1. Single electron-spin-resonance detection by microwave photon counting
- Author
-
Wang, Zhiren, Balembois, Léo, Rančić, Milos, Billaud, Eric, Dantec, Marianne Le, Ferrier, Alban, Goldner, Philippe, Bertaina, Sylvain, Chanelière, Thierry, Estève, Daniel, Vion, Denis, Bertet, Patrice, Flurin, Emmanuel, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Quantronics Group (QUANTRONICS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Nanophysique et Semiconducteurs (NEEL - NPSC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) - Abstract
International audience; Electron spin resonance (ESR) spectroscopy is the method of choice for characterizing paramagnetic impurities, with applications ranging from chemistry to quantum computing, but it gives access only to ensemble-averaged quantities due to its limited signal-to-noise ratio. Single-electron-spin sensitivity has however been reached using spin-dependent photoluminescence, transport measurements, and scanning-probe techniques. These methods are system-specific or sensitive only in a small detection volume, so that practical single spin detection remains an open challenge. Here, we demonstrate single electron magnetic resonance by spin fluorescence detection, using a microwave photon counter at cryogenic temperatures. We detect individual paramagnetic erbium ions in a scheelite crystal coupled to a high-quality factor planar superconducting resonator to enhance their radiative decay rate, with a signal-to-noise ratio of 1.9 in one second integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters. Coherence times up to 3 ms are measured, limited by the spin radiative lifetime. The method has the potential to apply to arbitrary paramagnetic species with long enough non-radiative relaxation time, and allows single-spin detection in a volume as large as the resonator magnetic mode volume ( 10 um^3 in the present experiment), orders of magnitude larger than other single-spin detection techniques. As such, it may find applications in magnetic resonance and quantum computing.
- Published
- 2023