1. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries
- Author
-
Lecourieux, Fatma, Kappel, Christian, Pieri, Philippe, Charon, Justine, Pillet, Jérémy, Hilbert, Ghislaine, Renaud, Christel, Gomès, Eric, Delrot, Serge, Lecourieux, David, Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut des Sciences de la Vigne et du Vin (ISVV)-Université de Bordeaux (UB), Ecophysiologie et Génomique Fonctionnelle de la Vigne (UMR EGFV), and Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)
- Subjects
microclimat ,Biodiversité et Ecologie ,[SDV]Life Sciences [q-bio] ,metabolomics/metabolite profiling ,Plant Science ,berry development ,climate change ,grapevine ,high temperature ,microarrays ,microclimate ,baie de raisin ,Biodiversity and Ecology ,vitis vinifera ,ddc:570 ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Institut für Biochemie und Biologie ,ComputingMilieux_MISCELLANEOUS ,global change ,Original Research ,changement climatique ,food and beverages ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,vigne ,traitement thermique - Abstract
International audience; Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+8 degrees C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, raminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HI induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.
- Published
- 2017
- Full Text
- View/download PDF