Molina, M., Ohlson, D., Runnoe, J. C., Boeker, T., Davis, T. A., Dumont, A., Eracleous, M., Fernández-Ontiveros, J. A., Gallo, E., Goulding, A. D., Greene, J. E., Ho, L. C., Markoff, S. B., Neumayer, N., Plotkin, R., Prieto, A., Satyapal, S., Van De Ven, G., Walsh, J. L., Yuan, F., Feldmeier-Krause, A., Gültekin, K., Hoenig, S., Kirkpatrick, A., Lützgendorf, N., Reines, A. E., Strader, J., Trump, J. R., and Voggel, K. T.
- Subjects
Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astrophysics - Astrophysics of Galaxies - Abstract
We present the first results from the Revealing Low-Luminosity Active Galactic Nuclei (ReveaLLAGN) survey, a JWST survey of seven nearby LLAGN. We focus on two observations with the Mid-Infrared Instrument's (MIRI) Medium Resolution Spectrograph (MRS) of the nuclei of NGC 1052 and Sombrero (NGC 4594 / M104). We also compare these data to public JWST data of a higher-luminosity AGN, NGC 7319. JWST clearly resolves the AGN component even in Sombrero, the faintest target in our survey; the AGN components have very red spectra. We find that the emission-line widths in both NGC 1052 and Sombrero increase with increasing ionization potential, with FWHM > 1000 km/s for lines with ionization potential > 50 eV. These lines are also significantly blue-shifted in both LLAGN. The high ionization potential lines in NGC 7319 show neither broad widths or significant blue shifts. Many of the lower ionization potential emission lines in Sombrero show significant blue wings extending > 1000 km/s. These features and the emission-line maps in both galaxies are consistent with outflows along the jet direction. Sombrero has the lowest luminosity high-ionization potential lines ([Ne V] and [O IV]) ever measured in the mid-IR, but the relative strengths of these lines are consistent with higher luminosity AGN. On the other hand, the [Ne V] emission is much weaker relative to the [Ne III}] and [Ne II] lines of higher-luminosity AGN. These initial results show the great promise that JWST holds for identifying and studying the physical nature of LLAGN., Submitted to ApJ
- Published
- 2023
5. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C
- Author
-
Beagrie, R.A., Thieme, C.J., Annunziatella, C., Baugher, C., Zhang, Y., Schueler, M., Kukalev, A., Kempfer, R., Chiariello, A.M., Bianco, S., Li, Y., Davis, T., Scialdone, A., Welch, L.R., Nicodemi, M., and Pombo, A.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve ‘active’ regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain ‘inactive’ regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
- Published
- 2023
6. Evaluating bulk flow estimators for CosmicFlows-4 measurements
- Author
-
Whitford, A. M., Howlett, C., and Davis, T. M.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
For over a decade there have been contradictory claims in the literature on whether the bulk flow motion of galaxies in our local region are consistent or in tension with the Lambda-CDM model. While it has been evident in the literature that various systematics affect bulk flow measurements, systematics in the estimators used have not been widely investigated. In this work, we thoroughly evaluate the performance of four bulk flow estimator variants, including the Kaiser maximum likelihood estimator (MLE) and the minimum variance estimator (MVE) by testing their performance on mock data. We find in agreement with previous results, that these estimators do generally give unbiased bulk flows, however the precision of these estimators may be strongly correlated with the survey geometry. Small biases in the estimators can be present that lead to underestimated bulk flows, which we suspect are due to the presence of non-linear peculiar motions. The uncertainty assigned to the bulk flows obtained from these estimators is also typically underestimated, which leads to an overestimate of the level of tension with the Lambda-CDM model. We estimate the bulk flow with these methods for the CosmicFlows-4 data after testing them on realistic mocks to ensure the uncertainties are appropriately accounted for. Using the MLE we find a bulk flow amplitude of $408 \pm 165 \mathrm{km s}^{-1}$ at a depth of $49\, \mathrm{Mpc} h^{-1}$, in reasonable agreement with Lambda-CDM. However using the MVE which can estimate the bulk flow at a greater effective depth, we find an amplitude of $428 \pm 108 \mathrm{km s}^{-1}$ at a depth of $173\, \mathrm{Mpc} h^{-1}$, in tension with the model, by having only a 0.11% probability of obtaining a larger $\chi^2$. Both of these measurements indicate the bulk flow is directed towards the Great Attractor region where more data may be needed to resolve bulk flow tensions.
- Published
- 2023
7. The Early Data Release of the Dark Energy Spectroscopic Instrument
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Aldering, G., Alexander, D. M., Alfarsy, R., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade-Oliveira, F., Armengaud, E., Asorey, J., Avila, S., Aviles, A., Bailey, S., Balaguera-Antolínez, A., Ballester, O., Baltay, C., Bault, A., Bautista, J., Behera, J., Beltran, S. F., BenZvi, S., Silva, L. Beraldo e, Bermejo-Climent, J. R., Berti, A., Besuner, R., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bolton, A. S., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Cabayol-Garcia, L., Cai, Z., Canning, R., Cardiel-Sas, L., Rosell, A. Carnero, Castander, F. J., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chuang, C., Claybaugh, T., Cole, S., Cooper, A. P., Cuceu, A., Davis, T. M., Dawson, K., de Belsunce, R., de la Cruz, R., de la Macorra, A., de Mattia, A., Demina, R., Demirbozan, U., DeRose, J., Dey, A., Dey, B., Dhungana, G., Ding, J., Ding, Z., Doel, P., Doshi, R., Douglass, K., Edge, A., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Escoffier, S., Fagrelius, P., Fan, X., Fanning, K., Fawcett, V. A., Ferraro, S., Ereza, J., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Gänsicke, B. T., García, L. Á., García-Bellido, J., Garcia-Quintero, C., Garrison, L. H., Gil-Marín, H., Golden-Marx, J., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Graur, O., Green, D., Gruen, D., Guy, J., Hadzhiyska, B., Hahn, C., Han, J. J., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Jacques, A., Jana, A., Jiang, L., Jimenez, J., Jing, Y. P., Joudaki, S., Jullo, E., Juneau, S., Kizhuprakkat, N., Karaçaylı, N. G., Karim, T., Kehoe, R., Kent, S., Khederlarian, A., Kim, S., Kirkby, D., Kisner, T., Kitaura, F., Kneib, J., Koposov, S. E., Kovács, A., Kremin, A., Krolewski, A., L'Huillier, B., Lambert, A., Lamman, C., Lan, T. -W., Landriau, M., Lang, D., Lange, J. U., Lasker, J., Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Linder, E., Lyons, A., Magneville, C., Manera, M., Manser, C. J., Margala, D., Martini, P., McDonald, P., Medina, G. E., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Meneses-Rizo, J., Mezcua, M., Miquel, R., Montero-Camacho, P., Moon, J., Moore, S., Moustakas, J., Mueller, E., Mundet, J., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nie, J., Nikutta, R., Niz, G., Norberg, P., Noriega, H. E., Paillas, E., Palanque-Delabrouille, N., Palmese, A., Zhiwei, P., Parkinson, D., Penmetsa, S., Percival, W. J., Pérez-Fernández, A., Pérez-Ràfols, I., Pieri, M., Poppett, C., Porredon, A., Pothier, S., Prada, F., Pucha, R., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rocher, A., Rockosi, C., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Sabiu, C. G., Said, K., Saintonge, A., Samushia, L., Sanchez, E., Saulder, C., Schaan, E., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Sheu, W., Silber, J., Sinigaglia, F., Siudek, M., Slepian, Z., Smith, A., Sprayberry, D., Stephey, L., Suárez-Pérez, J., Sun, Z., Tan, T., Tarlé, G., Tojeiro, R., Ureña-López, L. A., Vaisakh, R., Valcin, D., Valdes, F., Valluri, M., Vargas-Magaña, M., Variu, A., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., White, M., Xie, Y., Yang, J., Yèche, C., Yu, J., Yuan, S., Zhang, H., Zhang, Z., Zhao, C., Zheng, Z., Zhou, R., Zhou, Z., Zou, H., Zou, S., Zu, Y., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DESI
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Dark Energy Spectroscopic Instrument (DESI) completed its five-month Survey Validation in May 2021. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra., 43 pages, 7 figures, 17 tables, submitted to AJ, DESI EDR references added
- Published
- 2023
8. Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument
- Author
-
DESI Collaboration, Abareshi, B., Aguilar, J., Ahlen, S., Alam, Shadab, Alexander, David M., Alfarsy, R., Allen, L., Prieto, C. Allende, Alves, O., Ameel, J., Armengaud, E., Asorey, J., Aviles, Alejandro, Bailey, S., Balaguera-Antolínez, A., Ballester, O., Baltay, C., Bault, A., Beltran, S. F., Benavides, B., BenZvi, S., Berti, A., Besuner, R., Beutler, Florian, Bianchi, D., Blake, C., Blanc, P., Blum, R., Bolton, A., Bose, S., Bramall, D., Brieden, S., Brodzeller, A., Brooks, D., Brownewell, C., Buckley-Geer, E., Cahn, R. N., Cai, Z., Canning, R., Capasso, R., Rosell, A. Carnero, Carton, P., Casas, R., Castander, F. J., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chuang, C., Circosta, C., Cole, S., Cooper, A. P., Costa, L. Da, Cousinou, M.-C., Cuceu, A., Davis, T. M., Dawson, K., Cruz-Noriega, R. De La, Macorra, A. De La, Mattia, A. De, Costa, J. Della, Demmer, P., Derwent, M., Dey, A., Dey, B., Dhungana, G., Ding, Z., Dobson, C., Doel, P., Donald-McCann, J., Donaldson, J., Douglass, K., Duan, Y., Dunlop, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Enriquez-Vargas, M., Escoffier, S., Evatt, M., Fagrelius, P., Fan, X., Fanning, K., Fawcett, V. A., Ferraro, S., Ereza, J., Flaugher, B., Font-Ribera, A., Forero-Romero, J. E., Frenk, C. S., Fromenteau, S., Gänsicke, B. T., Garcia-Quintero, C., Garrison, L., Gaztañaga, E., Gerardi, F., Gil-Marín, H., A Gontcho, S. Gontcho, Gonzalez-Morales, Alma X., Gonzalez-De-Rivera, G., Gonzalez-Perez, V., Gordon, C., Graur, O., Green, D., Grove, C., Gruen, D., Gutierrez, G., Guy, J., Hahn, C., Harris, S., Herrera, D., Herrera-Alcantar, Hiram K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Jelinsky, P., Jiang, L., Jimenez, J., Jing, Y. P., Joyce, R., Jullo, E., Juneau, S., Karaçaylı, N. G., Karamanis, M., Karcher, A., Karim, T., Kehoe, R., Kent, S., Kirkby, D., Kisner, T., Kitaura, F., Koposov, S. E., Kovács, A., Kremin, A., Krolewski, Alex, L’Huillier, B., Lahav, O., Lambert, A., Lamman, C., Lan, Ting-Wen, Landriau, M., Lane, S., Lang, D., Lange, J. U., Lasker, J., Guillou, L. Le, Leauthaud, A., Van Suu, A. Le, Levi, Michael E., Li, T. S., Magneville, C., Manera, M., Manser, Christopher J., Marshall, B., Martini, Paul, McCollam, W., McDonald, P., Meisner, Aaron M., Mena-Fernández, J., Meneses-Rizo, J., Mezcua, M., Miller, T., Miquel, R., Montero-Camacho, P., Moon, J., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, Andrea, Myers, Adam D., Nadathur, S., Najita, J., Napolitano, L., Neilsen, E., Newman, Jeffrey A., Nie, J. D., Ning, Y., Niz, G., Norberg, P., Noriega, Hernán E., O’Brien, T., Obuljen, A., Palanque-Delabrouille, N., Palmese, A., Zhiwei, P., Pappalardo, D., PENG, X., Percival, W. J., Perruchot, S., Pogge, R., Poppett, C., Porredon, A., Prada, F., Prochaska, J., Pucha, R., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramirez-Solano, S., Ramírez-Pérez, César, Ravoux, C., Reil, K., Rezaie, M., Rocher, A., Rockosi, C., Roe, N. A., Roodman, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Sabiu, C. G., Safonova, S., Said, K., Saintonge, A., Catonga, Javier Salas, Samushia, L., Sanchez, E., Saulder, C., Schaan, E., Schlafly, E., Schlegel, D., Schmoll, J., Scholte, D., Schubnell, M., Secroun, A., Seo, H., Serrano, S., Sharples, Ray M., Sholl, Michael J., Silber, Joseph Harry, Silva, D. R., Sirk, M., Siudek, M., Smith, A., Sprayberry, D., Staten, R., Stupak, B., Tan, T., Tarlé, Gregory, Tie, Suk Sien, Tojeiro, R., Ureña-López, L. A., Valdes, F., Valenzuela, O., Valluri, M., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, C., Wechsler, R., Wilson, Michael J., Yang, J., Yu, Y., Yuan, S., Yèche, Christophe, Zhang, H., Zhang, K., Zhao, Cheng, Zhou, Rongpu, Zhou, Zhimin, Zou, H., Zou, J., Zou, S., Zu, Y., Aguilar, J. [0000-0003-0822-452X], Ahlen, S. [0000-0001-6098-7247], Alam, Shadab [0000-0002-3757-6359], Alexander, David M. [0000-0002-5896-6313], Allen, L. [0000-0002-7789-5119], Prieto, C. Allende [0000-0002-0084-572X], Ameel, J. [0000-0003-3638-2584], Asorey, J. [0000-0002-6211-499X], Bailey, S. [0000-0003-4162-6619], Balaguera-Antolínez, A. [0000-0001-5028-3035], Ballester, O. [0000-0002-7126-5300], Bault, A. [0000-0002-9964-1005], Beltran, S. F. [0000-0001-6324-4019], Berti, A. [0000-0003-3582-6649], Beutler, Florian [0000-0003-0467-5438], Bose, S. [0000-0002-0974-5266], Brieden, S. [0000-0003-3896-9215], Brodzeller, A. [0000-0002-8934-0954], Brooks, D. [0000-0002-8458-5047], Cahn, R. N. [0000-0003-2748-0641], Cai, Z. [0000-0001-8467-6478], Capasso, R. [0000-0002-3083-6840], Rosell, A. Carnero [0000-0003-3044-5150], Castander, F. J. [0000-0001-7316-4573], Cervantes-Cota, J. L. [0000-0002-3057-6786], Chabanier, S. [0000-0002-5692-5243], Chaussidon, E. [0000-0001-8996-4874], Chuang, C. [0000-0002-3882-078X], Cole, S. [0000-0002-5954-7903], Cooper, A. P. [0000-0001-8274-158X], Cuceu, A. [0000-0002-2169-0595], Davis, T. M. [0000-0002-4213-8783], Dawson, K. [0000-0002-0553-3805], Costa, J. Della [0000-0003-0928-2000], Dey, A. [0000-0002-4928-4003], Dey, B. [0000-0002-5665-7912], Dhungana, G. [0000-0002-5402-1216], Ding, Z. [0000-0002-3369-3718], Douglass, K. [0000-0002-9540-546X], Duan, Y. [0000-0002-2611-0895], Eisenstein, D. J. [0000-0002-2929-3121], Escoffier, S. [0000-0002-2847-7498], Fan, X. [0000-0003-3310-0131], Fawcett, V. A. [0000-0003-1251-532X], Ereza, J. [0000-0002-0194-4017], Frenk, C. S. [0000-0002-2338-716X], Gänsicke, B. T. [0000-0002-2761-3005], Garrison, L. [0000-0002-9853-5673], Gaztañaga, E. [0000-0001-9632-0815], Gonzalez-Morales, Alma X. [0000-0003-4089-6924], Gonzalez-de-Rivera, G. [0000-0003-4452-743X], Gonzalez-Perez, V. [0000-0001-9938-2755], Graur, O. [0000-0002-4391-6137], Green, D. [0000-0002-0676-3661], Gruen, D. [0000-0003-3270-7644], Hahn, C. [0000-0003-1197-0902], Herrera, D. [0000-0003-2092-6727], Herrera-Alcantar, Hiram K. [0000-0002-9136-9609], Huterer, D. [0000-0001-6558-0112], Iršič, V. [0000-0002-5445-461X], Ishak, M. [0000-0002-6024-466X], Jiang, L. [0000-0003-4176-6486], Jing, Y. P. [0000-0002-4534-3125], Joyce, R. [0000-0003-0201-5241], Jullo, E. [0000-0002-9253-053X], Juneau, S. [0000-0002-0000-2394], Karaçaylı, N. G. [0000-0001-7336-8912], Karamanis, M. [0000-0001-9489-4612], Karim, T. [0000-0002-5652-8870], Kehoe, R. [0000-0002-7101-697X], Kent, S. [0000-0003-4207-7420], Kirkby, D. [0000-0002-8828-5463], Kisner, T. [0000-0003-3510-7134], Koposov, S. E. [0000-0003-2644-135X], Kovács, A. [0000-0002-5825-579X], Kremin, A. [0000-0001-6356-7424], L’Huillier, B. [0000-0003-2934-6243], Landriau, M. [0000-0003-1838-8528], Lang, D. [0000-0002-1172-0754], Lasker, J. [0000-0003-2999-4873], Guillou, L. Le [0000-0001-7178-8868], Leauthaud, A. [0000-0002-3677-3617], Van Suu, A. Le [0000-0001-5488-783X], Levi, Michael E. [0000-0003-1887-1018], Li, T. S. [0000-0002-9110-6163], Manser, Christopher J. [0000-0003-1543-5405], Martini, Paul [0000-0002-0194-4017], McDonald, P. [0000-0001-8346-8394], Meisner, Aaron M. [0000-0002-1125-7384], Mena-Fernández, J. [0000-0001-9497-7266], Meneses-Rizo, J. [0000-0003-3201-9788], Miquel, R. [0000-0002-6610-4836], Moustakas, J. [0000-0002-2733-4559], Nadathur, S. [0000-0001-9070-3102], Neilsen, E. [0000-0002-7357-0317], Newman, Jeffrey A. [0000-0001-8684-2222], Nie, J. D. [0000-0001-6590-8122], Ning, Y. [0000-0001-9442-1217], Niz, G. [0000-0002-1544-8946], Norberg, P. [0000-0002-5875-0440], Noriega, Hernán E. [0000-0002-3397-3998], Obuljen, A. [0000-0002-9012-6621], Palanque-Delabrouille, N. [0000-0003-3188-784], PENG, X. [0000-0002-3784-830X], Percival, W. J. [0000-0002-0644-5727], Pogge, R. [0000-0003-1435-3053], Porredon, A. [0000-0002-2762-2024], Prada, F. [0000-0001-7145-8674], Prochaska, J. [0000-0002-7738-6875], Pucha, R. [0000-0002-4940-3009], Pérez-Ràfols, I. [0000-0001-6979-0125], Rabinowitz, D. [0000-0003-4961-7653], Raichoor, A. [0000-0001-5999-7923], Rezaie, M. [0000-0001-5589-7116], Rockosi, C. [0000-0002-6667-7028], Roodman, A. [0000-0001-5326-3486], Sabiu, C. G. [0000-0002-5513-5303], Safonova, S. [0000-0002-2240-7421], Said, K. [0000-0002-1809-6325], Saintonge, A. [0000-0003-4357-3450], Samushia, L. [0000-0002-1609-5687], Sanchez, E. [0000-0002-9646-8198], Saulder, C. [0000-0002-0408-5633], Schaan, E. [0000-0002-4619-8927], Schlegel, D. [0000-0002-5042-5088], Secroun, A. [0000-0003-0505-3710], Seo, H. [0000-0002-6588-3508], Sharples, Ray M. [0000-0003-3449-8583], Silber, Joseph Harry [0000-0002-3461-0320], Silva, D. R. [0000-0002-7678-2155], Sprayberry, D. [0000-0001-7583-6441], Tarlé, Gregory [0000-0003-1704-0781], Tie, Suk Sien [0000-0002-5249-1353], Valdes, F. [0000-0001-5567-1301], Valenzuela, O. [0000-0002-0523-5509], Valluri, M. [0000-0002-6257-2341], Verde, L. [0000-0003-2601-8770], Walther, M. [0000-0002-1748-3745], Wang, B. [0000-0003-4877-1659], Wang, M. S. [0000-0002-2652-4043], Wechsler, R. [0000-0003-2229-011X], Yang, J. [0000-0001-5287-4242], Yu, Y. [0000-0002-9359-7170], Yuan, S. [0000-0002-5992-7586], Yèche, Christophe [0000-0001-5146-8533], Zhang, H. [0000-0001-6847-5254], Zhang, K. [0000-0002-9808-3646], Zhao, Cheng [0000-0002-1991-7295], Zhou, Rongpu [0000-0001-5381-4372], Zhou, Zhimin [0000-0002-4135-0977], Zou, H. [0000-0002-6684-3997], Zou, J. [0000-0001-9189-0368], Zou, S. [0000-0002-3983-6484], Zu, Y. [0000-0001-6966-6925], Apollo - University of Cambridge Repository, University of St Andrews. School of Physics and Astronomy, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Observatoire de Haute-Provence (OHP), Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DESI, HEP, INSPIRE, and Ministerio de Ciencia e Innovación (España)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,redshift 0.6 ,Settore FIS/05 - Astronomia e Astrofisica ,QB Astronomy ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,QC ,QB ,MCC ,Astronomy and Astrophysics ,DAS ,space ,distortions ,peak ,Laboratory Astrophysics, Instrumentation, Software, and Data ,QC Physics ,Space and Planetary Science ,[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,astro-ph.CO ,galaxy sample ,power-spectrum ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,growth-rate ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
Full list of authors: Abareshi, B.; Aguilar, J.; Ahlen, S.; Alam, Shadab; Alexander, David M.; Alfarsy, R.; Allen, L.; Allende Prieto, C.; Alves, O.; Ameel, J.; Armengaud, E.; Asorey, J.; Aviles, Alejandro; Bailey, S.; Balaguera-Antolinez, A.; Ballester, O.; Baltay, C.; Bault, A.; Beltran, S. F.; Benavides, B.; BenZvi, S.; Berti, A.; Besuner, R.; Beutler, Florian; Bianchi, D.; Blake, C.; Blanc, P.; Blum, R.; Bolton, A.; Bose, S.; Bramall, D.; Brieden, S.; Brodzeller, A.; Brooks, D.; Brownewell, C.; Buckley-Geer, E.; Cahn, R. N.; Cai, Z.; Canning, R.; Capasso, R.; Carnero Rosell, A.; Carton, P.; Casas, R.; Castander, F. J.; Cervantes-Cota, J. L.; Chabanier, S.; Chaussidon, E.; Chuang, C.; Circosta, C.; Cole, S.; Cooper, A. P.; da Costa, L.; Cousinou, M-C; Cuceu, A.; Davis, T. M.; Dawson, K.; De la Cruz-Noriega, R.; de la Macorra, A.; de Mattia, A.; Della Costa, J.; Demmer, P.; Derwent, M.; Dey, A.; Dey, B.; Dhungana, G.; Ding, Z.; Dobson, C.; Doel, P.; Donald-McCann, J.; Donaldson, J.; Douglass, K.; Duan, Y.; Dunlop, P.; Edelstein, J.; Eftekharzadeh, S.; Eisenstein, D. J.; Enriquez-Vargas, M.; Escoffier, S.; Evatt, M.; Fagrelius, P.; Fan, X.; Fanning, K.; Fawcett, V. A.; Ferraro, S.; Ereza, J.; Flaugher, B.; Font-Ribera, A.; Forero-Romero, J. E.; Frenk, C. S.; Fromenteau, S.; Gansicke, B. T.; Garcia-Quintero, C.; Garrison, L.; Gaztanaga, E.; Gerardi, F.; Gil-Marin, H.; Gontcho, S. Gontcho A.; Gonzalez-Morales, Alma X.; Gonzalez-de-Rivera, G.; Gonzalez-Perez, V; Gordon, C.; Graur, O.; Green, D.; Grove, C.; Gruen, D.; Gutierrez, G.; Guy, J.; Hahn, C.; Harris, S.; Herrera, D.; Herrera-Alcantar, Hiram K.; Honscheid, K.; Howlett, C.; Huterer, D.; Irsic, V; Ishak, M.; Jelinsky, P.; Jiang, L.; Jimenez, J.; Jing, Y. P.; Joyce, R.; Jullo, E.; Juneau, S.; Karacayli, N. G.; Karamanis, M.; Karcher, A.; Karim, T.; Kehoe, R.; Kent, S.; Kirkby, D.; Kisner, T.; Kitaura, F.; Koposov, S. E.; Kovacs, A.; Kremin, A.; Krolewski, Alex; L'Huillier, B.; Lahav, O.; Lambert, A.; Lamman, C.; Lan, Ting-Wen; Landriau, M.; Lane, S.; Lang, D.; Lange, J. U.; Lasker, J.; Le Guillou, L.; Leauthaud, A.; Suu, A. Le Van; Levi, Michael E.; Li, T. S.; Magneville, C.; Manera, M.; Manser, Christopher J.; Marshall, B.; Martini, Paul; McCollam, W.; McDonald, P.; Meisner, Aaron M.; Mena-Fernandez, J.; Meneses-Rizo, J.; Mezcua, M.; Miller, T.; Miquel, R.; Montero-Camacho, P.; Moon, J.; Moustakas, J.; Mueller, E.; Munoz-Gutierrez, Andrea; Myers, Adam D.; Nadathur, S.; Najita, J.; Napolitano, L.; Neilsen, E.; Newman, Jeffrey A.; Nie, J. D.; Ning, Y.; Niz, G.; Norberg, P.; Noriega, Hernan E.; O'Brien, T.; Obuljen, A.; Palanque-Delabrouille, N.; Palmese, A.; Zhiwei, P.; Pappalardo, D.; Peng, X.; Percival, W. J.; Perruchot, S.; Pogge, R.; Poppett, C.; Porredon, A.; Prada, F.; Prochaska, J.; Pucha, R.; Perez-Fernandez, A.; Perez-Rafols, I; Rabinowitz, D.; Raichoor, A.; Ramirez-Solano, S.; Ramirez-Perez, Cesar; Ravoux, C.; Reil, K.; Rezaie, M.; Rocher, A.; Rockosi, C.; Roe, N. A.; Roodman, A.; Ross, A. J.; Rossi, G.; Ruggeri, R.; Ruhlmann-Kleider, V; Sabiu, C. G.; Safonova, S.; Said, K.; Saintonge, A.; Catonga, Javier Salas; Samushia, L.; Sanchez, E.; Saulder, C.; Schaan, E.; Schlafly, E.; Schlegel, D.; Schmoll, J.; Scholte, D.; Schubnell, M.; Secroun, A.; Seo, H.; Serrano, S.; Sharples, Ray M.; Sholl, Michael J.; Silber, Joseph Harry; Silva, D. R.; Sirk, M.; Siudek, M.; Smith, A.; Sprayberry, D.; Staten, R.; Stupak, B.; Tan, T.; Tarle, Gregory; Tie, Suk Sien; Tojeiro, R.; Urena-Lopez, L. A.; Valdes, F.; Valenzuela, O.; Valluri, M.; Vargas-Magana, M.; Verde, L.; Walther, M.; Wang, B.; Wang, M. S.; Weaver, B. A.; Weaverdyck, C.; Wechsler, R.; Wilson, Michael J.; Yang, J.; Yu, Y.; Yuan, S.; Yeche, Christophe; Zhang, H.; Zhang, K.; Zhao, Cheng; Zhou, Rongpu; Zhou, Zhimin; Zou, H.; Zou, J.; Zou, S.; Zu, Y.; DESI Collaboration.--This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited., The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3fdg2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0farcs1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned. © 2022. The Author(s). Published by the American Astronomical Society., This research is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, and by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under the same contract. Additional support for DESI is provided by the U.S. National Science Foundation, Division of Astronomical Sciences under contract No. AST-0950945 to the NSF's National Optical-Infrared Astronomy Research Laboratory; the Science and Technologies Facilities Council of the United Kingdom; the Gordon and Betty Moore Foundation; the Heising–Simons Foundation; the French Alternative Energies and Atomic Energy Commission (CEA); the National Council of Science and Technology of Mexico (CONACYT); the Ministry of Science and Innovation of Spain, and by the DESI Member Institutions: Aix-Marseille University; Argonne National Laboratory; Barcelona-Madrid Regional Participation Group; Brookhaven National Laboratory; Boston University; Brazil Regional Participation Group; Carnegie Mellon University; CEA-IRFU, Saclay; China Participation Group; Cornell University; Durham University; École Polytechnique Fédérale de Lausanne; Eidgenössische Technische Hochschule, Zürich; Fermi National Accelerator Laboratory; Granada-Madrid-Tenerife Regional Participation Group; Harvard University; Kansas State University; Korea Astronomy and Space Science Institute; Korea Institute for Advanced Study; Lawrence Berkeley National Laboratory; Laboratoire de Physique Nucléaire et de Hautes Energies; Ludwig Maximilians University; Max Planck Institute; Mexico Regional Participation Group; New York University; NSF's National Optical-Infrared Astronomy Research Laboratory; Ohio University; Perimeter Institute; Shanghai Jiao Tong University; Siena College; SLAC National Accelerator Laboratory; Southern Methodist University; Swinburne University; The Ohio State University; Universidad de los Andes; University of Arizona; University of Barcelona; University of California, Berkeley; University of California, Irvine; University of California, Santa Cruz; University College London; University of Florida; University of Michigan at Ann Arbor; University of Pennsylvania; University of Pittsburgh; University of Portsmouth; University of Queensland; University of Rochester; University of Toronto; University of Utah; University of Waterloo; University of Wyoming; University of Zurich; UK Regional Participation Group; and Yale University. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement., With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709.
- Published
- 2022
- Full Text
- View/download PDF
9. Velocity dispersions of clusters in the Dark Energy Survey Y3 redMaPPer catalogue
- Author
-
A Wetzell, V., Jeltema, T. E., Hegland, B., Everett, S., Giles, P. A., Wilkinson, R., Farahi, A., Costanzi, M., Hollowood, D. L., Upsdell, E., Saro, A., Myles, J., Bermeo, A., Bhargava, S., Collins, C. A., Cross, D., Eiger, O., Gardner, G., Hilton, M., Jobel, J., Kelly, P., Laubner, D., Liddle, A. R., Mann, R. G., Martinez, V., Mayers, J., Mcdaniel, A., Romer, A. K., Rooney, P., Sahlen, M., Stott, J., Swart, A., Turner, D. J., Viana, P. T. P., Abbott, T. M. C., Aguena, M., Allam, S., Andrade- Oliveira, F., Annis, J., Asorey, J., Bertin, E., Burke, D. L., Calcino, J., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Choi, A., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Ferrero, I., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Glazebrook, K., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G. F., Lidman, C., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Plazas Malagón, A. A., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Tucker, B. E., Tucker, D. L., Varga, T. N., Weller, J., Des, Collaboration, UAM. Departamento de Física Teórica, A Wetzell, V., Jeltema, T. E., Hegland, B., Everett, S., Giles, P. A., Wilkinson, R., Farahi, A., Costanzi, M., Hollowood, D. L., Upsdell, E., Saro, A., Myles, J., Bermeo, A., Bhargava, S., Collins, C. A., Cross, D., Eiger, O., Gardner, G., Hilton, M., Jobel, J., Kelly, P., Laubner, D., Liddle, A. R., Mann, R. G., Martinez, V., Mayers, J., Mcdaniel, A., Romer, A. K., Rooney, P., Sahlen, M., Stott, J., Swart, A., Turner, D. J., Viana, P. T. P., Abbott, T. M. C., Aguena, M., Allam, S., Andrade- Oliveira, F., Annis, J., Asorey, J., Bertin, E., Burke, D. L., Calcino, J., Carnero Rosell, A., Carollo, D., Carrasco Kind, M., Carretero, J., Choi, A., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Evrard, A. E., Ferrero, I., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Glazebrook, K., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lewis, G. F., Lidman, C., Lima, M., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Plazas Malagón, A. A., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Tucker, B. E., Tucker, D. L., Varga, T. N., Weller, J., Des, Collaboration, Department of Energy (US), European Commission, European Research Council, Ministero dell'Istruzione, dell'Università e della Ricerca, Ministerio de Ciencia, Innovación y Universidades (España), Fundação para a Ciência e a Tecnologia (Portugal), Agencia Estatal de Investigación (España), National Science Foundation (US), Generalitat de Catalunya, and Ministerio de Economía y Competitividad (España)
- Subjects
X-Rays: Galaxies: Clusters ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,galaxies: clusters: general ,X-rays: galaxies: clusters ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Space and Planetary Science ,clusters: general [galaxies] ,galaxies: clusters [X-rays] ,CLUSTERS ,QC ,Astrophysics - Cosmology and Nongalactic Astrophysics ,QB ,Galaxies: Clusters: General - Abstract
DES Collaboration: V. Wetzell et al., We measure the velocity dispersions of clusters of galaxies selected by the red-sequence Matched-filter Probabilistic Percolation (redMaPPer) algorithm in the first three years of data from the Dark Energy Survey (DES), allowing us to probe cluster selection and richness estimation, λ, in light of cluster dynamics. Our sample consists of 126 clusters with sufficient spectroscopy for individual velocity dispersion estimates. We examine the correlations between cluster velocity dispersion, richness, X-ray temperature, and luminosity, as well as central galaxy velocity offsets. The velocity dispersion–richness relation exhibits a bimodal distribution. The majority of clusters follow scaling relations between velocity dispersion, richness, and X-ray properties similar to those found for previous samples; however, there is a significant population of clusters with velocity dispersions that are high for their richness. These clusters account for roughly 22 per cent of the λ < 70 systems in our sample, but more than half (55 per cent) of λ < 70 clusters at z > 0.5. A couple of these systems are hot and X-ray bright as expected for massive clusters with richnesses that appear to have been underestimated, but most appear to have high velocity dispersions for their X-ray properties likely due to line-of-sight structure. These results suggest that projection effects contribute significantly to redMaPPer selection, particularly at higher redshifts and lower richnesses. The redMaPPer determined richnesses for the velocity dispersion outliers are consistent with their X-ray properties, but several are X-ray undetected and deeper data are needed to understand their nature., This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Numbers DE-SC0010107 and A00-1465-001. AS is supported by the ERC-StG ‘ClustersXCosmo’ grant agreement 716762, by the FARE-MIUR grant ’ClustersXEuclid’ R165SBKTMA, and by INFN InDark Grant. PTPV was supported by Fundação para a Ciência e a Tecnologia (FCT) through research grants UIDB/04434/2020andUIDP/04434/2020. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the University of Illinois at Urbana-Champaign - National Center for Supercomputing Applications, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California, Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas – Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians-Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. This study is based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the EU Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
- Full Text
- View/download PDF
10. Crosstalkr: An open-source R package to facilitate drug target identification
- Author
-
Davis T. Weaver and Jacob G. Scott
- Subjects
Article - Abstract
In the last few decades, interest in graph-based analysis of biological networks has grown substantially. Protein-protein interaction networks are one of the most common biological networks, and represent the molecular relationships between every known protein and every other known protein. Integration of these interactomic data into bioinformatic pipelines may increase the translational potential of discoveries made through analysis of multi-omic datasets. Crosstalkr provides a unified toolkit for drug target and disease subnetwork identification, two of the most common uses of protein protein interaction networks. First, crosstalkr enables users to download and leverage high-quality protein-protein interaction networks from online repositories. Users can then filter these large networks into manageable subnetworks using a variety of methods. For example, network filtration can be done using random walks with restarts, starting at the user-provided seed proteins. Affinity scores from a given random walk with restarts are compared to a bootstrapped null distribution to assess statistical significance. Random walks are implemented using sparse matrix multiplication to facilitate fast execution. Next, users can perform in-silico repression experiments to assess the relative importance of nodes in their network. At this step, users can supply protein or gene expression data to make node rankings more meaningful. The default behavior evaluates the human interactome. However, users can evaluate more than 1000 non-human protein-protein interaction networks as a result of integration with StringDB. It is a free, open-source R package designed to allow users to integrate functional analysis using the protein-protein interaction network into existing bioinformatic pipelines. A beta version of crosstalkr available on CRAN (https://cran.rstudio.com/web/packages/crosstalkr/index.html).
- Published
- 2023
- Full Text
- View/download PDF
11. The Intrinsic Alignment of Red Galaxies in DES Y1 redMaPPer Galaxy Clusters
- Author
-
Zhou, C., Tong, A., Troxel, M. A., Blazek, J., Lin, C., Bacon, D., Bleem, L., Rosell, A. Carnero, Chang, C., Costanzi, M., DeRose, J., Dietrich, J. P., Drlica-Wagner, A., Gruen, D., Gruendl, R. A., Hoyle, B., Jarvis, M., MacCrann, N., Mawdsley, B., McClintock, T., Melchior, P., Prat, J., Pujol, A., Rozo, E., Rykoff, E. S., Samuroff, S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Tucker, D. L., Varga, T. N., Yanny, B., Zhang, Y., Zuntz, J., Alves, O., Amon, A., Bertin, E., Brooks, D., Burke, D. L., Kind, M. Carrasco, da Costa, L. N., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., Gerdes, D. W., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Jeltema, T., Kuehn, K., Lahav, O., Lima, M., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Raveri, M., Romer, A. K., Sanchez, E., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Weaverdyck, N., Weller, J., and Wiseman, P.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Clusters of galaxies are sensitive to the most nonlinear peaks in the cosmic density field. The weak gravitational lensing of background galaxies by clusters can allow us to infer their masses. However, galaxies associated with the local environment of the cluster can also be intrinsically aligned due to the local tidal gradient, contaminating any cosmology derived from the lensing signal. We measure this intrinsic alignment in Dark Energy Survey (DES) Year 1 redMaPPer clusters. We find evidence of a non-zero mean radial alignment of galaxies within clusters between redshift 0.1-0.7. We find a significant systematic in the measured ellipticities of cluster satellite galaxies that we attribute to the central galaxy flux and other intracluster light. We attempt to correct this signal, and fit a simple model for intrinsic alignment amplitude ($A_{\textrm{IA}}$) to the measurement, finding $A_{\textrm{IA}}=0.15\pm 0.04$, when excluding data near the edge of the cluster. We find a significantly stronger alignment of the central galaxy with the cluster dark matter halo at low redshift and with higher richness and central galaxy absolute magnitude (proxies for cluster mass). This is an important demonstration of the ability of large photometric data sets like DES to provide direct constraints on the intrinsic alignment of galaxies within clusters. These measurements can inform improvements to small-scale modeling and simulation of the intrinsic alignment of galaxies to help improve the separation of the intrinsic alignment signal in weak lensing studies., 14 pages, 13 figures
- Published
- 2023
12. Partitioning Ground Motion Uncertainty When Conditioned on Station Data
- Author
-
Davis T. Engler, C. Bruce Worden, Eric M. Thompson, and Kishor S. Jaiswal
- Subjects
Geophysics ,Geochemistry and Petrology - Abstract
Rapid estimation of earthquake ground shaking and proper accounting of associated uncertainties in such estimates when conditioned on strong-motion station data or macroseismic intensity observations are crucial for downstream applications such as ground failure and loss estimation. The U.S. Geological Survey ShakeMap system is called upon to fulfill this objective in light of increased near-real-time access to strong-motion records from around the world. Although the station data provide a direct constraint on shaking estimates at specific locations, these data also heavily influence the uncertainty quantification at other locations. This investigation demonstrates methods to partition the within- (phi) and between-event (tau) uncertainty estimates under the observational constraints, especially when between-event uncertainties are heteroscedastic. The procedure allows the end users of ShakeMap to create separate between- and within-event realizations of ground-motion fields for downstream loss modeling applications in a manner that preserves the structure of the underlying random spatial processes.
- Published
- 2022
- Full Text
- View/download PDF
13. Prescriber Attitudes, Experiences, and Proclivities Toward Digital Medicine and How They Influence Adoption of Digital Medicine Platforms
- Author
-
Ruetsch C, Davis T, Liberman JN, Velligan DI, Robinson D, Jaeger C, Carpenter W, and Forma F
- Subjects
gender differences ,medication adherence ,digital health technologies ,Neurosciences. Biological psychiatry. Neuropsychiatry ,personalized medicine ,Neurology. Diseases of the nervous system ,RC346-429 ,mental illness ,antipsychotic ,RC321-571 - Abstract
Charles Ruetsch,1 Tigwa Davis,1 Joshua N Liberman,1 Dawn I Velligan,2 Delbert Robinson,3 Chris Jaeger,4 William Carpenter,5 Felica Forma6 1Health Analytics, LLC, Columbia, MD, USA; 2Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 3Departments of Molecular Medicine and Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; 4JHC Solutions, LLC, San Francisco, CA, USA; 5Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA; 6Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, NJ, USACorrespondence: Charles RuetschHealth Analytics, LLC, 9200 Rumsey Road Suite 215, Columbia, MD, 21045, USATel +1 410-997-3314Email c.ruetsch@healthanalytics.comBackground: Psychiatric prescribers (prescribers) typically assess medication adherence by patient or caregiver self-report. Despite likely clinical benefit of a new digital medicine technology, the role of specific prescriber attitudes, behaviors, and experiences in the likelihood of adoption is unclear.Objective: To identify prescriber characteristics that may affect adoption of the ingestible event marker (IEM) platform.Design: A survey of prescribers treating seriously mentally ill patients was conducted. Factor analysis was performed on 11 items representing prescriber characteristics believed to be related to endorsement of the IEM platform. Four factors were extracted. Regression analysis was used to test the strength of the relationships between the factors and likelihood of adoption of the IEM platform.Results: A total of 131 prescribers completed the survey. Most (84%) agreed that visits allow enough time to monitor adherence. Factor analysis revealed four underlying dimensions: 1) perspectives on the value of adherence; 2) concerns about measuring adherence; 3) views toward digital health technologies; and 4) views on payer role/reimbursement. Factors 1 and 3 were related to gender, the belief that computerization benefits prescribers, the presence of office support staff, and the belief that new digital medicine (DM) technology will be cost prohibitive. Willingness to adopt the IEM platform was related to gender (p < 0.05) and perspectives on the value of adherence (p < 0.05), with those scoring higher on that measure also being more likely to adopt.Conclusion: Psychiatric prescribers are concerned about medication adherence, perceive current monitoring tools to be problematic, and are open to using digital technologies to improve accuracy of adherence assessment. Relationships among prescriber characteristics, beliefs, and experiences should be considered when developing educational materials, particularly when the goal is to encourage adoption and use of the IEM platform.Keywords: medication adherence, digital health technologies, antipsychotic, mental illness, personalized medicine, gender differences
- Published
- 2021
14. The DESI Survey Validation: Results from Visual Inspection of Bright Galaxies, Luminous Red Galaxies, and Emission-line Galaxies
- Author
-
Ting-Wen Lan, Tojeiro, R., Armengaud, E., Prochaska, J. Xavier, Davis, T. M., Alexander, David M., Raichoor, A., Zhou, Rongpu, Yèche, Christophe, Balland, C., BenZvi, S., Berti, A., Carr, A., Chittenden, H., Cole, S., Cousinou, M. C., Dawson, K., Dey, Biprateep, Douglass, K., Edge, A., Escoffier, S., Glanville, A., Gontcho A Gontcho, Satya, Guy, J., Hahn, C., Howlett, C., Hwang, Ho Seong, Jiang, L., Kovács, A., Mezcua, M., Moor, S., Nadathur, S., Oh, M., Parkinson, D., Rocher, A., Ross, A. J., Ruhlmann-Kleider, V., Sabiu, C. G., Said, K., Saulder, C., Sierra-Porta, D., Weiner, B., Yu, J., Zarrouk, P., Zhang, Y., Zou, H., Ahlen, S., Bailey, S., Cooper, A. P., De la Macorra, A., Dey, A., Dhungana, G., Doel, P., Eftekharzadeh, S., Fanning, K., Font-Ribera, A., Garrison, L., Gaztañaga, E., Kehoe, R., Kisner, T., Kremin, A., Landriau, M., Le Guillou, L., Levi, Michael E., Magneville, C., Meisner, Aaron M., Miquel, R., Moustakas, J., Myers, Adam D., Newman, Jeffrey A., Nie, J. D., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Schubnell, M., Tarlé, Gregory, Weaver, B. A., Zhang, K., and Zhou, Zhimin
- Subjects
Observational cosmology ,LEMB ,Galaxy spectroscopy - Abstract
The Dark Energy Spectroscopic Instrument (DESI) Survey has obtained a set of spectroscopic measurements of galaxies to validate the final survey design and target selections. To assist in these tasks, we visually inspect DESI spectra of approximately 2500 bright galaxies, 3500 luminous red galaxies (LRGs), and 10,000 emission-line galaxies (ELGs) to obtain robust redshift identifications. We then utilize the visually inspected redshift information to characterize the performance of the DESI operation. Based on the visual inspection (VI) catalogs, our results show that the final survey design yields samples of bright galaxies, LRGs, and ELGs with purity greater than 99%. Moreover, we demonstrate that the precision of the redshift measurements is approximately 10 km s−1 for bright galaxies and ELGs and approximately 40 km s−1 for LRGs. The average redshift accuracy is within 10 km s−1 for the three types of galaxies. The VI process also helps improve the quality of the DESI data by identifying spurious spectral features introduced by the pipeline. Finally, we show examples of unexpected real astronomical objects, such as Lyα emitters and strong lensing candidates, identified by VI. These results demonstrate the importance and utility of visually inspecting data from incoming and upcoming surveys, especially during their early operation phases.
- Published
- 2023
15. Reinforcement Learning informs optimal treatment strategies to limit antibiotic resistance
- Author
-
Davis T. Weaver, Jeff Maltas, and Jacob G. Scott
- Subjects
Article - Abstract
Drug resistant pathogens are a wide-spread and deadly phenomenon. Antimicrobial resistance was estimated to be associated with 4.95 million deaths worldwide in 2019. If resistance continues to develop at the current rate, bacterial infections are expected to surpass cancer as the leading cause of death worldwide by 2050. Despite this troubling trend, antimicrobial drug development has all but ceased. For the few new drugs that are approved, microbes develop rapid resistance through evolution by mutation and selection. Novel approaches to designing therapy that explicitly take into account the adaptive nature of microbial cell populations are desperately needed. Approaches that can design therapies given limited information about the evolving system are particularly important due to the limitations of clinical measurement. In this study, we explore a reinforcement learning (RL) approach capable of learning effective drug cycling policies in a system defined by empirically measured fitness landscapes. Given access to a panel of 15β-lactam antibiotics with which to treat the simulatedE. Colipopulation, we demonstrate that RL agents outperform two potential treatment paradigms at minimizing the population fitness over time. We also show that RL agents approach the performance of the optimal drug cycling policy. Crucially, we show that it is possible for RL agents to learn effective drug cycling protocols using current population fitness as the only training input. Our work represents a proof-of-concept for using AI to control complex evolutionary processes.
- Published
- 2023
- Full Text
- View/download PDF
16. The Close AGN Reference Survey (CARS)
- Author
-
Winkel, N., Husemann, B., Singha, M., Bennert, V. N., Combes, F., Davis, T. A., Gaspari, M., Jahnke, K., McElroy, R., O’Dea, C. P., and Pérez-Torres, M. A.
- Abstract
Context. The interaction between active galactic nuclei (AGNs) and their host galaxies is scarcely resolved. Narrow-line Seyfert 1 (NLS1) galaxies are believed to represent AGN at early stages of their evolution and to allow one to observe feeding and feedback processes at high black hole accretion rates. Aims. We aim to constrain the properties of the ionised gas outflow in Mrk 1044, a nearby super-Eddington accreting NLS1. Based on the outflow energetics and the associated timescales, we estimate the outflow’s future impact on the ongoing host galaxy star formation on different spatial scales. Methods. We applied a spectroastrometric analysis to observations of Mrk 1044’s nucleus obtained with the adaptive-optics-assisted narrow field mode of the VLT/MUSE instrument. This allowed us to map two ionised gas outflows traced by [O III], which have velocities of −560 ± 20 km s−1 and −144 ± 5 km s−1. Furthermore, we used an archival spectrum from the Space Telescope Imaging Spectrograph on HST to identify two Ly-α absorbing components that escape from the centre with approximately twice the velocity of the ionised gas components. Results. Both [O III] outflows are spatially unresolved and located close to the AGN (< 1 pc). They have gas densities higher than 105 cm−3, which implies that the BPT diagnostic cannot be used to constrain the underlying ionisation mechanism. We explore whether an expanding shell model can describe the velocity structure of Mrk 1044’s multi-phase outflow. In the ionised gas emission, an additional outflowing component, which is spatially resolved, is present. It has a velocity of −211 ± 22 km s−1 and a projected size of 4.6 ± 0.6 pc. Our kinematic analysis suggests that significant turbulence is present in the interstellar medium around the nucleus, which may lead to a condensation rain, potentially explaining the efficient feeding of Mrk 1044’s AGN. Within the innermost 0.5″ (160 pc), we detect modest star formation hidden by the beam-smeared emission from the outflow. Conclusions. We estimate that the multi-phase outflow was launched < 104 yr ago. Together with the star formation in the vicinity of the nucleus, this suggests that Mrk 1044’s AGN phase started only recently. The outflow carries enough mass and energy to impact the host galaxy star formation on different spatial scales, highlighting the complexity of the AGN feeding and feedback cycle in its early stages.
- Published
- 2023
17. The Dark Energy Survey Six-Year Calibration Star Catalog
- Author
-
Rykoff, E. S., Tucker, D. L., Burke, D. L., Allam, S. S., Bechtol, K., Bernstein, G. M., Brout, D., Gruendl, R. A., Lasker, J., Smith, J. A., Wester, W. C., Yanny, B., Abbott, T. M. C., Aguena, M., Alves, O., Andrade-Oliveira, F., Annis, J., Bacon, D., Bertin, E., Brooks, D., Rosell, A. Carnero, Carretero, J., Castander, F. J., Choi, A., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Diehl, H. T., Doel, P., Drlica-Wagner, A., Everett, S., Ferrero, I., Frieman, J., García-Bellido, J., Giannini, G., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., James, D. J., Kuehn, K., Lahav, O., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Myles, J., Nord, B. D., Ogando, R. L. C., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Raveri, M., Rodgríguez-Monroy, M., Sanchez, E., Santiago, B., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Varga, T. N., Vincenzi, M., Walker, A. R., Weaverdyck, N., and Wiseman, P.
- Subjects
FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
This Technical Note presents a catalog of calibrated reference stars that was generated by the Forward Calibration Method (FGCM) pipeline (arXiv:1706.01542) as part of the FGCM photometric calibration of the full Dark Energy Survey (DES) 6-Year data set (Y6). This catalog provides DES grizY magnitudes for 17 million stars with i-band magnitudes mostly in the range 16 < i < 21 spread over the full DES footprint covering 5000 square degrees over the Southern Galactic Cap at galactic latitudes b < -20 degrees (plus a few outlying fields disconnected from the main survey footprint). These stars are calibrated to a uniformity of better than 1.8 milli-mag (0.18%) RMS over the survey area. The absolute calibration of the catalog is computed with reference to the STISNIC.007 spectrum of the Hubble Space Telescope CalSpec standard star C26202; including systematic errors, the absolute flux system is known at the approximately 1% level. As such, these stars provide a useful reference catalog for calibrating grizY-band or grizY-like band photometry in the Southern Hemisphere, particularly for observations within the DES footprint., 21 pages, 15 figures, Fermilab Technical Note. Official Data Access Site: https://des.ncsa.illinois.edu/releases/other ; Temporary Data Access Site: https://data.darkenergysurvey.org/public_calib/DES_6yr_CalibStarCat/index.html
- Published
- 2023
- Full Text
- View/download PDF
18. Photometry of outer Solar System objects from the Dark Energy Survey I: photometric methods, light curve distributions and trans-Neptunian binaries
- Author
-
Bernardinelli, P. H., Bernstein, G. M., Jindal, N., Abbott, T. M. C., Aguena, M., Andrade-Oliveira, F., Annis, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Friedel, D., Frieman, J., García-Bellido, J., Giannini, G., Gruen, D., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Pieres, A., Malagón, A. A. Plazas, Raveri, M., Sanchez, E., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Walker, A. R., Wiseman, P., and Zhang, Y.
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report the methods of and initial scientific inferences from the extraction of precision photometric information for the $>800$ trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modelling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light curve amplitudes $A$ is included with this publication. We show how to assign a likelihood to the distribution $q(A)$ of light curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e. evidence ratio $, Comment: Submitted to AAS journals, data release forthcoming and will be included in journal version
- Published
- 2023
- Full Text
- View/download PDF
19. Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Aldering, G., Alexander, D. M., Alfarsy, R., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade-Oliveira, F., Armengaud, E., Asorey, J., Avila, S., Aviles, A., Bailey, S., Balaguera-Antolínez, A., Ballester, O., Baltay, C., Bault, A., Bautista, J., Behera, J., Beltran, S. F., BenZvi, S., Silva, L. Beraldo e, Bermejo-Climent, J. R., Berti, A., Besuner, R., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bolton, A. S., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Cabayol-Garcia, L., Cai, Z., Canning, R., Cardiel-Sas, L., Rosell, A. Carnero, Castander, F. J., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chuang, C., Claybaugh, T., Cole, S., Cooper, A. P., Cuceu, A., Davis, T. M., Dawson, K., de Belsunce, R., de la Cruz, R., de la Macorra, A., de Mattia, A., Demina, R., Demirbozan, U., DeRose, J., Dey, A., Dey, B., Dhungana, G., Ding, J., Ding, Z., Doel, P., Doshi, R., Douglass, K., Edge, A., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Escoffier, S., Fagrelius, P., Fan, X., Fanning, K., Fawcett, V. A., Ferraro, S., Ereza, J., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Gänsicke, B. T., García, L. Á., García-Bellido, J., Garcia-Quintero, C., Garrison, L. H., Gil-Marín, H., Golden-Marx, J., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Graur, O., Green, D., Gruen, D., Guy, J., Hadzhiyska, B., Hahn, C., Han, J. J., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Jana, A., Jiang, L., Jimenez, J., Jing, Y. P., Joudaki, S., Jullo, E., Juneau, S., Kizhuprakkat, N., Karaçaylı, N. G., Karim, T., Kehoe, R., Kent, S., Khederlarian, A., Kim, S., Kirkby, D., Kisner, T., Kitaura, F., Kneib, J., Koposov, S. E., Kovács, A., Kremin, A., Krolewski, A., L'Huillier, B., Lambert, A., Lamman, C., Lan, T. -W., Landriau, M., Lang, D., Lange, J. U., Lasker, J., Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Linder, E., Lyons, A., Magneville, C., Manera, M., Manser, C. J., Margala, D., Martini, P., McDonald, P., Medina, G. E., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Meneses-Rizo, J., Mezcua, M., Miquel, R., Montero-Camacho, P., Moon, J., Moore, S., Moustakas, J., Mueller, E., Mundet, J., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nie, J., Niz, G., Norberg, P., Noriega, H. E., Paillas, E., Palanque-Delabrouille, N., Palmese, A., Zhiwei, P., Parkinson, D., Penmetsa, S., Percival, W. J., Pérez-Fernández, A., Pérez-Ràfols, I., Pieri, M., Poppett, C., Porredon, A., Prada, F., Pucha, R., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rocher, A., Rockosi, C., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Sabiu, C. G., Said, K., Saintonge, A., Samushia, L., Sanchez, E., Saulder, C., Schaan, E., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Sheu, W., Silber, J., Sinigaglia, F., Siudek, M., Slepian, Z., Smith, A., Sprayberry, D., Stephey, L., Suárez-Pérez, J., Sun, Z., Tan, T., Tarlé, G., Tojeiro, R., Ureña-López, L. A., Vaisakh, R., Valcin, D., Valdes, F., Valluri, M., Vargas-Magaña, M., Variu, A., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., White, M., Xie, Y., Yang, J., Yèche, C., Yu, J., Yuan, S., Zhang, H., Zhang, Z., Zhao, C., Zheng, Z., Zhou, R., Zhou, Z., Zou, H., Zou, S., Zu, Y., Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DESI
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a survey covering 14,000 deg$^2$ over five years to constrain the cosmic expansion history through precise measurements of Baryon Acoustic Oscillations (BAO). The scientific program for DESI was evaluated during a five month Survey Validation (SV) campaign before beginning full operations. This program produced deep spectra of tens of thousands of objects from each of the stellar (MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy (ELG), and quasar target classes. These SV spectra were used to optimize redshift distributions, characterize exposure times, determine calibration procedures, and assess observational overheads for the five-year program. In this paper, we present the final target selection algorithms, redshift distributions, and projected cosmology constraints resulting from those studies. We also present a `One-Percent survey' conducted at the conclusion of Survey Validation covering 140 deg$^2$ using the final target selection algorithms with exposures of a depth typical of the main survey. The Survey Validation indicates that DESI will be able to complete the full 14,000 deg$^2$ program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG, and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87 million, respectively. These samples will allow exploration of the Milky Way halo, clustering on all scales, and BAO measurements with a statistical precision of 0.28% over the redshift interval $z, Comment: 42 pages, 16 figures, submitted to AJ
- Published
- 2023
- Full Text
- View/download PDF
20. Dark Energy Survey Year 3 results: Constraints on extensions to Λ CDM with weak lensing and galaxy clustering
- Author
-
Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Birrer, S., Blazek, J., Bocquet, S., Brandao-Souza, A., Bridle, S. L., Brooks, D., Burke, D. L., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, C., Davis, T. M., Derose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Farahi, A., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Friedel, D., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., Giani, L., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hamaus, N., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huang, H., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, S., Leget, P. -F., Lemos, P., Leonard, C. D., Liddle, A. R., Lima, M., Lin, H., Maccrann, N., Marshall, J. L., Mccullough, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Miranda, V., Mohr, J. J., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paterno, M., Paz-Chinchón, F., Percival, W. J., Pieres, A., Plazas Malagón, A. A., Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rogozenski, P., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scarpine, V., Scolnic, D., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., and Des, Collaboration
- Published
- 2023
21. Ascent rates of 3-D fractures driven by a finite batch of buoyant fluid
- Author
-
Davis, T, Rivalta, E, Smittarello, D, and Katz, RF
- Subjects
Mechanics of Materials ,Mechanical Engineering ,Applied Mathematics ,Condensed Matter Physics - Abstract
Propagation of fluid-filled fractures by fluid buoyancy is important in a variety of settings, from magmatic dykes and veins to water-filled crevasses in glaciers. Industrial hydro-fracturing utilises fluid-driven fractures to increase the permeability of rock formations, but few studies have quantified the effect of buoyancy on fracture pathways in this context. Analytical approximations for the buoyant ascent rate facilitate observation-based inference of buoyant effects in natural and engineered systems. Such analysis exists for two-dimensional fractures, but real fractures are three-dimensional (3-D). Here we present novel analysis to predict the buoyant ascent speed of 3-D fractures containing a fixed-volume batch of fluid. We provide two estimates of the ascent rate: an upper limit applicable at early time, and an asymptotic estimate (proportional to$t^{-2/3}$) describing how the speed decays at late time. We infer and verify these predictions by comparison with numerical experiments across a range of scales and analogue experiments on liquid oil in solid gelatine. We find the ascent speed is a function of the fluid volume, density, viscosity and the elastic parameters of the host medium. Our approximate solutions predict the ascent rate of fluid-driven fractures across a broad parameter space, including cases of water injection in shale and magmatic dykes. Our results demonstrate that in the absence of barriers or fluid loss, both dykes and industrial hydro-fractures can ascend by buoyancy over a kilometre within a day. We infer that barriers and fluid loss must cause the arrest of ascending fractures in industrial settings.
- Published
- 2022
- Full Text
- View/download PDF
22. A Sample of Dust Attenuation Laws for DES Supernova Host Galaxies
- Author
-
Duarte, J., González-Gaitán, S., Mourao, A., Paulino-Afonso, A., Guilherme-Garcia, P., Aguas, J., Galbany, L., Kelsey, L., Scolnic, D., Sullivan, M., Brout, D., Palmese, A., Wiseman, P., Pieres, A., Malagón, A. A. Plazas, Rosell, A. Carnero, To, C., Gruen, D., Bacon, D., Brooks, D., Burke, D. L., Gerdes, D. W., James, D. J., Hollowood, D. L., Friedel, D., Bertin, E., Suchyta, E., Sanchez, E., Paz-Chinchón, F., Gutierrez, G., Tarle, G., Diehl, H. T., Sevilla-Noarbe, I., Ferrero, I., Carretero, J., Frieman, J., De Vicente, J., García-Bellido, J., Honscheid, K., Kuehn, K., Gatti, M., Raveri, M., Pereira, M. E. S., Rodriguez-Monroy, M., Smith, M., Kind, M. Carrasco, Costanzi, M., Aguena, M., Kuropatkin, N., Weaverdyck, N., Alves, O., Doel, P., Melchior, P., Miquel, R., Gruendl, R. A., Hinton, S. R., Bocquet, S., Desai, S., Everett, S., Davis, T. M., Scarpine, V., and HEP, INSPIRE
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Type Ia supernovae (SNe Ia) are useful distance indicators in cosmology, provided their luminosity is standardized by applying empirical corrections based on light-curve properties. One factor behind these corrections is dust extinction, accounted for in the color-luminosity relation of the standardization. This relation is usually assumed to be universal, which could potentially introduce systematics into the standardization. The ``mass-step'' observed for SNe Ia Hubble residuals has been suggested as one such systematic. We seek to obtain a completer view of dust attenuation properties for a sample of 162 SN Ia host galaxies and to probe their link to the ``mass-step''. We infer attenuation laws towards hosts from both global and local (4 kpc) Dark Energy Survey photometry and Composite Stellar Population model fits. We recover a optical depth/attenuation slope relation, best explained by differing star/dust geometry for different galaxy orientations, which is significantly different from the optical depth/extinction slope relation observed directly for SNe. We obtain a large variation of attenuation slopes and confirm these change with host properties, like stellar mass and age, meaning a universal SN Ia correction should ideally not be assumed. Analyzing the cosmological standardization, we find evidence for a ``mass-step'' and a two dimensional ``dust-step'', both more pronounced for red SNe. Although comparable, the two steps are found no to be completely analogous. We conclude that host galaxy dust data cannot fully account for the ``mass-step'', using either an alternative SN standardization with extinction proxied by host attenuation or a ``dust-step'' approach., 20 pages, 10 figues, 9 tables. Supplementary material included (10 pages). Submitted to MNRAS
- Published
- 2022
23. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample
- Author
-
Porredon, A., Crocce, M., Elvin-Poole, J., Cawthon, R., Giannini, G., De Vicente, J., Carnero Rosell, A., Ferrero, I., Krause, E., Fang, X., Prat, J., Rodriguez-Monroy, M., Pandey, S., Pocino, A., Castander, F. J., Choi, A., Amon, A., Tutusaus, I., Dodelson, S., Sevilla-Noarbe, I., Fosalba, P., Gaztanaga, E., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Carrasco Kind, M., Chintalapati, P., Cordero, J., Derose, J., Di Valentino, E., Doux, C., Eifler, T. F., Everett, S., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Huterer, D., Jain, B., Jarvis, M., Lee, S., Lemos, P., Maccrann, N., Mena-Fernández, J., Muir, J., Myles, J., Park, Y., Raveri, M., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scolnic, D., Secco, L. F., Sheldon, E., Troja, A., Troxel, M. A., Weaverdyck, N., Yanny, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Eckert, K., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Petravick, D., Pieres, A., Plazas Malagón, A. A., Romer, A. K., Santiago, B., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Des, Collaboration, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Generalitat de Catalunya, European Research Council, Department of Energy (US), National Science Foundation (US), National Aeronautics and Space Administration (US), Porredon, A., Crocce, M., Elvin-Poole, J., Cawthon, R., Giannini, G., De Vicente, J., Carnero Rosell, A., Ferrero, I., Krause, E., Fang, X., Prat, J., Rodriguez-Monroy, M., Pandey, S., Pocino, A., Castander, F. J., Choi, A., Amon, A., Tutusaus, I., Dodelson, S., Sevilla-Noarbe, I., Fosalba, P., Gaztanaga, E., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Carrasco Kind, M., Chintalapati, P., Cordero, J., Derose, J., Di Valentino, E., Doux, C., Eifler, T. F., Everett, S., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Huterer, D., Jain, B., Jarvis, M., Lee, S., Lemos, P., Maccrann, N., Mena-Fernández, J., Muir, J., Myles, J., Park, Y., Raveri, M., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scolnic, D., Secco, L. F., Sheldon, E., Troja, A., Troxel, M. A., Weaverdyck, N., Yanny, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Eckert, K., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Petravick, D., Pieres, A., Plazas Malagón, A. A., Romer, A. K., Santiago, B., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Des, Collaboration, HEP, INSPIRE, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
luminous red galaxies ,data release ,pau survey ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,roman-space-telescope ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,oscillation spectroscopic survey ,Astrophysic ,Cosmology and Nongalactic Astrophysics ,internal consistency ,digital sky survey ,redshift distributions ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,photometric data set ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: A. Porredon et al., The cosmological information extracted from photometric surveys is most robust when multiple probes of the large scale structure of the Universe are used. Two of the most sensitive probes are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the way galaxies trace matter (the galaxy bias factor). The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000deg2 of the Dark Energy Survey’s first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies, especially selected to optimize such combination, and 100 million background shapes. We consider two flat cosmological models, the Standard Model with dark energy and cold dark matter (ΛCDM ) a variation with a free parameter for the dark energy equation of state (wCDM). Both models are marginalized over 25 astrophysical and systematic nuisance parameters. In ΛCDM we obtain for the matter density Ωm=0.320+0.041−0.034 and for the clustering amplitude S8≡σ8(Ωm/0.3)0.5=0.778+0.037−0.031, at 68% C.L. The latter is only 1σ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In wCDM we find Ωm=0.32+0.044−0.046, S8=0.777+0.049−0.051 and dark energy equation of state w=−1.031+0.218−0.379. We find that including smaller scales, while marginalizing over nonlinear galaxy bias, improves the constraining power in the Ωm−S8 plane by 31% and in the Ωm−w plane by 41% while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3×2pt)., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management systemis supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-66861, No. FPA2015-68048, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds fromthe European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through Project No. CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq Grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive paid-up irrevocable world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Computations were made on the supercomputer Guillimin from McGill University, managed by Calcul Quebec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), the ministere de l’Économie, de la science et de l’innovation du Quebec (MESI) and the Fonds de recherche du Quebec-Nature et technologies (FRQ-NT). This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Grants No. OCI-0725070 and No. ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This research used resources of the Ohio Supercomputer Center (OSC) [117] and of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
- Published
- 2022
24. A galaxy-driven model of type Ia supernova luminosity variations
- Author
-
Wiseman, P., Vincenzi, M., Sullivan, M., Kelsey, L., Popovic, B., Rose, B., Brout, D., Davis, T. M., Frohmaier, C., Galbany, L., Lidman, C., Möller, A., Scolnic, D., Smith, M., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., Pereira, M. E. S., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Friedel, D., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., March, M., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Soares-Santos, M., Suchyta, E., Tarle, G., To, C., Varga, T. N., DES Collaboration, Wiseman, P., Vincenzi, M., Sullivan, M., Kelsey, L., Popovic, B., Rose, B., Brout, D., Davis, T. M., Frohmaier, C., Galbany, L., Lidman, C., Möller, A., Scolnic, D., Smith, M., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., Pereira, M. E. S., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Friedel, D., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., March, M., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Soares-Santos, M., Suchyta, E., Tarle, G., To, C., Varga, T. N., Des, Collaboration, Science and Technology Facilities Council (UK), European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Consejo Superior de Investigaciones Científicas (España), European Research Council, Department of Energy (US), National Science Foundation (US), Ministerio de Educación y Ciencia (España), and Generalitat de Catalunya
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,supernovae general ,dust ,extinction ,galaxies evolution ,cosmology observations ,Cosmology: observations ,Supernovae: general ,Galaxies: evolution ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: P. Wiseman et al., Type Ia supernovae (SNe Ia) are used as standardizable candles to measure cosmological distances, but differences remain in their corrected luminosities which display a magnitude step as a function of host galaxy properties such as stellar mass and rest-frame U−R colour. Identifying the cause of these steps is key to cosmological analyses and provides insight into SN physics. Here we investigate the effects of SN progenitor ages on their light-curve properties using a galaxy-based forward model that we compare to the Dark Energy Survey 5-yr SN Ia sample. We trace SN Ia progenitors through time and draw their light-curve width parameters from a bimodal distribution according to their age. We find that an intrinsic luminosity difference between SNe of different ages cannot explain the observed trend between step size and SN colour. The data split by stellar mass are better reproduced by following recent work implementing a step in total-to-selective dust extinction ratio (RV) between low- and high-mass hosts, although an additional intrinsic luminosity step is still required to explain the data split by host galaxy U−R. Modelling the RV step as a function of galaxy age provides a better match overall. Additional age versus luminosity steps marginally improve the match to the data, although most of the step is absorbed by the width versus luminosity coefficient α. Furthermore, we find no evidence that α varies with SN age., P.W. acknowledges support from the Science and Technology Facilities Council (STFC) grant ST/R000506/1. MS acknowledges support from EU/FP7-ERC grant 615929. LK thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1. LG acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033, and the European Social Fund (ESF) ‘Investing in your future’ under the 2019 Ramón y Cajal program RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the program Unidad de Excelencia María de Maeztu CEX2020-001058-M. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement number 759194 - USNAC). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
25. Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies
- Author
-
A Mau, S., Nadler, E. O., Wechsler, R. H., Drlica-Wagner, A., Bechtol, K., Green, G., Huterer, D., Li, T. S., Mao, Y. -Y., Martínez-Vázquez, C. E., McNanna, M., Mutlu-Pakdil, B., Pace, A. B., Peter, A., Riley, A. H., Strigari, L., Wang, M. -Y., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Costanzi, M., Crocce, M., Pereira, M. E. S., Davis, T. M., Vicente, J. De, Desai, S., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Maia, M. A. G., Marshall, J. L., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Paz-Chinchón, F., Pieres, A., Rodriguez-Monroy, M., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Tucker, D. L., Weller, J., DES Collaboration, Mau, S [0000-0003-3519-4004], Nadler, EO [0000-0002-1182-3825], Wechsler, RH [0000-0003-2229-011X], Drlica-Wagner, A [0000-0001-8251-933X], Bechtol, K [0000-0001-8156-0429], Green, G [0000-0001-5417-2260], Huterer, D [0000-0001-6558-0112], Li, TS [0000-0002-9110-6163], Mao, YY [0000-0002-1200-0820], Martínez-Vázquez, CE [0000-0002-9144-7726], McNanna, M [0000-0001-5435-7820], Mutlu-Pakdil, B [0000-0001-9649-4815], Pace, AB [0000-0002-6021-8760], Peter, A [0000-0002-8040-6785], Riley, AH [0000-0001-5805-5766], Strigari, L [0000-0001-5672-6079], Wang, MY [0000-0002-8226-6237], Aguena, M [0000-0001-5679-6747], Allam, S [0000-0002-7069-7857], Annis, J [0000-0002-0609-3987], Bacon, D [0000-0002-2562-8537], Bertin, E [0000-0002-3602-3664], Bocquet, S [0000-0002-4900-805X], Brooks, D [0000-0002-8458-5047], Burke, DL [0000-0003-1866-1950], Rosell, AC [0000-0003-3044-5150], Kind, MC [0000-0002-4802-3194], Carretero, J [0000-0002-3130-0204], Costanzi, M [0000-0001-8158-1449], Crocce, M [0000-0002-9745-6228], Davis, TM [0000-0002-4213-8783], Vicente, JD [0000-0001-8318-6813], Desai, S [0000-0002-0466-3288], Ferrero, I [0000-0002-1295-1132], Flaugher, B [0000-0002-2367-5049], Frieman, J [0000-0003-4079-3263], García-Bellido, J [0000-0002-9370-8360], Giannini, G [0000-0002-3730-1750], Gruen, D [0000-0003-3270-7644], Gruendl, RA [0000-0002-4588-6517], Gschwend, J [0000-0003-3023-8362], Gutierrez, G [0000-0003-0825-0517], Hinton, SR [0000-0003-2071-9349], Hollowood, DL [0000-0002-9369-4157], Honscheid, K [0000-0002-6550-2023], James, DJ [0000-0001-5160-4486], Kuehn, K [0000-0003-0120-0808], Lahav, O [0000-0002-1134-9035], Maia, MAG [0000-0001-9856-9307], Marshall, JL [0000-0003-0710-9474], Miquel, R [0000-0002-6610-4836], Morgan, R [0000-0002-7016-5471], Ogando, RLC [0000-0003-2120-1154], Paz-Chinchón, F [0000-0003-1339-2683], Pieres, A [0000-0001-9186-6042], Sanchez, E [0000-0002-9646-8198], Serrano, S [0000-0002-0211-2861], Sevilla-Noarbe, I [0000-0002-1831-1953], Suchyta, E [0000-0002-7047-9358], Tarle, G [0000-0003-1704-0781], To, C [0000-0001-7836-2261], Tucker, DL [0000-0001-7211-5729], Weller, J [0000-0002-8282-2010], Apollo - University of Cambridge Repository, UAM. Departamento de Física Teórica, Department of Energy (US), National Science Foundation (US), Ministerio de Educación y Ciencia (España), Kavli Institute for Particle Astrophysics and Cosmology, Science and Technology Facilities Council (UK), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Ministerio de Economía y Competitividad (España), German Research Foundation, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, European Research Council, A Mau, S., Nadler, E. O., Wechsler, R. H., Drlica-Wagner, A., Bechtol, K., Green, G., Huterer, D., T. S., Li, Mao, Y. -Y., Martínez-Vázquez, C. E., Mcnanna, M., Mutlu-Pakdil, B., Pace, A. B., Peter, A., Riley, A. H., Strigari, L., Wang, M. -Y., Aguena, M., Allam, S., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Costanzi, M., Crocce, M., Pereira, M. E. S., Davis, T. M., Vicente, J. De, Desai, S., Doel, P., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Maia, M. A. G., Marshall, J. L., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Paz-Chinchón, F., Pieres, A., Rodriguez-Monroy, M., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Tucker, D. L., Weller, J., and Des, Collaboration
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,astro-ph.GA ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,hep-ph ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy abundances ,High Energy Physics - Phenomenology ,Halo ,High Energy Physics - Phenomenology (hep-ph) ,Dwarf Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Dark matter ,astro-ph.CO ,Dark Matter ,Milky Way dark matter halo ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Mau et al., We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetime τ comparable to the age of the universe to a lighter DM particle (with mass splitting epsilon) and to a dark radiation species. These decays impart a characteristic "kick velocity," Vkick = epsilonc, on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function of τ and Vkick using a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models with τ < 18 Gyr (29 Gyr) for Vkick = 20 kms−1 (40 kms−1) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble and S8 tensions., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF's NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF's NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant No. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
26. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing
- Author
-
DES Collaboration, Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Bhargava, S., Birrer, S., Blazek, J., Brandao-Souza, A., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. da Silva, Davis, C., Davis, T. M., De Vicente, J., DeRose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dietrich, J. P., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Evrard, A. E., Fang, X., Farahi, A., Fernandez, E., Ferrero, I., Fert��, A., Fosalba, P., Friedrich, O., Frieman, J., Garc��a-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Leget, P. -F., Lemos, P., Liddle, A. R., Lidman, C., Lima, M., Lin, H., MacCrann, N., Maia, M. A. G., Marshall, J. L., Martini, P., McCullough, J., Melchior, P., Mena-Fern��ndez, J., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paz-Chinch��n, F., Petravick, D., Pieres, A., Malag��n, A. A. Plazas, Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., S��nchez, C., Sanchez, E., Sanchez, J., Cid, D. Sanchez, Scarpine, V., Schubnell, M., Scolnic, D., Secco, L. F., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tucker, D. L., Tutusaus, I., Varga, T. N., Walker, A. R., Weaverdyck, N., Wechsler, R., Weller, J., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Bhargava, S., Birrer, S., Blazek, J., Brandao-Souza, A., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., Da Costa, L. N., Da Silva Pereira, M. E., Davis, C., Davis, T. M., De Vicente, J., Derose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dietrich, J. P., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Evrard, A. E., Fang, X., Farahi, A., Fernandez, E., Ferrero, I., Ferte, A., Fosalba, P., Friedrich, O., Frieman, J., Garcia-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Leget, P. -F., Lemos, P., Liddle, A. R., Lidman, C., Lima, M., Lin, H., Maccrann, N., Maia, M. A. G., Marshall, J. L., Martini, P., Mccullough, J., Melchior, P., Mena-Fernandez, J., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paz-Chinchon, F., Petravick, D., Pieres, A., Plazas Malagon, A. A., Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sanchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scarpine, V., Schubnell, M., Scolnic, D., Secco, L. F., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tucker, D. L., Tutusaus, I., Varga, T. N., Walker, A. R., Weaverdyck, N., Wechsler, R., Weller, J., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Ministerio de Ciencia, Innovación y Universidades (España), European Research Council, European Commission, Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Department of Energy (US), Generalitat de Catalunya, National Aeronautics and Space Administration (US), National Science Foundation (US), NSF's National Optical-Infrared Astronomy Research Laboratory, Laboratório Interinstitucional de E-Astronomia - LIneA, Argonne National Laboratory, Fermi National Accelerator Laboratory, University of Michigan, Universidade Estadual Paulista (UNESP), Stanford University, Universidad Autonoma de Madrid, University of Portsmouth, University of Hawai'i, University of Wisconsin-Madison, University of Pennsylvania, University of Sussex, 450 Serra Mall, Northeastern University, Observatoire de Sauverny, Universidade Estadual de Campinas (UNICAMP), University of Manchester, University College London, University of Chicago, SLAC National Accelerator Laboratory, Carnegie Mellon University, Instituto de Astrofisica de Canarias, Dpto. Astrofísica, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, The Barcelona Institute of Science and Technology, Institut d'Estudis Espacials de Catalunya (IEEC), Institute of Space Sciences (ICE CSIC), Duke University, The Ohio State University, School of Physics and Astronomy, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, University of Queensland, Medioambientales y Tecnológicas (CIEMAT), Lawrence Berkeley National Laboratory, IIT Hyderabad, Ludwig-Maximilians-Universität, University of Arizona, California Institute of Technology, Santa Cruz Institute for Particle Physics, University of Texas at Austin, University of Oslo, University of Cambridge, 382 Via Pueblo Mall, Denys Wilkinson Building, University of Geneva, Center for Astrophysics and Harvard and Smithsonian, Université de Paris, Macquarie University, Lowell Observatory, University of Edinburgh, Universidade de Lisboa, Perimeter Institute for Theoretical Physics, The Australian National University, Australian National University, Universidade de São Paulo (USP), Texas AandM University, Harvard University, Peyton Hall, Institució Catalana de Recerca i Estudis Avançats, Max Planck Institute for Extraterrestrial Physics, The University of Tokyo, Brookhaven National Laboratory, University of Southampton, Oak Ridge National Laboratory, Ludwig-Maximilians Universität München, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), DES, UAM. Departamento de Física Teórica, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
luminous red galaxies ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,parameter constraints ,supernova legacy survey ,Astrophysics ,01 natural sciences ,Astrophysic ,Cosmology and Nongalactic Astrophysics ,0103 physical sciences ,LENTES GRAVITACIONAIS ,Weak ,010303 astronomy & astrophysics ,mass correlation-function ,Gravitational Lensing ,extragalactic objects ,010308 nuclear & particles physics ,Física ,Dark Energy ,ia supernovae ,digital sky survey ,power-spectrum ,photometric data set ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: T. M. C. Abbott et al., We present the first cosmology results from large-scale structure using the full 5000 deg2 of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions (3×2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy–galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat ΛCDM and wCDM cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude S8=0.776+0.017−0.017 and matter density Ωm=0.339+0.032−0.031 in ΛCDM, mean with 68% confidence limits; S8=0.775+0.026−0.024, Ωm=0.352+0.035−0.041, and dark energy equation-of-state parameter w=−0.98+0.32−0.20 in wCDM. These constraints correspond to an improvement in signal-to-noise of the DES Year 3 3×2pt data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed p=0.13–0.48. We find better agreement between DES 3×2pt and Planck than in DES Y1, despite the significantly improved precision of both. When combining DES 3×2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find p=0.34. Combining all of these datasets with Planck CMB lensing yields joint parameter constraints of S8=0.812+0.008−0.008, Ωm=0.306+0.004−0.005, h=0.680+0.004−0.003, and ∑mν, Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements No. 240672, No. 291329, and No. 306478.We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work also used resources on Duke Compute Cluster (DCC), the CCAPP condo of the Ruby Cluster at the Ohio Supercomputing Center [232], and computing resources at SLAC National Accelerator Laboratory. We also thank the staff of the Fermilab Computing Sector for their support. Plots in this manuscript were produced partly with MATPLOTLIB [233], and it has been prepared using NASA’s Astrophysics Data System Bibliographic Services.
- Published
- 2022
27. Short and Mid-Term Economic Impact of Pulmonary Artery Catheter Use in Adult Cardiac Surgery: A Hospital and Integrated Health System Perspective
- Author
-
Stevens M, Davis T, Munson SH, Shenoy AV, Gricar BLA, Yapici HO, and Shaw AD
- Subjects
lcsh:R5-920 ,economic evaluation ,lcsh:Therapeutics. Pharmacology ,cost analysis ,lcsh:RM1-950 ,respiratory failure ,integrated payer-provider ,heart failure ,acute care hospital ,lcsh:Medicine (General) - Abstract
Mitali Stevens,1 Todd Davis,1 Sibyl H Munson,2 Apeksha V Shenoy,2 Boye LA Gricar,2 Halit O Yapici,2 Andrew D Shaw3 1Global Health Economics & Reimbursement, Edwards Lifesciences, Irvine, CA, USA; 2Department of Health Economics and Outcomes Research, Boston Strategic Partners, Inc., Boston, MA, USA; 3Department of Anaesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, CanadaCorrespondence: Andrew D ShawDepartment of Anaesthesiology and Pain Medicine, University of Alberta, 8440 112 St NW, Edmonton, Alberta T6G 2G3, CanadaEmail ashaw2@ualberta.caObjective: A monitoring pulmonary artery catheter (PAC) is utilized in approximately 34% of the US cardiac surgical procedures. Increased use of PAC has been reported to have an association with complication rates: significant decreases in new-onset heart failure (HF) and respiratory failure (RF), but increases in bacteremia and urinary tract infections. We assessed the impact of increasing PAC adoption on hospital costs among cardiac surgery patients for US-based healthcare systems.Methods: An Excel-based economic model calculated annualized savings for a US hospital with various cardiac surgical volumes and PAC adoption rates. A second model, for an integrated payer-provider health system, analyzed outcomes/costs resulting from the cardiac surgical admission and for the treatment of persistent HF and RF complications in the year following surgery. Model inputs were extracted from published literature, and one-way and probabilistic sensitivity analyses were performed.Results: For an acute care hospital with 500 procedures/year and 34% PAC adoption, annualized savings equalled $61,806 vs no PAC utilization. An increase in PAC adoption rate led to increased savings of $134,751 for 75% and $170,685 for 95% adoption. Savings ranged from $12,361 to $185,418 at volumes of 100 and 1500 procedures/year, respectively. For an integrated payer-provider health system with the base-case scenario of 3845 procedures/year and 34% PAC adoption, estimated savings were $596,637 for the combined surgical index admission and treatment for related complications over the following year.Conclusion: PAC utilization in adult cardiac surgery patients results in reduced costs for both acute care hospitals and payer-provider integrated health systems.Keywords: heart failure, respiratory failure, economic evaluation, cost analysis, acute care hospital, integrated payer-provider
- Published
- 2021
28. SARS-CoV-2 evolution during treatment of chronic infection
- Author
-
Kemp, S. A., Collier, D. A., Datir, R. P., Ferreira, I. A. T. M., Gayed, S., Jahun, A., Hosmillo, M., Rees-Spear, C., Mlcochova, P., Lumb, I. U., Roberts, D. J., Chandra, A., Temperton, N., Baker, S., Dougan, G., Hess, C., Kingston, N., Lehner, P. J., Lyons, P. A., Matheson, N. J., Owehand, W. H., Saunders, C., Summers, C., Thaventhiran, J. E. D., Toshner, M., Weekes, M. P., Bucke, A., Calder, J., Canna, L., Domingo, J., Elmer, A., Fuller, S., Harris, J., Hewitt, S., Kennet, J., Jose, S., Kourampa, J., Meadows, A., O'Brien, C., Price, J., Publico, C., Rastall, R., Ribeiro, C., Rowlands, J., Ruffolo, V., Tordesillas, H., Bullman, B., Dunmore, B. J., Fawke, S., Graf, S., Hodgson, J., Huang, C., Hunter, K., Jones, E., Legchenko, E., Matara, C., Martin, J., Mescia, F., O'Donnell, C., Pointon, L., Pond, N., Shih, J., Sutcliffe, R., Tilly, T., Treacy, C., Tong, Z., Wood, J., Wylot, M., Bergamaschi, L., Betancourt, A., Bower, G., Cossetti, C., De Sa, A., Epping, M., Gleadall, N., Grenfell, R., Hinch, A., Huhn, O., Jackson, S., Jarvis, I., Lewis, D., Marsden, J., Nice, F., Okecha, G., Omarjee, O., Perera, M., Richoz, N., Romashova, V., Yarkoni, N. S., Sharma, R., Stefanucci, L., Stephens, J., Strezlecki, M., Turner, L., De Bie, E. M. D. D., Bunclark, K., Josipovic, M., Mackay, M., Rossi, S., Selvan, M., Spencer, S., Yong, C., Ansaripour, A., Michael, A., Mwaura, L., Patterson, C., Polwarth, G., Polgarova, P., di Stefano, G., Fahey, C., Michel, R., Bong, S. -H., Coudert, J. D., Holmes, E., Allison, J., Butcher, H., Caputo, D., Clapham-Riley, D., Dewhurst, E., Furlong, A., Graves, B., Gray, J., Ivers, T., Kasanicki, M., Le Gresley, E., Linger, R., Meloy, S., Muldoon, F., Ovington, N., Papadia, S., Phelan, I., Stark, H., Stirrups, K. E., Townsend, P., Walker, N., Webster, J., Robson, S. C., Loman, N. J., Connor, T. R., Golubchik, T., Martinez Nunez, R. T., Ludden, C., Corden, S., Johnston, I., Bonsall, D., Smith, C. P., Awan, A. R., Bucca, G., Estee Torok, M., Saeed, K., Prieto, J. A., Jackson, D. K., Hamilton, W. L., Snell, L. B., Moore, C., Harrison, E. M., Goncalves, S., Fairley, D. J., Loose, M. W., Watkins, J., Livett, R., Moses, S., Amato, R., Nicholls, S., Bull, M., Smith, D. L., Barrett, J., Aanensen, D. M., Curran, M. D., Parmar, S., Aggarwal, D., Shepherd, J. G., Parker, M. D., Glaysher, S., Bashton, M., Underwood, A. P., Pacchiarini, N., Loveson, K. F., Carabelli, A. M., Templeton, K. E., Langford, C. F., Sillitoe, J., de Silva, T. I., Wang, D., Kwiatkowski, D., Rambaut, A., O'Grady, J., Cottrell, S., Holden, M. T. G., Thomson, E. C., Osman, H., Andersson, M., Chauhan, A. J., Hassan-Ibrahim, M. O., Lawniczak, M., Alderton, A., Chand, M., Constantinidou, C., Unnikrishnan, M., Darby, A. C., Hiscox, J. A., Paterson, S., Martincorena, I., Robertson, D. L., Volz, E. M., Page, A. J., Pybus, O. G., Bassett, A. R., Ariani, C. V., Spencer Chapman, M. H., K. K., Li, Shah, R. N., Jesudason, N. G., Taha, Y., Mchugh, M. P., Dewar, R., Jahun, A. S., Mcmurray, C., Pandey, S., Mckenna, J. P., Nelson, A., Young, G. R., Mccann, C. M., Elliott, S., Lowe, H., Temperton, B., Roy, S., Price, A., Rey, S., Wyles, M., Rooke, S., Shaaban, S., de Cesare, M., Letchford, L., Silveira, S., Pelosi, E., Wilson-Davies, E., O'Toole, A., Hesketh, A. R., Stark, R., du Plessis, L., Ruis, C., Adams, H., Bourgeois, Y., Michell, S. L., Gramatopoulos, D., Edgeworth, J., Breuer, J., Todd, J. A., Fraser, C., Buck, D., John, M., Kay, G. L., Palmer, S., Peacock, S. J., Heyburn, D., Weldon, D., Robinson, E., Mcnally, A., Muir, P., Vipond, I. B., Boyes, J., Sivaprakasam, V., Salluja, T., Dervisevic, S., Meader, E. J., Park, N. R., Oliver, K., Jeffries, A. R., Ott, S., da Silva Filipe, A., Simpson, D. A., Williams, C., Masoli, J. A. H., Knight, B. A., Jones, C. R., Koshy, C., Ash, A., Casey, A., Bosworth, A., Ratcliffe, L., Xu-McCrae, L., Pymont, H. M., Hutchings, S., Berry, L., Jones, K., Halstead, F., Davis, T., Holmes, C., Iturriza-Gomara, M., Lucaci, A. O., Randell, P. A., Cox, A., Madona, P., Harris, K. A., Brown, J. R., Mahungu, T. W., Irish-Tavares, D., Haque, T., Hart, J., Witele, E., Fenton, M. L., Liggett, S., Graham, C., Swindells, E., Collins, J., Eltringham, G., Campbell, S., Mcclure, P. C., Clark, G., Sloan, T. J., Jones, C., Lynch, J., Warne, B., Leonard, S., Durham, J., Williams, T., Haldenby, S. T., Storey, N., Alikhan, N. -F., Holmes, N., Carlile, M., Perry, M., Craine, N., Lyons, R. A., Beckett, A. H., Goudarzi, S., Fearn, C., Cook, K., Dent, H., Paul, H., Davies, R., Blane, B., Girgis, S. T., Beale, M. A., Bellis, K. L., Dorman, M. J., Drury, E., Kane, L., Kay, S., Mcguigan, S., Nelson, R., Prestwood, L., Rajatileka, S., Batra, R., Williams, R. J., Kristiansen, M., Green, A., Justice, A., Mahanama, A. I. K., Samaraweera, B., Hadjirin, N. F., Quick, J., Poplawski, R., Kermack, L. M., Reynolds, N., Hall, G., Chaudhry, Y., Pinckert, M. L., Georgana, I., Moll, R. J., Thornton, A., Myers, R., Stockton, J., Williams, C. A., Yew, W. C., Trotter, A. J., Trebes, A., MacIntyre-Cockett, G., Birchley, A., Adams, A., Plimmer, A., Gatica-Wilcox, B., Mckerr, C., Hilvers, E., Jones, H., Asad, H., Coombes, J., Evans, J. M., Fina, L., Gilbert, L., Graham, L., Cronin, M., Kumziene-Summerhayes, S., Taylor, S., Jones, S., Groves, D. C., Zhang, P., Gallis, M., Louka, S. F., Starinskij, I., Jackson, C., Gourtovaia, M., Tonkin-Hill, G., Lewis, K., Tovar-Corona, J. M., James, K., Baxter, L., Alam, M. T., Orton, R. J., Hughes, J., Vattipally, S., Ragonnet-Cronin, M., Nascimento, F. F., Jorgensen, D., Boyd, O., Geidelberg, L., Zarebski, A. E., Raghwani, J., Kraemer, M. U. G., Southgate, J., Lindsey, B. B., Freeman, T. M., Keatley, J. -P., Singer, J. B., de Oliveira Martins, L., Yeats, C. A., Abudahab, K., Taylor, B. E. W., Menegazzo, M., Danesh, J., Hogsden, W., Eldirdiri, S., Kenyon, A., Mason, J., Robinson, T. I., Holmes, A., Hartley, J. A., Curran, T., Mather, A. E., Shankar, G., Jones, R., Howe, R., Morgan, S., Wastenge, E., Chapman, M. R., Mookerjee, S., Stanley, R., Smith, W., Peto, T., Eyre, D., Crook, D., Vernet, G., Kitchen, C., Gulliver, H., Merrick, I., Guest, M., Munn, R., Bradley, D. T., Wyatt, T., Beaver, C., Foulser, L., Churcher, C. M., Brooks, E., Smith, K. S., Galai, K., Mcmanus, G. M., Bolt, F., Coll, F., Meadows, L., Attwood, S. W., Davies, A., De Lacy, E., Downing, F., Edwards, S., Scarlett, G. P., Jeremiah, S., Smith, N., Leek, D., Sridhar, S., Forrest, S., Cormie, C., Gill, H. K., Dias, J., Higginson, E. E., Maes, M., Young, J., Wantoch, M., Jamrozy, D., Lo, S., Patel, M., Hill, V., Bewshea, C. M., Ellard, S., Auckland, C., Harrison, I., Bishop, C., Chalker, V., Richter, A., Beggs, A., Best, A., Percival, B., Mirza, J., Megram, O., Mayhew, M., Crawford, L., Ashcroft, F., Moles-Garcia, E., Cumley, N., Hopes, R., Asamaphan, P., Niebel, M. O., Gunson, R. N., Bradley, A., Maclean, A., Mollett, G., Blacow, R., Bird, P., Helmer, T., Fallon, K., Tang, J., Hale, A. D., Macfarlane-Smith, L. R., Harper, K. L., Carden, H., Machin, N. W., Jackson, K. A., Ahmad, S. S. Y., George, R. P., Turtle, L., O'Toole, E., Watts, J., Breen, C., Cowell, A., Alcolea-Medina, A., Charalampous, T., Patel, A., Levett, L. J., Heaney, J., Rowan, A., Taylor, G. P., Shah, D., Atkinson, L., Lee, J. C. D., Westhorpe, A. P., Jannoo, R., Lowe, H. L., Karamani, A., Ensell, L., Chatterton, W., Pusok, M., Dadrah, A., Symmonds, A., Sluga, G., Molnar, Z., Baker, P., Bonner, S., Essex, S., Barton, E., Padgett, D., Scott, G., Greenaway, J., Payne, B. A. I., Burton-Fanning, S., Waugh, S., Raviprakash, V., Sheriff, N., Blakey, V., Williams, L. -A., Moore, J., Stonehouse, S., Smith, L., Davidson, R. K., Bedford, L., Coupland, L., Wright, V., Chappell, J. G., Tsoleridis, T., Ball, J., Khakh, M., Fleming, V. M., Lister, M. M., Howson-Wells, H. C., Boswell, T., Joseph, A., Willingham, I., Duckworth, N., Walsh, S., Wise, E., Moore, N., Mori, M., Cortes, N., Kidd, S., Williams, R., Gifford, L., Bicknell, K., Wyllie, S., Lloyd, A., Impey, R., Malone, C. S., Cogger, B. J., Levene, N., Monaghan, L., Keeley, A. J., Partridge, D. G., Raza, M., Evans, C., Johnson, K., Abnizova, I., Aigrain, L., Ali, M., Allen, L., Anderson, R., Ariani, C., Austin-Guest, S., Bala, S., Bassett, A., Battleday, K., Beal, J., Beale, M., Bellany, S., Bellerby, T., Bellis, K., Berger, D., Berriman, M., Betteridge, E., Bevan, P., Binley, S., Bishop, J., Blackburn, K., Bonfield, J., Boughton, N., Bowker, S., Brendler-Spaeth, T., Bronner, I., Brooklyn, T., Buddenborg, S. K., Bush, R., Caetano, C., Cagan, A., Carter, N., Cartwright, J., Monteiro, T. C., Chapman, L., Chillingworth, T. -J., Clapham, P., Clark, R., Clarke, A., Clarke, C., Cole, D., Cook, E., Coppola, M., Cornell, L., Cornwell, C., Corton, C., Crackett, A., Cranage, A., Craven, H., Craw, S., Crawford, M., Cutts, T., Dabrowska, M., Davies, M., Dawson, J., Day, C., Densem, A., Dibling, T., Dockree, C., Dodd, D., Dogga, S., Dougherty, M., Dove, A., Drummond, L., Dudek, M., Durrant, L., Easthope, E., Eckert, S., Ellis, P., Farr, B., Fenton, M., Ferrero, M., Flack, N., Fordham, H., Forsythe, G., Francis, M., Fraser, A., Freeman, A., Galvin, A., Garcia-Casado, M., Gedny, A., Girgis, S., Glover, J., Goodwin, S., Gould, O., Gray, A., Gray, E., Griffiths, C., Gu, Y., Guerin, F., Hamilton, W., Hanks, H., Harrison, E., Harrott, A., Harry, E., Harvison, J., Heath, P., Hernandez-Koutoucheva, A., Hobbs, R., Holland, D., Holmes, S., Hornett, G., Hough, N., Huckle, L., Hughes-Hallet, L., Hunter, A., Inglis, S., Iqbal, S., Jackson, A., Jackson, D., Verdejo, C. J., Jones, M., Kallepally, K., Kay, K., Keatley, J., Keith, A., King, A., Kitchin, L., Kleanthous, M., Klimekova, M., Korlevic, P., Krasheninnkova, K., Lane, G., Langford, C., Laverack, A., Law, K., Lensing, S., Lewis-Wade, A., Liddle, J., Lin, Q., Lindsay, S., Linsdell, S., Long, R., Lovell, J., Mack, J., Maddison, M., Makunin, A., Mamun, I., Mansfield, J., Marriott, N., Martin, M., Mayho, M., Mccarthy, S., Mcclintock, J., Mchugh, S., Mcminn, L., Meadows, C., Mobley, E., Moll, R., Morra, M., Morrow, L., Murie, K., Nash, S., Nathwani, C., Naydenova, P., Neaverson, A., Nerou, E., Nicholson, J., Nimz, T., Noell, G. G., O'Meara, S., Ohan, V., Olney, C., Ormond, D., Oszlanczi, A., Pang, Y. F., Pardubska, B., Park, N., Parmar, A., Patel, G., Payne, M., Peacock, S., Petersen, A., Plowman, D., Preston, T., Puethe, C., Quail, M., Rajan, D., Rance, R., Rawlings, S., Redshaw, N., Reynolds, J., Reynolds, M., Rice, S., Richardson, M., Roberts, C., Robinson, K., Robinson, M., Robinson, D., Rogers, H., Rojo, E. M., Roopra, D., Rose, M., Rudd, L., Sadri, R., Salmon, N., Saul, D., Schwach, F., Scott, C., Seekings, P., Shirley, L., Simms, A., Sinnott, M., Sivadasan, S., Siwek, B., Sizer, D., Skeldon, K., Skelton, J., Slater-Tunstill, J., Sloper, L., Smerdon, N., Smith, C., Smith, J., Smith, K., Smith, M., Smith, S., Smith, T., Sneade, L., Soria, C. D., Sousa, C., Souster, E., Sparkes, A., Spencer-Chapman, M., Squares, J., Steed, C., Stickland, T., Still, I., Stratton, M., Strickland, M., Swann, A., Swiatkowska, A., Sycamore, N., Swift, E., Symons, E., Szluha, S., Taluy, E., Tao, N., Taylor, K., Thompson, S., Thompson, M., Thomson, M., Thomson, N., Thurston, S., Toombs, D., Topping, B., Tovar-Corona, J., Ungureanu, D., Uphill, J., Urbanova, J., Jansen Van, P., Vancollie, V., Voak, P., Walker, D., Walker, M., Waller, M., Ward, G., Weatherhogg, C., Webb, N., Wells, A., Wells, E., Westwood, L., Whipp, T., Whiteley, T., Whitton, G., Whitwham, A., Widaa, S., Williams, M., Wilson, M., Wright, S., Farr, B. W., Quail, M. A., Thurston, S. A. J., Bronner, I. F., Redshaw, N. M., Lensing, S. V., Balcazar, C. E., Gallagher, M. D., Williamson, K. A., Stanton, T. D., Michelsen, M. L., Warwick-Dugdale, J., Manley, R., Farbos, A., Harrison, J. W., Sambles, C. M., Studholme, D. J., Lackenby, A., Mbisa, T., Platt, S., Miah, S., Bibby, D., Manso, C., Hubb, J., Dabrera, G., Ramsay, M., Bradshaw, D., Schaefer, U., Groves, N., Gallagher, E., Lee, D., Williams, D., Ellaby, N., Hartman, H., Manesis, N., Patel, V., Ledesma, J., Twohig, K. A., Allara, E., Pearson, C., Cheng, J. K. J., Bridgewater, H. E., Frost, L. R., Taylor-Joyce, G., Brown, P. E., Tong, L., Broos, A., Mair, D., Nichols, J., Carmichael, S. N., Smollett, K. L., Nomikou, K., Aranday-Cortes, E., Johnson, N., Nickbakhsh, S., Vamos, E. E., Hughes, M., Rainbow, L., Eccles, R., Nelson, C., Whitehead, M., Gregory, R., Gemmell, M., Wierzbicki, C., Webster, H. J., Fisher, C. L., Signell, A. W., Betancor, G., Wilson, H. D., Nebbia, G., Flaviani, F., Cerda, A. C., Merrill, T. V., Wilson, R. E., Cotic, M., Bayzid, N., Thompson, T., Acheson, E., Rushton, S., O'Brien, S., Baker, D. J., Rudder, S., Aydin, A., Sang, F., Debebe, J., Francois, S., Vasylyeva, T. I., Zamudio, M. E., Gutierrez, B., Marchbank, A., Maksimovic, J., Spellman, K., Mccluggage, K., Morgan, M., Beer, R., Afifi, S., Workman, T., Fuller, W., Bresner, C., Angyal, A., Green, L. R., Parsons, P. J., Tucker, R. M., Brown, R., Whiteley, M., Rowe, W., Siveroni, I., Le-Viet, T., Gaskin, A., Johnson, R., Sharrocks, K., Blane, E., Modis, Y., Leigh, K. E., Briggs, J. A. G., van Gils, M. J., Smith, K. G. C., Bradley, J. R., Doffinger, R., Ceron-Gutierrez, L., Barcenas-Morales, G., Pollock, D. D., Goldstein, R. A., Smielewska, A., Skittrall, J. P., Gouliouris, T., Goodfellow, I. G., Gkrania-Klotsas, E., Illingworth, C. J. R., Mccoy, L. E., Gupta, R. K., Medical Microbiology and Infection Prevention, AII - Infectious diseases, Collier, Dami A [0000-0001-5446-4423], Jahun, Aminu [0000-0002-4585-1701], Temperton, Nigel [0000-0002-7978-3815], Modis, Yorgo [0000-0002-6084-0429], Briggs, John AG [0000-0003-3990-6910], Goldstein, Richard A [0000-0001-5148-4672], Skittrall, Jordan P [0000-0002-8228-3758], Gkrania-Klotsas, Effrossyni [0000-0002-0930-8330], McCoy, Laura E [0000-0001-9503-7946], Gupta, Ravindra K [0000-0001-9751-1808], and Apollo - University of Cambridge Repository
- Subjects
0301 basic medicine ,Male ,Time Factors ,viruses ,Passive ,Antibodies, Viral ,CITIID-NIHR BioResource COVID-19 Collaboration ,2.1 Biological and endogenous factors ,Viral ,Aetiology ,Neutralizing ,Lung ,Phylogeny ,neutralising antibodies ,Infectivity ,education.field_of_study ,Genome ,Multidisciplinary ,Alanine ,biology ,High-Throughput Nucleotide Sequencing ,Viral Load ,Spike Glycoprotein ,Virus Shedding ,Adenosine Monophosphate ,Aged ,Antibodies, Neutralizing ,COVID-19 ,Chronic Disease ,Genome, Viral ,Humans ,Immune Evasion ,Immune Tolerance ,Immunization, Passive ,Immunosuppression Therapy ,Mutagenesis ,Mutant Proteins ,Mutation ,SARS-CoV-2 ,Spike Glycoprotein, Coronavirus ,Evolution, Molecular ,Infectious Diseases ,Pneumonia & Influenza ,Antibody ,Infection ,Viral load ,Biotechnology ,Evolution ,General Science & Technology ,antibody escape, Convalescent plasma ,030106 microbiology ,Population ,evasion ,Antibodies ,Virus ,Article ,Vaccine Related ,resistance ,03 medical and health sciences ,Immune system ,COVID-19 Genomics UK (COG-UK) Consortium ,Biodefense ,Genetics ,Viral shedding ,education ,COVID-19 Serotherapy ,QR355 ,Prevention ,Wild type ,Molecular ,Pneumonia ,Virology ,COVID-19 Drug Treatment ,Coronavirus ,Emerging Infectious Diseases ,Good Health and Well Being ,030104 developmental biology ,biology.protein ,Immunization ,immune suppression ,mutation - Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.
- Published
- 2021
29. Core-collapse Supernovae in the Dark Energy Survey: Luminosity Functions and Host Galaxy Demographics
- Author
-
Grayling, M., Gutiérrez, C. P., Sullivan, M., Wiseman, P., Vincenzi, M., Galbany, L., Möller, A., Brout, D., Davis, T. M., Frohmaier, C., Graur, O., Kelsey, L., Lidman, C., Popovic, B., Smith, M., Toy, M., Tucker, B. E., Zontou, Z., Abbott, T. M. C., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Asorey, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Rosell, A. Carnero, Carollo, D., Kind, M. Carrasco, Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Friedel, D., Frieman, J., García-Bellido, J., Gatti, M., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lewis, G. F., Malik, U., March, M., Menanteau, F., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Rodriguez-Monroy, M., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Tucker, D. L., and Varga, T. N.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
We present the luminosity functions and host galaxy properties of the Dark Energy Survey (DES) core-collapse supernova (CCSN) sample, consisting of 69 Type II and 50 Type Ibc spectroscopically and photometrically-confirmed supernovae over a redshift range $0.045, Comment: 28 pages, 13 figures, 5 tables. Accepted by MNRAS Dec 2022
- Published
- 2022
30. Dark Energy Survey Year 3 Results: Constraints on extensions to $\Lambda$CDM with weak lensing and galaxy clustering
- Author
-
DES Collaboration, Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Birrer, S., Blazek, J., Bocquet, S., Brandao-Souza, A., Bridle, S. L., Brooks, D., Burke, D. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, C., Davis, T. M., DeRose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Farahi, A., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Friedel, D., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., Giani, L., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hamaus, N., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huang, H., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, S., Leget, P. -F., Lemos, P., Leonard, C. D., Liddle, A. R., Lima, M., Lin, H., MacCrann, N., Marshall, J. L., McCullough, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Miranda, V., Mohr, J. J., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paterno, M., Paz-Chinchón, F., Percival, W. J., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rogozenski, P., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Cid, D. Sanchez, Scarpine, V., Scolnic, D., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Yanny, B., Yin, B., Zhang, Y., and Zuntz, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We constrain extensions to the $\Lambda$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $\sigma_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $\Omega_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(\Delta N_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $\Sigma(k,z) = \Sigma_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ and $\mu(k,z)=\mu_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ respectively to $\Sigma_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(\Sigma_0,\mu_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $\Lambda$CDM., Comment: Updated to match published version. 46 pages, 25 figures, data available at https://dev.des.ncsa.illinois.edu/releases/y3a2/Y3key-extensions
- Published
- 2022
31. SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2
- Author
-
Eales, O, Page, AJ, de Oliveira Martins, L, Wang, H, Bodinier, B, Haw, D, Jonnerby, J, Atchison, C, Robson, SC, Connor, TR, Loman, NJ, Golubchik, T, Nunez, RTM, Bonsall, D, Rambaut, A, Snell, LB, Livett, R, Ludden, C, Corden, S, Nastouli, E, Nebbia, G, Johnston, I, Lythgoe, K, Torok, ME, Goodfellow, IG, Prieto, JA, Saeed, K, Jackson, DK, Houlihan, C, Frampton, D, Hamilton, WL, Witney, AA, Bucca, G, Pope, CF, Moore, C, Thomson, EC, Harrison, EM, Smith, CP, Rogan, F, Beckwith, SM, Murray, A, Singleton, D, Eastick, K, Sheridan, LA, Randell, P, Jackson, LM, Ariani, CV, Gonçalves, S, Fairley, DJ, Loose, MW, Watkins, J, Moses, S, Nicholls, S, Bull, M, Amato, R, Smith, DL, Aanensen, DM, Barrett, JC, Aggarwal, D, Shepherd, JG, Curran, MD, Parmar, S, Parker, MD, Williams, C, Glaysher, S, Underwood, AP, Bashton, M, Pacchiarini, N, Loveson, KF, Byott, M, Carabelli, AM, Templeton, KE, de Silva, TI, Wang, D, Langford, CF, Sillitoe, J, Gunson, RN, Cottrell, S, O’Grady, J, Kwiatkowski, D, Lillie, PJ, Cortes, N, Moore, N, Thomas, C, Burns, PJ, Mahungu, TW, Liggett, S, Beckett, AH, Holden, MTG, Levett, LJ, Osman, H, Hassan-Ibrahim, MO, Simpson, DA, Chand, M, Gupta, RK, Darby, AC, Paterson, S, Pybus, OG, Volz, EM, de Angelis, D, Robertson, DL, Martincorena, I, Aigrain, L, Bassett, AR, Wong, N, Taha, Y, Erkiert, MJ, Chapman, MHS, Dewar, R, McHugh, MP, Mookerjee, S, Aplin, S, Harvey, M, Sass, T, Umpleby, H, Wheeler, H, McKenna, JP, Warne, B, Taylor, JF, Chaudhry, Y, Izuagbe, R, Jahun, AS, Young, GR, McMurray, C, McCann, CM, Nelson, A, Elliott, S, Lowe, H, Price, A, Crown, MR, Rey, S, Roy, S, Temperton, B, Shaaban, S, Hesketh, AR, Laing, KG, Monahan, IM, Heaney, J, Pelosi, E, Silviera, S, Wilson-Davies, E, Fryer, H, Adams, H, du Plessis, L, Johnson, R, Harvey, WT, Hughes, J, Orton, RJ, Spurgin, LG, Bourgeois, Y, Ruis, C, O’Toole, Á, Gourtovaia, M, Sanderson, T, Fraser, C, Edgeworth, J, Breuer, J, Michell, SL, Todd, JA, John, M, Buck, D, Gajee, K, Kay, GL, Peacock, SJ, Heyburn, D, Kitchman, K, McNally, A, Pritchard, DT, Dervisevic, S, Muir, P, Robinson, E, Vipond, BB, Ramadan, NA, Jeanes, C, Weldon, D, Catalan, J, Jones, N, da Silva Filipe, A, Fuchs, M, Miskelly, J, Jeffries, AR, Oliver, K, Park, NR, Ash, A, Koshy, C, Barrow, M, Buchan, SL, Mantzouratou, A, Clark, G, Holmes, CW, Campbell, S, Davis, T, Tan, NK, Brown, JR, Harris, KA, Kidd, SP, Grant, PR, Xu-McCrae, L, Cox, A, Madona, P, Pond, M, Randell, PA, Withell, KT, Graham, C, Denton-Smith, R, Swindells, E, Turnbull, R, Sloan, TJ, Bosworth, A, Hutchings, S, Pymont, HM, Casey, A, Ratcliffe, L, Jones, CR, Knight, BA, Haque, T, Hart, J, Irish-Tavares, D, Witele, E, Mower, C, Watson, LK, Collins, J, Eltringham, G, Crudgington, D, Macklin, B, Iturriza-Gomara, M, Lucaci, AO, McClure, PC, Carlile, M, Holmes, N, Storey, N, Rooke, S, Yebra, G, Craine, N, Perry, M, Alikhan, N - F, Bridgett, S, Cook, KF, Fearn, C, Goudarzi, S, Lyons, RA, Williams, T, Haldenby, ST, Durham, J, Leonard, S, Davies, RM, Batra, R, Blane, B, Spyer, MJ, Smith, P, Yavus, M, Williams, RJ, Mahanama, AIK, Samaraweera, B, Girgis, ST, Hansford, SE, Green, A, Beaver, C, Bellis, KL, Dorman, MJ, Kay, S, Prestwood, L, Rajatileka, S, Quick, J, Poplawski, R, Reynolds, N, Mack, A, Morriss, A, Whalley, T, Patel, B, Georgana, I, Hosmillo, M, Pinckert, ML, Stockton, J, Henderson, JH, Hollis, A, Stanley, W, Yew, WC, Myers, R, Thornton, A, Adams, A, Annett, T, Asad, H, Birchley, A, Coombes, J, Evans, JM, Fina, L, Gatica-Wilcox, B, Gilbert, L, Graham, L, Hey, J, Hilvers, E, Jones, S, Jones, H, Kumziene-Summerhayes, S, McKerr, C, Powell, J, Pugh, G, Taylor, S, Trotter, AJ, Williams, CA, Kermack, LM, Foulkes, BH, Gallis, M, Hornsby, HR, Louka, SF, Pohare, M, Wolverson, P, Zhang, P, MacIntyre-Cockett, G, Trebes, A, Moll, RJ, Ferguson, L, Goldstein, EJ, Maclean, A, Tomb, R, Starinskij, I, Thomson, L, Southgate, J, Kraemer, MUG, Raghwani, J, Zarebski, AE, Boyd, O, Geidelberg, L, Illingworth, CJ, Jackson, C, Pascall, D, Vattipally, S, Freeman, TM, Hsu, SN, Lindsey, BB, James, K, Lewis, K, Tonkin-Hill, G, Tovar-Corona, JM, Cox, MG, Abudahab, K, Menegazzo, M, MEng, BEWT, Yeats, CA, Mukaddas, A, Wright, DW, Colquhoun, R, Hill, V, Jackson, B, McCrone, JT, Medd, N, Scher, E, Keatley, J - P, Curran, T, Morgan, S, Maxwell, P, Smith, K, Eldirdiri, S, Kenyon, A, Holmes, AH, Price, JR, Wyatt, T, Mather, AE, Skvortsov, T, Hartley, JA, Guest, M, Kitchen, C, Merrick, I, Munn, R, Bertolusso, B, Lynch, J, Vernet, G, Kirk, S, Wastnedge, E, Stanley, R, Idle, G, Bradley, DT, Poyner, J, Mori, M, Jones, O, Wright, V, Brooks, E, Churcher, CM, Fragakis, M, Galai, K, Jermy, A, Judges, S, McManus, GM, Smith, KS, Westwick, E, Attwood, SW, Bolt, F, Davies, A, De Lacy, E, Downing, F, Edwards, S, Meadows, L, Jeremiah, S, Smith, N, Foulser, L, Charalampous, T, Patel, A, Berry, L, Boswell, T, Fleming, VM, Howson-Wells, HC, Joseph, A, Khakh, M, Lister, MM, Bird, PW, Fallon, K, Helmer, T, McMurray, CL, Odedra, M, Shaw, J, Tang, JW, Willford, NJ, Blakey, V, Raviprakash, V, Sheriff, N, Williams, L - A, Feltwell, T, Bedford, L, Cargill, JS, Hughes, W, Moore, J, Stonehouse, S, Atkinson, L, Lee, JCD, Shah, D, Alcolea-Medina, A, Ohemeng-Kumi, N, Ramble, J, Sehmi, J, Williams, R, Chatterton, W, Pusok, M, Everson, W, Castigador, A, Macnaughton, E, Bouzidi, KE, Lampejo, T, Sudhanva, M, Breen, C, Sluga, G, Ahmad, SSY, George, RP, Machin, NW, Binns, D, James, V, Blacow, R, Coupland, L, Smith, L, Barton, E, Padgett, D, Scott, G, Cross, A, Mirfenderesky, M, Greenaway, J, Cole, K, Clarke, P, Duckworth, N, Walsh, S, Bicknell, K, Impey, R, Wyllie, S, Hopes, R, Bishop, C, Chalker, V, Harrison, I, Gifford, L, Molnar, Z, Auckland, C, Evans, C, Johnson, K, Partridge, DG, Raza, M, Baker, P, Bonner, S, Essex, S, Murray, LJ, Lawton, AI, Burton-Fanning, S, Payne, BAI, Waugh, S, Gomes, AN, Kimuli, M, Murray, DR, Ashfield, P, Dobie, D, Ashford, F, Best, A, Crawford, L, Cumley, N, Mayhew, M, Megram, O, Mirza, J, Moles-Garcia, E, Percival, B, Driscoll, M, Ensell, L, Lowe, HL, Maftei, L, Mondani, M, Chaloner, NJ, Cogger, BJ, Easton, LJ, Huckson, H, Lewis, J, Lowdon, S, Malone, CS, Munemo, F, Mutingwende, M, Nicodemi, R, Podplomyk, O, Somassa, T, Beggs, A, Richter, A, Cormie, C, Dias, J, Forrest, S, Higginson, EE, Maes, M, Young, J, Davidson, RK, Jackson, KA, Turtle, L, Keeley, AJ, Ball, J, Byaruhanga, T, Chappell, JG, Dey, J, Hill, JD, Park, EJ, Fanaie, A, Hilson, RA, Yaze, G, Lo, S, Afifi, S, Beer, R, Maksimovic, J, McCluggage, K, Spellman, K, Bresner, C, Fuller, W, Marchbank, A, Workman, T, Shelest, E, Debebe, J, Sang, F, Zamudio, ME, Francois, S, Gutierrez, B, Vasylyeva, TI, Flaviani, F, Ragonnet-Cronin, M, Smollett, KL, Broos, A, Mair, D, Nichols, J, Nomikou, K, Tong, L, Tsatsani, I, O’Brien, PS, Rushton, S, Sanderson, R, Perkins, J, Cotton, S, Gallagher, A, Allara, E, Pearson, C, Bibby, D, Dabrera, G, Ellaby, N, Gallagher, E, Hubb, J, Lackenby, A, Lee, D, Manesis, N, Mbisa, T, Platt, S, Twohig, KA, Morgan, M, Aydin, A, Baker, DJ, Foster-Nyarko, E, Prosolek, SJ, Rudder, S, Baxter, C, Carvalho, SF, Lavin, D, Mariappan, A, Radulescu, C, Singh, A, Tang, M, Morcrette, H, Bayzid, N, Cotic, M, Balcazar, CE, Gallagher, MD, Maloney, D, Stanton, TD, Williamson, KA, Manley, R, Michelsen, ML, Sambles, CM, Studholme, DJ, Warwick-Dugdale, J, Eccles, R, Gemmell, M, Gregory, R, Hughes, M, Nelson, C, Rainbow, L, Vamos, EE, Webster, HJ, Whitehead, M, Wierzbicki, C, Angyal, A, Green, LR, Whiteley, M, Betteridge, E, Bronner, IF, Farr, BW, Goodwin, S, Lensing, SV, McCarthy, SA, Quail, MA, Rajan, D, Redshaw, NM, Scott, C, Shirley, L, Thurston, SAJ, Rowe, W, Gaskin, A, Le-Viet, T, Bonfield, J, Liddle, J, Whitwham, A, Ashby, D, Barclay, W, Taylor, G, Cooke, G, Ward, H, Darzi, A, Riley, S, Chadeau-Hyam, M, Donnelly, CA, Elliott, P, The COVID-19 Genomics UK (COG-UK) Consortium, Department of Health, Imperial College Healthcare NHS Trust- BRC Funding, Medical Research Council (MRC), Cancer Research UK, Commission of the European Communities, Wellcome Trust, National Institute for Health Research, and Imperial College Healthcare NHS Trust: Research Capability Funding (RCF)
- Subjects
Delta variant ,Science & Technology ,SARS-CoV-2 ,COVID-19 ,1103 Clinical Sciences ,C500 ,Microbiology ,Genetic diversity ,B900 ,Infectious Diseases ,England ,COVID-19 Genomics UK (COG-UK) Consortium ,1108 Medical Microbiology ,Mutation ,Humans ,Transmission advantage ,Life Sciences & Biomedicine ,Phylogeny ,0605 Microbiology - Abstract
Background Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September–27 September 2021) and 15 (19 October–5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month. Results We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI 8–23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Conclusions As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.
- Published
- 2022
32. Fitness seascapes are necessary for realistic modeling of the evolutionary response to drug therapy
- Author
-
Eshan S. King, Jeff Maltas, Davis T. Weaver, Rowan Barker-Clarke, Julia Pelesko, Emily Dolson, and Jacob G. Scott
- Abstract
A persistent challenge in evolutionary medicine is predicting the evolution of drug resistance, which is complicated further when the drug concentration varies in time and space within a patient. Evolutionary trade-offs, or fitness costs of resistance, cause the evolutionary landscape to change dramatically as the drug selective pressure changes. In this work, we show how fitness seascapes, or collections of genotype-specific dose-response curves, more accurately describe dose-dependent evolution and the arrival of drug resistance. We measure a novel empirical fitness seascape inE. colisubject to cefotaxime, finding substantial growth rate penalties in exchange for drug resistance. In two computational experiments we show how the fitness seascape framework may be used to model evolution in changing environments. First, we show that the probability of evolutionary escape from extinction is dependent on the rate of environmental change, aligning with priorin vitroresults. Then, we simulate patients undergoing a daily drug regimen for an infection with varying rates of nonadherence. We find that early drug regimen adherence is critical for successfully eliminating the infection, lending evidence to a “two strike” model of disease extinction. Our work integrates an empirical fitness seascape into an evolutionary model with realistic pharmacological considerations. Future work may leverage this platform to optimize dosing regimens or design adaptive therapies to avoid resistance.
- Published
- 2022
- Full Text
- View/download PDF
33. Dark Energy Survey Year 3 results: Cosmology with peaks using an emulator approach
- Author
-
Zürcher, D., Fluri, J., Sgier, R., Kacprzak, T., Gatti, M., Doux, C., Whiteway, L., Réfrégier, A., Chang, C., Jeffrey, N., Jain, B., Lemos, P., Bacon, D., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Campos, A., Chen, R., Choi, A., Davis, C., Derose, J., Dodelson, S., Elsner, F., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Harrison, I., Huterer, D., Jarvis, M., Leget, P. F., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Sanchez, C., Secco, L. F., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Yin, B., Aguena, M., Allam, S., Andrade-Oliveira, F. [UNESP], Annis, J., Bertin, E., Brooks, D., Burke, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F., Cawthon, R., Conselice, C., Costanzi, M., Da Costa, L., Da Silva Pereira, M. E., Davis, T., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J., Doel, P., Eckert, K., Evrard, A., Ferrero, I., Flaugher, B., Fosalba, P., Friedel, D., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D., Giannantonio, T., Gruendl, R., Gschwend, J., Gutierrez, G., Hinton, S., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Maia, M., Marshall, J., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchon, F., Pieres, A., Plazas Malagón, A., Reil, K., Rodriguez Monroy, M., Romer, K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Wilkinson, R., National Science Foundation (US), Department of Energy (US), Swiss National Science Foundation, Ministerio de Educación y Ciencia (España), ETH Zurich, National Aeronautics and Space Administration (US), UAM. Departamento de Física Teórica, Zurcher, D., Fluri, J., Sgier, R., Kacprzak, T., Gatti, M., Doux, C., Whiteway, L., Refregier, A., Chang, C., Jeffrey, N., Jain, B., Lemos, P., Bacon, D., Alarcon, A., Amon, A., Bechtol, K., Becker, M., Bernstein, G., Campos, A., Chen, R., Choi, A., Davis, C., Derose, J., Dodelson, S., Elsner, F., Elvin-Poole, J., Everett, S., Ferte, A., Gruen, D., Harrison, I., Huterer, D., Jarvis, M., Leget, P. F., Maccrann, N., Mccullough, J., Muir, J., Myles, J., Navarro Alsina, A., Pandey, S., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Sanchez, C., Secco, L. F., Sheldon, E., Shin, T., Troxel, M., Tutusaus, I., Yin, B., Aguena, M., Allam, S., Andrade-Oliveira, F., Annis, J., Bertin, E., Brooks, D., Burke, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F., Cawthon, R., Conselice, C., Costanzi, M., Da Costa, L., Da Silva Pereira, M. E., Davis, T., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J., Doel, P., Eckert, K., Evrard, A., Ferrero, I., Flaugher, B., Fosalba, P., Friedel, D., Frieman, J., Garcia-Bellido, J., Gaztanaga, E., Gerdes, D., Giannantonio, T., Gruendl, R., Gschwend, J., Gutierrez, G., Hinton, S., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Maia, M., Marshall, J., Melchior, P., Menanteau, F., Miquel, R., Morgan, R., Palmese, A., Paz-Chinchon, F., Pieres, A., Plazas Malagon, A., Reil, K., Rodriguez Monroy, M., Romer, K., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Wilkinson, R., Eth Zuurich, University of Pennsylvania, University College London, University of Chicago, University of Sussex, Université de Paris, University of Portsmouth, Argonne National Laboratory, Stanford University, University of WisconsinMadison, Carnegie Mellon University, Duke University, The Ohio State University, Lawrence Berkeley National Laboratory, Santa Cruz Institute for Particle Physics, California Institute of Technology, Ludwig-Maximilians-Universitat, Denys Wilkinson Building, University of Manchester, University of Michigan, University of Cambridge, Perimeter Institute for Theoretical Physics, 382 Via Pueblo Mall, Slac National Accelerator Laboratory, Universidade Estadual de Campinas (UNICAMP), Bldg 510, Institut d'Estudis Espacials de Catalunya (IEEC), CSIC), Laboratorio Interinstitucional de E-Astronomia-LIneA, Fermi National Accelerator Laboratory, Universidade Estadual Paulista (UNESP), Institut d'Astrophysique de Paris, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, The Barcelona Institute of Science and Technology, School of Physics and Astronomy, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatorio Nacional, Universitat Hamburg, University of Queensland, Medioambientales y Tecnologicas (CIEMAT), Iit Hyderabad, University of Oslo, Universidad Autonoma de Madrid, Harvard and Smithsonian, Macquarie University, Lowell Observatory, The Australian National University, Australian National University, Universidade de São Paulo (USP), Texas A &m University, Peyton Hall, Institucio Catalana de Recerca i Estudis Avancats, 501 Campbell Hall, University of Southampton, Oak Ridge National Laboratory, Max Planck Institute for Extraterrestrial Physics, and Ludwig-Maximilians Universitat Munchen
- Subjects
Gravitational Lensing ,Cosmology ,observations ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmology: observations ,FOS: Physical sciences ,Física ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Dark Energy ,Observations [Cosmology] ,Space and Planetary Science ,Weak ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: D. Zürcher et al., We constrain the matter density Ωm and the amplitude of density fluctuations σ8 within the ΛCDM cosmological model with shear peak statistics and angular convergence power spectra using mass maps constructed from the first three years of data of the Dark Energy Survey (DES Y3). We use tomographic shear peak statistics, including cross-peaks: peak counts calculated on maps created by taking a harmonic space product of the convergence of two tomographic redshift bins. Our analysis follows a forward-modelling scheme to create a likelihood of these statistics using N-body simulations, using a Gaussian process emulator. We take into account the uncertainty from the remaining, largely unconstrained ΛCDM parameters (Ωb, ns, and h). We include the following lensing systematics: multiplicative shear bias, photometric redshift uncertainty, and galaxy intrinsic alignment. Stringent scale cuts are applied to avoid biases from unmodelled baryonic physics. We find that the additional non-Gaussian information leads to a tightening of the constraints on the structure growth parameter yielding S8 ≡ σ8 √ Ωm/0.3 = 0.797+0.015−0.013 (68 per cent confidence limits), with a precision of 1.8 per cent, an improvement of 38 per cent compared to the angular power spectra only case. The results obtained with the angular power spectra and peak counts are found to be in agreement with each other and no significant difference in S8 is recorded. We find a mild tension of 1.5σ between our study and the results from Planck 2018, with our analysis yielding a lower S8. Furthermore, we observe that the combination of angular power spectra and tomographic peak counts breaks the degeneracy between galaxy intrinsic alignment AIA and S8, improving cosmological constraints. We run a suite of tests concluding that our results are robust and consistent with the results from other studies using DES Y3 data., The ETH Zurich Cosmology group acknowledges support by grants 200021_192243 and 200021_169130 of the Swiss National Science Foundation. We would also like to thank Uwe Schmitt from ETH Zürich for his support with the GitLab server and CI engine. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physic at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenoessische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität Muenchen and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop.ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. Based on observations obtained with Planck,11 an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada.
- Published
- 2021
34. Comparison of the enamel surface roughness before bonding and after debonding by diamond, tungsten carbide and fiber reinforced composite burs under AFM an in-vitro study
- Author
-
Srinivas Reddy, Sugareddy, and Davis T Danny
- Subjects
Materials science ,Enamel paint ,technology, industry, and agriculture ,Diamond ,Fiber-reinforced composite ,Surface finish ,engineering.material ,chemistry.chemical_compound ,medicine.anatomical_structure ,stomatognathic system ,chemistry ,Tungsten carbide ,visual_art ,visual_art.visual_art_medium ,Premolar ,medicine ,Surface roughness ,engineering ,Adhesive ,Composite material - Abstract
Introduction: The bonding of orthodontic attachments directly to etched enamel surface is an example of clinical application of a simplified procedure. With modifications of the acid etch technique and resin systems, the removal of the directly bonded attachments and finishing of the underlying enamel have become an acute clinical problem. Aims and Objectives: To evaluate the enamel surface roughness observed under atomic force microscope (AFM) in following methods: 1. Before bonding; 2. Removal of residual resin after debonding with 3 different burs. Fine diamond bur Tungsten carbide bur Fiber reinforced composite bur Materials and Methods: Sixty premolar teeth were divided into 3 equal groups and the buccal surface were subjected to AFM to obtain Ra, Rq, Rmax initial roughness values. The brackets were bonded with a light-cured adhesive and debonded with posterior debonding plier. Residual resin was removed with different burs in 3 groups respectively and subjected to final AFM measurements. Results of roughness were analysed with the use of repeated measurement analysis of variance and independent t-test respectively. Results: It was found out that parametric values were statistically insignificant with P value >0.001 in prebond condition & statistically significant after resin removal with P value Conclusion: Fiber reinforced composite bur created smoother surface after debonding when compared to diamond and tungsten carbide bur. Keyword: Fine diamond bur, Tungsten carbide bur, Fiber reinforced composite bur, Residual resin, AFM.
- Published
- 2020
- Full Text
- View/download PDF
35. Ultrasonographic observation of anterior temporalis and masseter muscle in open bite patients: A comparative study
- Author
-
Davis T Danny, Hrudya Balachandran, and Anjana S Nair
- Subjects
Masseter muscle ,Orthodontics ,Open bite ,Maximum intercuspation ,business.industry ,Unpaired t-Test ,Occlusion ,Medicine ,Ultrasonography ,Temporalis muscle ,business ,Masticatory muscle - Abstract
Aim: The present study was done to compare the muscle thickness of the masseter and anterior temporalis muscle in adults with normal occlusion and anterior open bite using ultrasonography, in rest position and maximum intercuspation. Material and Methods: Ultrasonographic recording of masseter and anterior temporalis thickness of both sides of nine subjects with anterior open bite and normal occlusion was done. Unpaired t test was used for the intergroup comparison of muscle thickness. Results: A significant correlation between the thicknesses of both the muscles in contracted state was found to be more in anterior open bite. There was no statistically significant correlation between thicknesses of both muscles in relaxed state. Conclusion: Since no detailed investigation was done, it will be premature to give a final verdict on the correlation between the masticatory muscle thickness and facial morphology. A long term follow up will provide a new insight for future clinical purpose. Keywords: Ultrasonography, Temporalis muscle, Masseter, Open bite.
- Published
- 2020
- Full Text
- View/download PDF
36. The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate
- Author
-
Wajid Waheed Bhat, Emily R. Lanier, Björn Hamberger, Garret P. Miller, Sean R. Johnson, and Davis T. Mathieu
- Subjects
0106 biological sciences ,0301 basic medicine ,Neoprene ,food.ingredient ,Stereochemistry ,Scrophulariaceae ,cytochrome P450 ,Plant Science ,terpene biosynthesis ,01 natural sciences ,Plant Roots ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,food ,Biosynthesis ,Cytochrome P-450 Enzyme System ,Eremophila Plant ,Polyisoprenyl Phosphates ,Transferases ,Tobacco ,Genetics ,Escherichia coli ,Plastid ,Plant Proteins ,leubethanol ,Alkyl and Aryl Transferases ,biology ,anti-microbial ,Eremophila ,all-cis prenyl diphosphate ,Cell Biology ,Eremophila serrulata ,biology.organism_classification ,Plants, Genetically Modified ,Terpenoid ,030104 developmental biology ,chemistry ,Leucophyllum frutescens ,Diterpene ,Diterpenes ,010606 plant biology & botany - Abstract
SUMMARY Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.
- Published
- 2020
37. Inverse Agonism of Cannabinoid Receptor Type 2 Confers Anti-inflammatory and Neuroprotective Effects Following Status Epileptics
- Author
-
Davis T. Nguyen, Ying Yu, Jianxiong Jiang, Suni M. Mustafa, Bob M. Moore, and Lexiao Li
- Subjects
0301 basic medicine ,Cannabinoid receptor ,Drug Inverse Agonism ,Anti-Inflammatory Agents ,Neuroscience (miscellaneous) ,Excitotoxicity ,Status epilepticus ,Brain damage ,Pharmacology ,medicine.disease_cause ,Hippocampus ,Neuroprotection ,Article ,Receptor, Cannabinoid, CB2 ,Benzophenones ,Mice ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,Epilepsy ,Status Epilepticus ,0302 clinical medicine ,Excitatory Amino Acid Agonists ,medicine ,Cannabinoid receptor type 2 ,Animals ,Neuroinflammation ,Neurons ,Diazepam ,business.industry ,medicine.disease ,Rats ,Up-Regulation ,Disease Models, Animal ,Neuroprotective Agents ,030104 developmental biology ,Neurology ,Cytokines ,medicine.symptom ,business ,Neuroglia ,030217 neurology & neurosurgery - Abstract
Prolonged status epilepticus (SE) in humans causes high mortality and brain inflammation-associated neuronal injury and morbidity in survivors. Currently, the only effective treatment is to terminate the seizures swiftly to prevent brain damage. However, reliance on acute therapies alone would be imprudent due to the required short response time. Follow-on therapies that can be delivered well after the SE onset are in an urgent need. Cannabinoid receptor type 2 (CB2), a G protein-coupled receptor that can be expressed by activated brain microglia, has emerged as an appealing anti-inflammatory target for brain conditions. In the current study, we reported that the CB2 inverse agonism by our current lead compound SMM-189 largely prevented the rat primary microglia-mediated inflammation and showed moderate neuroprotection against N-methyl-D-aspartic acid (NMDA) receptor-mediated excitotoxicity in rat primary hippocampal cultures containing both neurons and glia. Using a classical mouse model of epilepsy, in which SE was induced by systemic administration of kainate (30 mg/kg, i.p.) and proceeded for 1 h, we demonstrated that SE downregulated the CB1 but slightly upregulated CB2 receptor in the hippocampus. Transient treatment with SMM-189 (6 mg/kg, i.p., b.i.d.) after the SE was interrupted by diazepam (10 mg/kg, i.p.) prevented the seizure-induced cytokine surge in the brain, neuronal death, and behavioral impairments 24 h after SE. Our results suggest that CB2 inverse agonism might provide an adjunctive anti-inflammatory therapy that can be delivered hours after SE onset, together with NMDA receptor blockers and first-line anti-convulsants, to reduce brain injury and functional deficits following prolonged seizures.
- Published
- 2020
- Full Text
- View/download PDF
38. Evolution-Informed Strategies for Combating Drug Resistance in Cancer
- Author
-
Kristi Lin-Rahardja, Davis T. Weaver, Jessica A. Scarborough, and Jacob G. Scott
- Subjects
Inorganic Chemistry ,Organic Chemistry ,General Medicine ,Physical and Theoretical Chemistry ,Molecular Biology ,Spectroscopy ,Catalysis ,Computer Science Applications - Abstract
The ever-changing nature of cancer poses the most difficult challenge oncologists face today. Cancer’s remarkable adaptability has inspired many to work toward understanding the evolutionary dynamics that underlie this disease in hopes of learning new ways to fight it. Eco-evolutionary dynamics of a tumor are not accounted for in most standard treatment regimens, but exploiting them would help us combat treatment-resistant effectively. Here, we outline several notable efforts to exploit these dynamics and circumvent drug resistance in cancer.
- Published
- 2023
- Full Text
- View/download PDF
39. Additional file 4 of A proposed methodology for uncertainty extraction and verification in priority setting partnerships with the James Lind Alliance: an example from the Common Conditions Affecting the Hand and Wrist Priority Setting Partnership
- Author
-
Grindlay, D. J. C., Davis, T. R. C., Kennedy, D., Larson, D., Furniss, D., Cowan, K., Giddins, G., Jain, A., Trickett, R. W., and Karantana, A.
- Abstract
Additional file 4. Uncertainty long list.
- Published
- 2022
- Full Text
- View/download PDF
40. New collective structures in 179Au and their implications for the triaxial deformation of the 178Pt core
- Author
-
Balogh, M., Jajčišinová, E., Venhart, M., Herzáň, A., Wood, J. L., Joss, D. T., Ali, F. A., Auranen, K., Bánovská, S., Bírová, M., Carroll, R. J., Cox D., M., Cubiss J., G., Davis, T., Drummond M., C., Greenlees, P. T., Grahn, T., Gredley, A., Henderson, J., Jakobsson, U., Julin, R., Juutinen, S., Kantay, G., Konki, J., Konopka, P., Leino, M., Matoušek, V., Mistry A., K., McPeake, C. G., O'Donnell, D., Page R., D., Pakarinen, J., Papadakis, P., Partanen, J., Peura, P., Rahkila, P., Ruotsalainen, P., Sandzelius, M., Sarén, J., Saygı, B., Sedlák, M., Seweryniak, D., Scholey, C., Sorri, J., Špaček, A., Stolze, S., Taylor, M., Thornthwaite, A., Uusitalo, J., Veselský, M., Vielhauer, S., and Wearing, F. P.
- Subjects
platina ,isotoopit ,ydinfysiikka ,kulta - Abstract
The extremely neutron-deficient isotope 179Au has been studied by a combination of in-beam γ-ray and isomeric-decay spectroscopy. For in-beam spectroscopy, the recoil-isomer tagging technique was employed, using the known 3/2−, T1/2=328 ns isomer. A new rotational band, associated with the unfavored signature band of the 1h9/2⊕2f7/2 proton-intruder configuration, was revealed. A previously unknown, high-spin isomeric state with an excitation energy of 1743(17) keV and T1/2=2.16(8)µs was discovered. Five decay paths were identified, some of them feeding previously unknown non-yrast excited states, associated with the 1i13/2 proton-intruder configuration. Calculations based on the particle-plus-triaxial-rotor model were performed to interpret the data. On the basis of these calculations, the new 1h9/2⊕2f7/2 rotational band is interpreted as due to triaxial deformation of the underlying configuration with β2≈0.26 and γ≈27∘. Observed non-yrast states of the positive-parity 1i13/2 intruder configuration are interpreted as due to triaxial deformation with β2≈0.26 and γ≈20∘. peerReviewed
- Published
- 2022
41. The Close AGN Reference Survey (CARS): IFU survey data and the BH mass dependence of long-term AGN variability
- Author
-
Husemann, B., Singha, M., Scharwachter, J., McElroy, R., Neumann, J., Smirnova-Pinchukova, I., Urruti, T., Baum, S. A., Bennert, V. N., Combes, F., Croomes, F., Croom, S. M., Davis, T. A., Fournier, Y., Galkin, A., Gaspari, M., Enke, H., Krumpe, M., O'Dea, C. P., Perez-Torres, M., Rose, T., Tremblay, G. R., Walcher, C. J., Ministerio de Ciencia e Innovación (España), European Commission, German Research Foundation, and National Aeronautics and Space Administration (US)
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,imaging spectroscopy [Techniques] ,FOS: Physical sciences ,Quasars: supermassive black holes ,Astronomy and Astrophysics ,general [Quasars] ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Astrophysics - Astrophysics of Galaxies ,Quasars: general ,Galaxies: ISM ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,ISM [Galaxies] ,Techniques: imaging spectroscopy ,Astrophysics::Galaxy Astrophysics ,supermassive black holes [Quasars] - Abstract
This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. Active galactic nuclei (AGN) are thought to be intimately connected with their host galaxies through feeding and feedback processes. A strong coupling is predicted and supported by cosmological simulations of galaxy formation, but the details of the physical mechanisms are still observationally unconstrained. Aims. Galaxies are complex systems of stars and a multiphase interstellar medium (ISM). A spatially resolved multiwavelength survey is required to map the interaction of AGN with their host galaxies on different spatial scales and different phases of the ISM. The goal of the Close AGN Reference Survey (CARS) is to obtain the necessary spatially resolved multiwavelength observations for an unbiased sample of local unobscured luminous AGN. Methods. We present the overall CARS survey design and the associated wide-field optical integral-field unit (IFU) spectroscopy for all 41 CARS targets at z, BH is grateful for the financial support from the DFG grant GE625/17-1, DLR grant 50OR1911 and DAAD grant 57509925. The work of MS was supported in part by the University of Manitoba Faculty of Science Graduate Fellowship (Cangene Award), and by the University of Manitoba Graduate Enhancement of Tri-Council Stipends (GETS) program. JS is supported by the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea, and the United States of America. The Science, Technology and Facilities Council is acknowledged by JN for support through the Consolidated Grant Cosmology and Astrophysics at Portsmouth, ST/S000550/1. ISP acknowledges funding from the DLR grant 50OR2006. SMC and RM acknowledge support from the Australian Research Council through grant DP190102714. VNB gratefully acknowledges assistance from a National Science Foundation (NSF) Research at Undergraduate Institutions (RUI) grant AST-1909297. We note that findings and conclusions do not necessarily represent views of the NSF. TAD acknowledges support from STFC grant ST/S00033X/1. TR is supported by the Science and Technology Facilities Council (STFC) through grant ST/R504725/1. MK acknowledges support by DFG grant KR 3338/4-1. MG acknowledges partial support by NASA Chandra GO8-19104X/GO9-20114X and HST GO-15890.020-A grants. MPT acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and through grant PGC2018-098915-B-C21 (MCI/AEI/FEDER, UE). GRT acknowledges support from NASA through grant numbers HST-GO-15411-.002-A, HST-GO-15440.002-A, and HST-GO-16173.001-A from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Based on observations collected at the European Southern Observatory under ESO program(s) 083.B-0801(A), 094.B-0345(A), 095.B-0015(A), 099.B-0242(B), and 099.B-0249(A). Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucía and Consejo Superior de Investigaciones Científicas (IAA-CSIC). The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University and the Australian Astronomical Observatory. SkyMapper is owned and operated by The Australian National University’s Research School of Astronomy and Astrophysics. The survey data were processed and provided by the SkyMapper Team at ANU. The SkyMapper node of the All-Sky Virtual Observatory (ASVO) is hosted at the National Computational Infrastructure (NCI). Development and support the SkyMapper node of the ASVO has been funded in part by Astronomy Australia Limited (AAL) and the Australian Government through the Commonwealth’s Education Investment Fund (EIF) and National Collaborative Research Infrastructure Strategy (NCRIS), particularly the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service Projects (ANDS).
- Published
- 2022
42. Investigation of coarsening of oxide nanoparticles at 1400 K and its effect on the microstructure formation of an ODS Eurofer steel
- Author
-
Marques Pereira, V., Davis, T. P., Mayoral, M. H., Kumar, A., Schut, H., and Sietsma, J.
- Subjects
Atom probe tomography ,Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,α/γ phase transformation ,Condensed Matter Physics ,Oxide nanoparticle characterization ,Transmission electron microscopy - Abstract
Oxide Dispersion Strengthened (ODS) steels are potential candidate materials for application as structural components of fission and fusion reactors, known for their high thermal stability, high resistance to creep and to radiation-induced damage. These attractive properties result from the presence of the fine and highly thermally stable yttrium‑oxygen (Y-O) based nanoparticles, which exert a strong Zener pinning force to hinder the grain boundary movement, and are able to pin dislocations and trap radiation induced defects. In the present work, the effect of annealing at 1400 K on the microstructure and oxide nanoparticles in a 0.3% Y2O3 ODS Eurofer steel was assessed. The material was characterized with Scanning Electron Microscopy, Transmission Electron Microscopy and Atom Probe Tomography in a reference condition and after annealing at 1400 K, followed by cooling at different rates. The results showed that the average diameter of the oxide nanoparticles increases from 3.7 ± 0.01 nm to 5.3 ± 0.04 nm, after annealing at 1400 K for 1 h. The particles present a well-known core/shell structure, with a core rich in Y, O and V and a shell rich in Cr. The effect of the increase in oxide nanoparticle size on the microstructure is discussed in terms of the Zener pinning force.
- Published
- 2022
43. Additional file 1 of A proposed methodology for uncertainty extraction and verification in priority setting partnerships with the James Lind Alliance: an example from the Common Conditions Affecting the Hand and Wrist Priority Setting Partnership
- Author
-
Grindlay, D. J. C., Davis, T. R. C., Kennedy, D., Larson, D., Furniss, D., Cowan, K., Giddins, G., Jain, A., Trickett, R. W., and Karantana, A.
- Abstract
Additional file 1: Supplemental file 1. JLA Cochrane Library search strategy.
- Published
- 2022
- Full Text
- View/download PDF
44. OzDES Reverberation Mapping Program: H$β$ lags from the 6-year survey
- Author
-
Malik, Umang, Sharp, Rob, Penton, A., Yu, Z., Martini, P., Lidman, C., Tucker, B. E., Davis, T. M., Lewis, G. F., Aguena, M., Allam, S., Alves, O., Andrade-Oliveira, F., Asorey, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D. L., Rosell, A. Carnero, Carollo, D., Kind, M. Carrasco, Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Raveri, M., Rodriguez-Monroy, M., Romer, A. K., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Taylor, G., Tucker, D. L., Weaverdyck, N., and Wilkinson, R. D.
- Subjects
Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences - Abstract
Reverberation mapping measurements have been used to constrain the relationship between the size of the broad-line region and luminosity of active galactic nuclei (AGN). This $R-L$ relation is used to estimate single-epoch virial black hole masses, and has been proposed for use to standardise AGN to determine cosmological distances. We present reverberation measurements made with H$β$ from the six-year Australian Dark Energy Survey (OzDES) Reverberation Mapping Program. We successfully recover reverberation lags for eight AGN at $0.12, Published in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
45. Dark Energy Survey Year 3 Results: Constraints on extensions to $Λ$CDM with weak lensing and galaxy clustering
- Author
-
DES Collaboration, Abbott, T. M. C., Aguena, M., Alarcon, A., Alves, O., Amon, A., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Birrer, S., Blazek, J., Bocquet, S., Brandao-Souza, A., Bridle, S. L., Brooks, D., Burke, D. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. S., Davis, C., Davis, T. M., DeRose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Farahi, A., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., Friedel, D., Friedrich, O., Frieman, J., García-Bellido, J., Gatti, M., Giani, L., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hamaus, N., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huang, H., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, S., Leget, P. -F., Lemos, P., Leonard, C. D., Liddle, A. R., Lima, M., Lin, H., MacCrann, N., Marshall, J. L., McCullough, J., Mena-Fernández, J., Menanteau, F., Miquel, R., Miranda, V., Mohr, J. J., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paterno, M., Paz-Chinchón, F., Percival, W. J., Pieres, A., Malagón, A. A. Plazas, Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rogozenski, P., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Cid, D. Sanchez, Scarpine, V., Scolnic, D., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tutusaus, I., Varga, T. N., Vincenzi, M., Walker, A. R., Weaverdyck, N., Wechsler, R. H., Weller, J., Yanny, B., Yin, B., Zhang, Y., and Zuntz, J.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences - Abstract
We constrain extensions to the $Λ$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $σ_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $Ω_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(ΔN_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $Σ(k,z) = Σ_0 Ω_Λ(z)/Ω_{Λ,0}$ and $μ(k,z)=μ_0 Ω_Λ(z)/Ω_{Λ,0}$ respectively to $Σ_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(Σ_0,μ_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $Λ$CDM., Updated to match published version. 46 pages, 25 figures, data available at https://dev.des.ncsa.illinois.edu/releases/y3a2/Y3key-extensions
- Published
- 2022
- Full Text
- View/download PDF
46. The Close AGN Reference Survey (CARS): No obvious signature of AGN feedback on star formation, but subtle trends
- Author
-
Smirnova-Pinchukova, I., Husemann, B., Davis, T. A., Smith, C. M. A., Singha, M., Tremblay, G. R., Klessen, R. S., Powell, M., Connor, T., Baum, S. A., Combes, F., Croom, S. M., Gaspari, M., Neumann, J., O'Dea, C. P., Pérez-Torres , M., Rosario, D. J., Rose, T., Scharwächter, J., Winkel, N., Ministerio de Ciencia e Innovación (España), European Commission, German Research Foundation, and Science and Technology Facilities Council (UK)
- Subjects
Galaxies: star formation ,active [Galaxies] ,Astrophysics::High Energy Astrophysical Phenomena ,imaging spectroscopy [Techniques] ,photometric [Techniques] ,FOS: Physical sciences ,Galaxies: evolution ,Astronomy and Astrophysics ,Galaxies: active ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,evolution [Galaxies] ,Astrophysics - Astrophysics of Galaxies ,star formation [Galaxies] ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,Techniques: imaging spectroscopy ,Techniques: photometric ,Astrophysics::Galaxy Astrophysics - Abstract
This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited., Context. Active galactic nuclei (AGN) are thought to be responsible for the suppression of star formation in massive ∼1010 M⊙ galaxies. While this process is a key feature in numerical simulations of galaxy formation, it has not been unambiguously confirmed in observational studies yet. Aims. The characterization of the star formation rate (SFR) in AGN host galaxies is challenging as AGN light contaminates most SFR tracers. Furthermore, the various SFR tracers are sensitive to different timescales of star formation from approximately a few to 100 Myr. We aim to obtain and compare SFR estimates from different tracers for AGN host galaxies in the Close AGN Reference Survey (CARS) to provide new observational insights into the recent SFR history of those systems. Methods. We constructed integrated panchromatic spectral energy distributions to measure the far infrared (FIR) luminosity as a tracer for the recent (< 100 Myr) SFR. In addition we used the integral-field unit observation of the CARS targets to employ the Hα luminosity decontaminated by AGN excitation as a proxy for the current (< 5 Myr) SFR. Results. We find that significant differences in specific SFR of the AGN host galaxies as compared with the larger galaxy population disappear once cold gas mass, in addition to stellar mass, is used to predict the SFR for a specific AGN host. Only a tentative trend with the inclination of the host galaxy remains, such that SFR appears slightly lower than expected when the galaxies of unobscured AGN appear more edge-on along our line-of-sight, particular for dust-insensitive FIR-based SFRs. We identify individual galaxies with a significant difference in their SFR which can be related to a recent enhancement or decline in their SFR history that might be related to various processes including interactions, gas consumption, outflows, and AGN feedback. Conclusions. AGN can be present in various stages of galaxy evolution which makes it difficult to relate the SFR solely to the impact of the AGN. Our study shows that stellar mass alone is an insufficient parameter to estimate the expected SFR of an AGN host galaxy compared to the underlying non-AGN galaxy population. We do not find any strong evidence for a global positive or negative AGN feedback in the CARS sample. However, there is tentative evidence that (1) the relative orientation of the AGN engine with respect to the host galaxies might alter the efficiency of AGN feedback and that (2) the recent SFH is an additional tool to identify rapid changes in galaxy growth driven by the AGN or other processes. © I. Smirnova-Pinchukova et al. 2022., I.S.P. greatly appreciates financial support from the DLR through grant 50OR2006. B.H. is financially supported through DFG grant GE625/17-1. I.S.P. and B.H. also acknowledge travel support from the DAAD via grant 57509925. T.A.D. acknowledges support from the UK Science and Technology Facilities Council through grant ST/S00033X/1. M.G. acknowledges partial support by NASA Chandra GO8-19104X/GO9-20114X and HST GO-15890.020/023-A, and the BlackHoleWeather program. S.B., C.O., and M.S. acknowledge support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. M.P.T. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and through grants PGC2018-098915-B-C21 and PID2020-117404GB-C21 (MCI/AEI/FEDER, UE). The work of T.C. was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programme 094.B-0345(A) and 095.B-0015(A). Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by Junta de Andalucía and Consejo Superior de Investigaciones Científicas (IAA-CSIC). This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) Collaboration. Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute for Cosmological Physics at the University of Chicago, Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Enérgeticas, Medioambientales y Tecnológicas–Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF’s NOIRLab, the University of Nottingham, the Ohio State University, the OzDES Membership Consortium, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. Based on observations at Cerro Tololo Inter-American Observatory, NSF’s NOIRLab (NOIRLab Prop. ID 2017A-0914; PI: Grant Tremblay), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation Grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. The James Clerk Maxwell Telescope is operated by the East Asian Observatory on behalf of The National Astronomical Observatory of Japan; Academia Sinica Institute of Astronomy and Astrophysics; the Korea Astronomy and Space Science Institute; Center for Astronomical Mega-Science (as well as the National Key R&D Program of China with No. 2017YFA0402700). Additional funding support is provided by the Science and Technology Facilities Council of the United Kingdom and participating universities and organizations in the United Kingdom and Canada. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Infrared Science Archive, which is funded by the National Aeronautics and Space Administration and operated by the California Institute of Technology. This research has made use of the APASS database, located at the AAVSO website. Funding for APASS has been provided by the Robert Martin Ayers Sciences Fund. Supported by the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea, and the United States of America. The Science, Technology and Facilities Council is acknowledged by JN for support through the Consolidated Grant Cosmology and Astrophysics at Portsmouth, ST/S000550/1.
- Published
- 2022
47. Outcomes of the SARS-CoV-2 omicron (B.1.1.529) variant outbreak among vaccinated and unvaccinated patients with cancer in Europe: results from the retrospective, multicentre, OnCovid registry study
- Author
-
Pinato, DJ, Aguilar-Company, J, Ferrante, D, Hanbury, G, Bower, M, Salazar, R, Mirallas, O, Sureda, A, Plaja, A, Cucurull, M, Mesia, R, Townsend, S, Jackson, A, Dalla Pria, A, Newsom-Davis, T, Handford, J, Sita-Lumsden, A, Apthorp, E, Vincenzi, B, Bertuzzi, A, Brunet, J, Lambertini, M, Maluquer, C, Pedrazzoli, P, Biello, F, Sinclair, A, Bawany, S, Khalique, S, Rossi, S, Rogers, L, Murphy, C, Belessiotis, K, Carmona-Garcia, MC, Sharkey, R, Garcia-Illescas, D, Rizzo, G, Perachino, M, Saoudi-Gonzalez, N, Doonga, K, Fox, L, Roldan, E, Gaidano, G, Ruiz-Camps, I, Bruna, R, Patriarca, A, Martinez-Vila, C, Cantini, L, Zambelli, A, Giusti, R, Mazzoni, F, Caliman, E, Santoro, A, Grosso, F, Parisi, A, Queirolo, P, Aujayeb, A, Rimassa, L, Prat, A, Tucci, M, Libertini, M, Grisanti, S, Mukherjee, U, Diamantis, N, Fusco, V, Generali, D, Provenzano, S, Gennari, A, Tabernero, J, and Cortellini, A
- Abstract
Background The omicron (B.1.1.529) variant of SARS-CoV-2 is highly transmissible and escapes vaccine-induced immunity. We aimed to describe outcomes due to COVID-19 during the omicron outbreak compared with the prevaccination period and alpha (B.1.1.7) and delta (B.1.617.2) waves in patients with cancer in Europe. Methods In this retrospective analysis of the multicentre OnCovid Registry study, we recruited patients aged 18 years or older with laboratory-confirmed diagnosis of SARS-CoV-2, who had a history of solid or haematological malignancy that was either active or in remission. Patient were recruited from 37 oncology centres from UK, Italy, Spain, France, Belgium, and Germany. Participants were followed up from COVID-19 diagnosis until death or loss to follow-up, while being treated as per standard of care. For this analysis, we excluded data from centres that did not actively enter new data after March 1, 2021 (in France, Germany, and Belgium). We compared measures of COVID-19 morbidity, which were complications from COVID-19, hospitalisation due to COVID-19, and requirement of supplemental oxygen and COVID-19-specific therapies, and COVID-19 mortality across three time periods designated as the prevaccination (Feb 27 to Nov 30, 2020), alpha-delta (Dec 1, 2020, to Dec 14, 2021), and omicron (Dec 15, 2021, to Jan 31, 2022) phases. We assessed all-cause case-fatality rates at 14 days and 28 days after diagnosis of COVID-19 overall and in unvaccinated and fully vaccinated patients and in those who received a booster dose, after adjusting for country of origin, sex, age, comorbidities, tumour type, stage, and status, and receipt of systemic anti-cancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974, and is ongoing. Findings As of Feb 4, 2022 (database lock), the registry included 3820 patients who had been diagnosed with COVID-19 between Feb 27, 2020, and Jan 31, 2022. 3473 patients were eligible for inclusion (1640 [47.4%] were women and 1822 [52.6%] were men, with a median age of 68 years [IQR 57-77]). 2033 (58.5%) of 3473 were diagnosed during the prevaccination phase, 1075 (31.0%) during the alpha-delta phase, and 365 (10.5%) during the omicron phase. Among patients diagnosed during the omicron phase, 113 (33.3%) of 339 were fully vaccinated and 165 (48.7%) were boosted, whereas among those diagnosed during the alpha-delta phase, 152 (16.6%) of 915 were fully vaccinated and 21 (2.3%) were boosted. Compared with patients diagnosed during the prevaccination period, those who were diagnosed during the omicron phase had lower case-fatality rates at 14 days (adjusted odds ratio [OR] 0.32 [95% CI 0.19-0.61) and 28 days (0.34 [0.16-0.79]), complications due to COVID-19 (0.26 [0.17-0.46]), and hospitalisation due to COVID-19 (0.17 [0.09-0.32]), and had less requirements for COVID-19-specific therapy (0.22 [0.15-0.34]) and oxygen therapy (0.24 [0.14-0.43]) than did those diagnosed during the alpha-delta phase. Unvaccinated patients diagnosed during the omicron phase had similar crude case-fatality rates at 14 days (ten [25%] of 40 patients vs 114 [17%] of 656) and at 28 days (11 [27%] of 40 vs 184 [28%] of 656) and similar rates of hospitalisation due to COVID-19 (18 [43%] of 42 vs 266 [41%] of 652) and complications from COVID-19 (13 [31%] of 42 vs 237 [36%] of 659) as those diagnosed during the alpha-delta phase. Interpretation Despite time-dependent improvements in outcomes reported in the omicron phase compared with the earlier phases of the pandemic, patients with cancer remain highly susceptible to SARS-CoV-2 if they are not vaccinated against SARS-CoV-2. Our findings support universal vaccination of patients with cancer as a protective measure against morbidity and mortality from COVID-19. Copyright (C) 2022. Published by Elsevier Ltd. All rights reserved.
- Published
- 2022
48. Genomic reconstruction of the SARS-CoV-2 epidemic in England
- Author
-
Vöhringer, HS, Sanderson, T, Sinnott, M, De Maio, N, Nguyen, T, Goater, R, Schwach, F, Harrison, I, Hellewell, J, Ariani, CV, Gonçalves, S, Jackson, DK, Johnston, I, Jung, AW, Saint, C, Sillitoe, J, Suciu, M, Goldman, N, Panovska-Griffiths, J, Abnizova, I, Aigrain, L, Alderton, A, Ali, M, Allen, L, Amato, R, Anderson, R, Ariani, C, Austin-Guest, S, Bala, S, Barrett, J, Bassett, A, Battleday, K, Beal, J, Beale, M, Beaver, C, Bellany, S, Bellerby, T, Bellis, K, Berger, D, Berriman, M, Betteridge, E, Bevan, P, Binley, S, Bishop, J, Blackburn, K, Bonfield, J, Boughton, N, Bowker, S, Brendler-Spaeth, T, Bronner, I, Brooklyn, T, Buddenborg, SK, Bush, R, Caetano, C, Cagan, A, Carter, N, Cartwright, J, Monteiro, TC, Chapman, L, Chillingworth, T-J, Clapham, P, Clark, R, Clarke, A, Clarke, C, Cole, D, Cook, E, Coppola, M, Cornell, L, Cornwell, C, Corton, C, Crackett, A, Cranage, A, Craven, H, Craw, S, Crawford, M, Cutts, T, Dabrowska, M, Davies, M, Davies, R, Dawson, J, Day, C, Densem, A, Dibling, T, Dockree, C, Dodd, D, Dogga, S, Dorman, M, Dougan, G, Dougherty, M, Dove, A, Drummond, L, Drury, E, Dudek, M, Durham, J, Durrant, L, Easthope, E, Eckert, S, Ellis, P, Farr, B, Fenton, M, Ferrero, M, Flack, N, Fordham, H, Forsythe, G, Foulser, L, Francis, M, Fraser, A, Freeman, A, Galvin, A, Garcia-Casado, M, Gedny, A, Girgis, S, Glover, J, Goncalves, S, Goodwin, S, Gould, O, Gourtovaia, M, Gray, A, Gray, E, Griffiths, C, Gu, Y, Guerin, F, Hamilton, W, Hanks, H, Harrison, E, Harrott, A, Harry, E, Harvison, J, Heath, P, Hernandez-Koutoucheva, A, Hobbs, R, Holland, D, Holmes, S, Hornett, G, Hough, N, Huckle, L, Hughes-Hallet, L, Hunter, A, Inglis, S, Iqbal, S, Jackson, A, Jackson, D, James, K, Jamrozy, D, Verdejo, CJ, Jones, M, Kallepally, K, Kane, L, Kay, K, Kay, S, Keatley, J, Keith, A, King, A, Kitchin, L, Kleanthous, M, Klimekova, M, Korlevic, P, Krasheninnkova, K, Lane, G, Langford, C, Laverack, A, Law, K, Lawniczak, M, Lensing, S, Leonard, S, Letchford, L, Lewis, K, Lewis-Wade, A, Liddle, J, Lin, Q, Lindsay, S, Linsdell, S, Livett, R, Lo, S, Long, R, Lovell, J, Ludden, C, Mack, J, Maddison, M, Makunin, A, Mamun, I, Mansfield, J, Marriott, N, Martin, M, Mayho, M, McCarthy, S, McClintock, J, McGuigan, S, McHugh, S, McMinn, L, Meadows, C, Mobley, E, Moll, R, Morra, M, Morrow, L, Murie, K, Nash, S, Nathwani, C, Naydenova, P, Neaverson, A, Nelson, R, Nerou, E, Nicholson, J, Nimz, T, Noell, GG, O’Meara, S, Ohan, V, Oliver, K, Olney, C, Ormond, D, Oszlanczi, A, Palmer, S, Pang, YF, Pardubska, B, Park, N, Parmar, A, Patel, G, Patel, M, Payne, M, Peacock, S, Petersen, A, Plowman, D, Preston, T, Prestwood, L, Puethe, C, Quail, M, Rajan, D, Rajatileka, S, Rance, R, Rawlings, S, Redshaw, N, Reynolds, J, Reynolds, M, Rice, S, Richardson, M, Roberts, C, Robinson, K, Robinson, M, Robinson, D, Rogers, H, Rojo, EM, Roopra, D, Rose, M, Rudd, L, Sadri, R, Salmon, N, Saul, D, Scott, C, Seekings, P, Shirley, L, Simms, A, Sivadasan, S, Siwek, B, Sizer, D, Skeldon, K, Skelton, J, Slater-Tunstill, J, Sloper, L, Smerdon, N, Smith, C, Smith, J, Smith, K, Smith, M, Smith, S, Smith, T, Sneade, L, Soria, CD, Sousa, C, Souster, E, Sparkes, A, Spencer-Chapman, M, Squares, J, Stanley, R, Steed, C, Stickland, T, Still, I, Stratton, MR, Strickland, M, Swann, A, Swiatkowska, A, Sycamore, N, Swift, E, Symons, E, Szluha, S, Taluy, E, Tao, N, Taylor, K, Taylor, S, Thompson, S, Thompson, M, Thomson, M, Thomson, N, Thurston, S, Tonkin-Hill, G, Toombs, D, Topping, B, Tovar-Corona, J, Ungureanu, D, Uphill, J, Urbanova, J, Van Vuuren, PJ, Vancollie, V, Voak, P, Walker, D, Walker, M, Waller, M, Ward, G, Weatherhogg, C, Webb, N, Weldon, D, Wells, A, Wells, E, Westwood, L, Whipp, T, Whiteley, T, Whitton, G, Whitwham, A, Widaa, S, Williams, M, Wilson, M, Wright, S, Robson, SC, Connor, TR, Loman, NJ, Golubchik, T, Martinez Nunez, RT, Bonsall, D, Rambaut, A, Snell, LB, Corden, S, Nastouli, E, Nebbia, G, Lythgoe, K, Torok, ME, Goodfellow, IG, Prieto, JA, Saeed, K, Houlihan, C, Frampton, D, Hamilton, WL, Witney, AA, Bucca, G, Pope, CF, Moore, C, Thomson, EC, Harrison, EM, Smith, CP, Rogan, F, Beckwith, SM, Murray, A, Singleton, D, Eastick, K, Sheridan, LA, Randell, P, Jackson, LM, Fairley, DJ, Loose, MW, Watkins, J, Moses, S, Nicholls, S, Bull, M, Smith, DL, Aanensen, DM, Aggarwal, D, Shepherd, JG, Curran, MD, Parmar, S, Parker, MD, Williams, C, Glaysher, S, Underwood, AP, Bashton, M, Pacchiarini, N, Loveson, KF, Byott, M, Carabelli, AM, Templeton, KE, de Silva, TI, Wang, D, Langford, CF, Gunson, RN, Cottrell, S, O’Grady, J, Kwiatkowski, D, Lillie, PJ, Cortes, N, Moore, N, Thomas, C, Burns, PJ, Mahungu, TW, Liggett, S, Beckett, AH, Holden, MTG, Levett, LJ, Osman, H, Hassan-Ibrahim, MO, Simpson, DA, Chand, M, Gupta, RK, Darby, AC, Paterson, S, Pybus, OG, Volz, EM, de Angelis, D, Robertson, DL, Page, AJ, Bassett, AR, Wong, N, Taha, Y, Erkiert, MJ, Spencer Chapman, MH, Dewar, R, McHugh, MP, Mookerjee, S, Aplin, S, Harvey, M, Sass, T, Umpleby, H, Wheeler, H, McKenna, JP, Warne, B, Taylor, JF, Chaudhry, Y, Izuagbe, R, Jahun, AS, Young, GR, McMurray, C, McCann, CM, Nelson, A, Elliott, S, Lowe, H, Price, A, Crown, MR, Rey, S, Roy, S, Temperton, B, Shaaban, S, Hesketh, AR, Laing, KG, Monahan, IM, Heaney, J, Pelosi, E, Silviera, S, Wilson-Davies, E, Fryer, H, Adams, H, du Plessis, L, Johnson, R, Harvey, WT, Hughes, J, Orton, RJ, Spurgin, LG, Bourgeois, Y, Ruis, C, O’Toole, Á, Fraser, C, Edgeworth, J, Breuer, J, Michell, SL, Todd, JA, John, M, Buck, D, Gajee, K, Kay, GL, Peacock, SJ, Heyburn, D, Kitchman, K, McNally, A, Pritchard, DT, Dervisevic, S, Muir, P, Robinson, E, Vipond, BB, Ramadan, NA, Jeanes, C, Catalan, J, Jones, N, da Silva Filipe, A, Fuchs, M, Miskelly, J, Jeffries, AR, Park, NR, Ash, A, Koshy, C, Barrow, M, Buchan, SL, Mantzouratou, A, Clark, G, Holmes, CW, Campbell, S, Davis, T, Tan, NK, Brown, JR, Harris, KA, Kidd, SP, Grant, PR, Xu-McCrae, L, Cox, A, Madona, P, Pond, M, Randell, PA, Withell, KT, Graham, C, Denton-Smith, R, Swindells, E, Turnbull, R, Sloan, TJ, Bosworth, A, Hutchings, S, Pymont, HM, Casey, A, Ratcliffe, L, Jones, CR, Knight, BA, Haque, T, Hart, J, Irish-Tavares, D, Witele, E, Mower, C, Watson, LK, Collins, J, Eltringham, G, Crudgington, D, Macklin, B, Iturriza-Gomara, M, Lucaci, AO, McClure, PC, Carlile, M, Holmes, N, Storey, N, Rooke, S, Yebra, G, Craine, N, Perry, M, Alikhan, N-F, Bridgett, S, Cook, KF, Fearn, C, Goudarzi, S, Lyons, RA, Williams, T, Haldenby, ST, Davies, RM, Batra, R, Blane, B, Spyer, MJ, Smith, P, Yavus, M, Williams, RJ, Mahanama, AIK, Samaraweera, B, Girgis, ST, Hansford, SE, Green, A, Bellis, KL, Dorman, MJ, Quick, J, Poplawski, R, Reynolds, N, Mack, A, Morriss, A, Whalley, T, Patel, B, Georgana, I, Hosmillo, M, Pinckert, ML, Stockton, J, Henderson, JH, Hollis, A, Stanley, W, Yew, WC, Myers, R, Thornton, A, Adams, A, Annett, T, Asad, H, Birchley, A, Coombes, J, Evans, JM, Fina, L, Gatica-Wilcox, B, Gilbert, L, Graham, L, Hey, J, Hilvers, E, Jones, S, Jones, H, Kumziene-Summerhayes, S, McKerr, C, Powell, J, Pugh, G, Trotter, AJ, Williams, CA, Kermack, LM, Foulkes, BH, Gallis, M, Hornsby, HR, Louka, SF, Pohare, M, Wolverson, P, Zhang, P, MacIntyre-Cockett, G, Trebes, A, Moll, RJ, Ferguson, L, Goldstein, EJ, Maclean, A, Tomb, R, Starinskij, I, Thomson, L, Southgate, J, Kraemer, MUG, Raghwani, J, Zarebski, AE, Boyd, O, Geidelberg, L, Illingworth, CJ, Jackson, C, Pascall, D, Vattipally, S, Freeman, TM, Hsu, SN, Lindsey, BB, Tovar-Corona, JM, Cox, M, Abudahab, K, Menegazzo, M, Taylor, BEW, Yeats, CA, Mukaddas, A, Wright, DW, de Oliveira Martins, L, Colquhoun, R, Hill, V, Jackson, B, McCrone, JT, Medd, N, Scher, E, Keatley, J-P, Curran, T, Morgan, S, Maxwell, P, Eldirdiri, S, Kenyon, A, Holmes, AH, Price, JR, Wyatt, T, Mather, AE, Skvortsov, T, Hartley, JA, Guest, M, Kitchen, C, Merrick, I, Munn, R, Bertolusso, B, Lynch, J, Vernet, G, Kirk, S, Wastnedge, E, Idle, G, Bradley, DT, Poyner, J, Mori, M, Jones, O, Wright, V, Brooks, E, Churcher, CM, Fragakis, M, Galai, K, Jermy, A, Judges, S, McManus, GM, Smith, KS, Westwick, E, Attwood, SW, Bolt, F, Davies, A, De Lacy, E, Downing, F, Edwards, S, Meadows, L, Jeremiah, S, Smith, N, Charalampous, T, Patel, A, Berry, L, Boswell, T, Fleming, VM, Howson-Wells, HC, Joseph, A, Khakh, M, Lister, MM, Bird, PW, Fallon, K, Helmer, T, McMurray, CL, Odedra, M, Shaw, J, Tang, JW, Willford, NJ, Blakey, V, Raviprakash, V, Sheriff, N, Williams, L-A, Feltwell, T, Bedford, L, Cargill, JS, Hughes, W, Moore, J, Stonehouse, S, Atkinson, L, Lee, JCD, Shah, D, Alcolea, A, Ohemeng-Kumi, N, Ramble, J, Sehmi, J, Williams, R, Chatterton, W, Pusok, M, Everson, W, Castigador, A, Macnaughton, E, El Bouzidi, K, Lampejo, T, Sudhanva, M, Breen, C, Sluga, G, Ahmad, SSY, George, RP, Machin, NW, Binns, D, James, V, Blacow, R, Coupland, L, Smith, L, Barton, E, Padgett, D, Scott, G, Cross, A, Mirfenderesky, M, Greenaway, J, Cole, K, Clarke, P, Duckworth, N, Walsh, S, Bicknell, K, Impey, R, Wyllie, S, Hopes, R, Bishop, C, Chalker, V, Gifford, L, Molnar, Z, Auckland, C, Evans, C, Johnson, K, Partridge, DG, Raza, M, Baker, P, Bonner, S, Essex, S, Murray, LJ, Lawton, AI, Burton-Fanning, S, Payne, BAI, Waugh, S, Gomes, AN, Kimuli, M, Murray, DR, Ashfield, P, Dobie, D, Ashford, F, Best, A, Crawford, L, Cumley, N, Mayhew, M, Megram, O, Mirza, J, Moles-Garcia, E, Percival, B, Ensell, L, Lowe, HL, Maftei, L, Mondani, M, Chaloner, NJ, Cogger, BJ, Easton, LJ, Huckson, H, Lewis, J, Lowdon, S, Malone, CS, Munemo, F, Mutingwende, M, Nicodemi, R, Podplomyk, O, Somassa, T, Beggs, A, Richter, A, Cormie, C, Dias, J, Forrest, S, Higginson, EE, Maes, M, Young, J, Davidson, RK, Jackson, KA, Turtle, L, Keeley, AJ, Ball, J, Byaruhanga, T, Chappell, JG, Dey, J, Hill, JD, Park, EJ, Fanaie, A, Hilson, RA, Yaze, G, Afifi, S, Beer, R, Maksimovic, J, Masters, KM, Spellman, K, Bresner, C, Fuller, W, Marchbank, A, Workman, T, Shelest, E, Debebe, J, Sang, F, Zamudio, ME, Francois, S, Gutierrez, B, Vasylyeva, TI, Flaviani, F, Ragonnet-Cronin, M, Smollett, KL, Broos, A, Mair, D, Nichols, J, Nomikou, K, Tong, L, Tsatsani, I, O’Brien, S, Rushton, S, Sanderson, R, Perkins, J, Cotton, S, Gallagher, A, Allara, E, Pearson, C, Bibby, D, Dabrera, G, Ellaby, N, Gallagher, E, Hubb, J, Lackenby, A, Lee, D, Manesis, N, Mbisa, T, Platt, S, Twohig, KA, Morgan, M, Aydin, A, Baker, DJ, Foster-Nyarko, E, Prosolek, SJ, Rudder, S, Baxter, C, Carvalho, SF, Lavin, D, Mariappan, A, Radulescu, C, Singh, A, Tang, M, Morcrette, H, Bayzid, N, Cotic, M, Balcazar, CE, Gallagher, MD, Maloney, D, Stanton, TD, Williamson, KA, Manley, R, Michelsen, ML, Sambles, CM, Studholme, DJ, Warwick-Dugdale, J, Eccles, R, Gemmell, M, Gregory, R, Hughes, M, Nelson, C, Rainbow, L, Vamos, EE, Webster, HJ, Whitehead, M, Wierzbicki, C, Angyal, A, Green, LR, Whiteley, M, Bronner, IF, Farr, BW, Lensing, SV, McCarthy, SA, Quail, MA, Redshaw, NM, Thurston, SAJ, Rowe, W, Gaskin, A, Le-Viet, T, Birney, E, Volz, E, Funk, S, Martincorena, I, Barrett, JC, and Gerstung, M
- Abstract
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.
- Published
- 2021
49. DES Y1 results: Splitting growth and geometry to test $\Lambda$CDM
- Author
-
Muir, J., Baxter, E., Miranda, V, Doux, C., Ferte, A., Leonard, C. D., Huterer, D., Jain, B., Lemos, P., Raveri, M., Nadathur, S., Campos, A. [UNESP], Chen, A., Dodelson, S., Elvin-Poole, J., Lee, S., Secco, L. F., Troxel, M. A., Weaverdyck, N., Zuntz, J., Brout, D., Choi, A., Crocce, M., Davis, T. M., Gruen, D., Krause, E., Lidman, C., MacCrann, N., Moller, A., Prat, J., Ross, A. J., Sako, M., Samuroff, S., Sanchez, C., Scolnic, D., Zhang, B., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Bridle, S. L., Brooks, D., Burke, D. L., Carnero Rosell, A., Kind, M. Carrasco, Carretero, J., Cawthon, R., Costanzi, M., Costa, L. N. da, Pereira, M. E. S., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Everett, S., Evrard, A. E., Ferrero, I, Flaugher, B., Frieman, J., Garcia-Bellido, J., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Menanteau, F., Miquel, R., Morgan, R., Myles, J., Palmese, A., Paz-Chinchon, F., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V, Serrano, S., Sevilla-Noarbe, I, Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Tucker, D. L., Varga, T. N., Weller, J., Wilkinson, R. D., DES Collaboration, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, National Science Foundation (US), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Generalitat de Catalunya, Instituto Nacional de Ciência e Tecnologia (Brasil), Stanford University, University of Hawaii, University of Arizona, University of Pennsylvania, California Institute of Technology, Newcastle University, University of Michigan, University College London, University of Chicago, University of Portsmouth, Carnegie Mellon University, Universidade Estadual Paulista (UNESP), Ohio State University, Duke University, University of Edinburgh, Harvard and Smithsonian, Institut d'Estudis Espacials de Catalunya (IEEC), Institute of Space Sciences (ICE-CSIC, University of Queensland, 382 Via Pueblo Mall, SLAC National Accelerator Laboratory, Australian National University, LPC, NSF's National Optical-Infrared Astronomy Research Laboratory, Universidade de São Paulo (USP), Laboratório Interinstitucional de E-Astronomia-LIneA, Fermi National Accelerator Laboratory, Universidad Autonoma de Madrid, Institut d'Astrophysique de Paris, University of Sussex, University of Manchester, Instituto de Astrofisica de Canarias, Universidad de la Laguna, University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Barcelona Institute of Science and Technology, University of Wisconsin-Madison, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, IIT Hyderabad, Ludwig-Maximilians-Universität, Santa Cruz Institute for Particle Physics, University of Oslo, University of Cambridge, Max Planck Institute for Extraterrestrial Physics, Ludwig-Maximilians Universität München, Center for Astrophysics | Harvard and Smithsonian, Macquarie University, Lowell Observatory, Institució Catalana de Recerca i Estudis Avançats, Peyton Hall, Medioambientales y Tecnológicas (CIEMAT), University of Southampton, Oak Ridge National Laboratory, Stanford Univ, Univ Hawaii, Univ Arizona, Univ Penn, CALTECH, Newcastle Univ, Univ Michigan, UCL, Univ Chicago, Univ Portsmouth, Carnegie Mellon Univ, Universidade Estadual Paulista (Unesp), Ohio State Univ, Duke Univ, Univ Edinburgh, Harvard & Smithsonian, Inst Estudis Espacials Catalunya IEEC, CSIC, Univ Queensland, SLAC Natl Accelerator Lab, Australian Natl Univ, Univ Clermont Auvergne, Cerro Tololo Interamer Observ, Lab Interinst E Astron LIneA, Fermilab Natl Accelerator Lab, Univ Autonoma Madrid, Inst Astrophys Paris, Sorbonne Univ, Univ Sussex, Univ Manchester, Inst Astrofis Canarias, Univ La Laguna, Univ Illinois, Natl Ctr Supercomp Applicat, Barcelona Inst Sci & Technol, Univ Wisconsin, INAF Osservatorio Astron Trieste, Inst Fundamental Phys Universe, Observ Nacl, Ludwig Maximilians Univ Munchen, Santa Cruz Inst Particle Phys, Univ Oslo, Univ Cambridge, Max Planck Inst Extraterr Phys, Macquarie Univ, Lowell Observ, Inst Catalana Recerca & Estudis Avancats, Princeton Univ, Ctr Invest Energet Medioambientales & Tecnol CIEM, Univ Southampton, Oak Ridge Natl Lab, UAM. Departamento de Física Teórica, Muir, J., Baxter, E., Miranda, V., Doux, C., Ferte, A., Leonard, C. D., Huterer, D., Jain, B., Lemos, P., Raveri, M., Nadathur, S., Campos, A., Chen, A., Dodelson, S., Elvin-Poole, J., Lee, S., Secco, L. F., Troxel, M. A., Weaverdyck, N., Zuntz, J., Brout, D., Choi, A., Crocce, M., Davis, T. M., Gruen, D., Krause, E., Lidman, C., Maccrann, N., Moller, A., Prat, J., Ross, A. J., Sako, M., Samuroff, S., Sanchez, C., Scolnic, D., Zhang, B., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Bridle, S. L., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Costanzi, M., Da Costa, L. N., Pereira, M. E. S., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Estrada, J., Everett, S., Evrard, A. E., Ferrero, I., Flaugher, B., Frieman, J., Garcia-Bellido, J., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., Menanteau, F., Miquel, R., Morgan, R., Myles, J., Palmese, A., Paz-Chinchon, F., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Scarpine, V., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., To, C., Tucker, D. L., Varga, T. N., Weller, J., and Wilkinson, R. D.
- Subjects
General relativity ,Cosmological parameters ,Geometry ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Lambda ,Sky surveys ,01 natural sciences ,Omega ,Evolution of the Universe ,Cosmology ,Cosmic microwave background ,Cosmologial constant ,symbols.namesake ,0103 physical sciences ,Dark energy ,RADIAÇÃO DE FUNDO ,Astrophysical studies of gravity ,Weak ,Large-scale structure of the Universe ,Planck ,010306 general physics ,Weak gravitational lensing ,Gravitational Lensing ,Physics ,010308 nuclear & particles physics ,Física ,symbols ,Neutrino ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Muir, J., et al. (DES Collaboration), We analyze Dark Energy Survey (DES) data to constrain a cosmological model where a subset of parameters - focusing on ωm - are split into versions associated with structure growth (e.g., ωmgrow) and expansion history (e.g., ωmgeo). Once the parameters have been specified for the ΛCDM cosmological model, which includes general relativity as a theory of gravity, it uniquely predicts the evolution of both geometry (distances) and the growth of structure over cosmic time. Any inconsistency between measurements of geometry and growth could therefore indicate a breakdown of that model. Our growth-geometry split approach therefore serves both as a (largely) model-independent test for beyond-ΛCDM physics, and as a means to characterize how DES observables provide cosmological information. We analyze the same multiprobe DES data as [Phys. Rev. Lett. 122, 171301 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.171301]: DES Year 1 (Y1) galaxy clustering and weak lensing, which are sensitive to both growth and geometry, as well as Y1 BAO and Y3 supernovae, which probe geometry. We additionally include external geometric information from BOSS DR12 BAO and a compressed Planck 2015 likelihood, and external growth information from BOSS DR12 RSD. We find no significant disagreement with ωmgrow=ωmgeo. When DES and external data are analyzed separately, degeneracies with neutrino mass and intrinsic alignments limit our ability to measure ωmgrow, but combining DES with external data allows us to constrain both growth and geometric quantities. We also consider a parametrization where we split both ωm and w, but find that even our most constraining data combination is unable to separately constrain ωmgrow and wgrow. Relative to ΛCDM, splitting growth and geometry weakens bounds on σ8 but does not alter constraints on h., The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2).
- Published
- 2021
- Full Text
- View/download PDF
50. Dwarf AGNs from Optical Variability for the Origins of Seeds (DAVOS): Insights from the Dark Energy Survey Deep Fields
- Author
-
Burke, Colin J., Liu, Xin, Shen, Yue, Phadke, Kedar A., Yang, Qian, Hartley, Will G., Harrison, Ian, Palmese, Antonella, Guo, Hengxiao, Zhang, Kaiwen, Kron, Richard, Turner, David J., Giles, Paul A., Lidman, Christopher, Chen, Yu-Ching, Gruendl, Robert A., Choi, Ami, Amon, Alexandra, Sheldon, Erin, Aguena, M., Allam, S., Andrade-Oliveira, F., Bacon, D., Bertin, E., Brooks, D., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Conselice, C., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Everett, S., Ferrero, I., Flaugher, B., García-Bellido, J., Gaztanaga, E., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Kuehn, K., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Morgan, R., Paz-Chinchón, F., Pieres, A., Malagón, A. A. Plazas, Reil, K., Romer, A. K., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Wilkinson, R. D., Collaboration, DES, Burke, Colin J., Liu, Xin, Shen, Yue, Phadke, Kedar A., Yang, Qian, Hartley, Will G., Harrison, Ian, Palmese, Antonella, Guo, Hengxiao, Zhang, Kaiwen, Kron, Richard, Turner, David J., Giles, Paul A., Lidman, Christopher, Chen, Yu-Ching, Gruendl, Robert A., Choi, Ami, Amon, Alexandra, Sheldon, Erin, Aguena, M., Allam, S., Andrade-Oliveira, F., Bacon, D., Bertin, E., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Conselice, C., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., De Vicente, J., Desai, S., Diehl, H. T., Everett, S., Ferrero, I., Flaugher, B., García-Bellido, J., Gaztanaga, E., Gruen, D., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Kuehn, K., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Morgan, R., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Romer, A. K., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Wilkinson, R. D., and Des, Collaboration
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,black hole physics ,galaxies active ,galaxies dwarf ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,black hole physic ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
We present a sample of 706, $z < 1.5$ active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg$^2$. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 days, a 6 year baseline, and a single-epoch imaging depth of up to $g \sim 24.5$. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($M_{\ast}, 21 pages, 22 figures incl. 3 appendices; accepted for publication in MNRAS
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.