1. Macroscopic thermal properties of real fibrous materials: Volume averaging method and 3D image analysis
- Author
-
A. Ahmadi, C. Gobbé, J. Lux, C. Delisée, Laboratoire d'Étude des Phénomènes de Transfert et de l'Instantanéité : Agro-industrie et Bâtiment (LEPTIAB), Université de La Rochelle (ULR), Transferts, écoulements, fluides, énergétique (TREFLE), Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Unité des Sciences du bois et des biopolymères (Us2b), Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut National de la Recherche Agronomique (INRA)
- Subjects
Fluid Flow and Transfer Processes ,Materials science ,Mechanical Engineering ,02 engineering and technology ,Mechanics ,Mathematical morphology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Tensor field ,Thermal conductivity ,020401 chemical engineering ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Thermal ,Representative elementary volume ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Closure problem ,Tensor ,0204 chemical engineering ,0210 nano-technology ,Anisotropy - Abstract
Lux06b; International audience; A general method combining the volume averaging technique and image analysis is proposed to determine the effective thermal conductivity tensor of real fibrous materials featuring local anisotropic thermal properties. The application of mathematical morphology tools on 3D images of wood based fibrous insulators allows a thorough investigation of the microstructure of these materials. A representative elementary volume is determined and the geometrical structure and local anisotropy are studied and quantified. The classical closure problem coming from the one equation model is solved on the 3D thermal conductivity tensor field and the effective thermal conductivity is computed. Good agreement with available experimental data is achieved.
- Published
- 2006
- Full Text
- View/download PDF