Bock, Josué, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Université de Grenoble, Hans-Werner Jacobi, Christian George, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and STAR, ABES
It is increasingly recognized that the atmosphere composition of snow covered regions – especially polar regions – is noticeably affected by air-snow interactions. Indeed, the snowpack is a multiphase reactor, but physico-chemical processes which take place inside are still poorly understood. A detailled understanding of snow-atmosphere interactions is essential for understanding and modeling properly the composition and reactivity of the atmosphere above snow covered regions. Reconstructions of past trends in atmospheric composition using ice cores also require to understand snowpack processes that affected the composition of interstitial air and burried snow after its deposition.Nitrate (NO3-) present in the snowpack plays an important role as it photochemically produces nitrogen oxides (NOx=NO+NO2), which affect the oxidative capacity of the atmosphere through ozone production.This thesis thus aimed at studying physico-chemical processes which take place inside the snowpack and modify nitrate concentration.In a first part, a reaction mechanism to reproduce nitrate photochemistry in snow were developed, based on previous studies. The main hypothesis was that chemical reactions take place in a quasi-liquid layer located on the surface of snow cristals. However, the properties of this ice-air interface are poorly known, and it appeared that this approach had too many uncertainties to be continued.Then, a thorough discussion were carried out to assess current attempts in snow chemistry modeling, and to propose another approach which could prevail given current knowledge on this topic.In a second part, physico-chemical exchange processes between air and snow were studied and modeled. This concerned adsorption, solid phase diffusion and co-condensation. Among the results that arise, it appeared that current parameterizations of nitrate surface coverage are unable to reproduce measured concentrations, in the studied case of Dome C surface snow, and further reveal sizeable overestimations. On the contrary, simultaneous modeling of solid phase diffusion and co-condensation allows a qualitatively good reproduction of measurements, which cover more than a year, thus including both austral summer and winter with their specific features.This study reveals the importance of exchange processes for snow chemistry modeling, and give basis for future work on this topic., Il est aujourd'hui avéré que la composition chimique de l'atmosphère des régions enneigées – et notamment des régions polaires – est sensiblement affectée par les échanges d'espèces chimiques réactives entre l'air et la neige. En effet, le manteau neigeux constitue un véritable réacteur photochimique multiphasique, mais les mécanismes physico-chimiques à l'œuvre en son sein sont encore mal connus. Une compréhension détaillée des processus s'y déroulant est indispensable pour modéliser correctement la composition et la réactivité de l'atmosphère au-dessus des régions enneigées. De plus, la reconstitution de l'évolution post-dépôt des composés chimiques stables de la neige est également un préalable indispensable pour permettre l'interprétation paléoclimatique de leurs profils de concentration enregistrés dans les carottes de glace.Le nitrate (NO3-) présent dans la neige joue un rôle fondamental, car sa photolyse induit notamment l'émission d'oxydes d'azote (NOx = NO + NO2) par le manteau neigeux, qui modifient la capacité oxydante de l'atmosphère via la production d'ozone. L'objet de cette thèse a donc été d'étudier par modélisations les processus physico-chimiques intervenants dans l'évolution de la concentration du nitrate dans la neige.Une première approche, prolongeant des études préexistantes, a visé à identifier un mécanisme réactionnel pour la photochimie du nitrate dans la neige, en postulant notamment l'existence d'une couche quasi-liquide à la surface des grains de neige. Néanmoins, les propriétés exactes de l'interface air – glace sont, à l'heure actuelle, encore mal caractérisées, et il est apparu que cette démarche présentait de trop larges incertitudes pour être poursuivie.Une discussion approfondie a alors été menée afin d'évaluer les tentatives actuelles de modélisation de la chimie de la neige, et dans le but de proposer une nouvelle approche plus réaliste au regard du niveau de connaissance actuel.Ainsi, dans une seconde partie, l'ensemble des processus d'échange physico-chimiques du nitrate entre l'air et la neige ont été étudiés puis modélisés : adsorption à la surface, diffusion en phase solide et co-condensation. Parmi les résultats obtenus, il est apparu que les paramétrisations actuelles de la couverture surfacique en nitrate étaient incapables de reproduire les concentrations mesurées, dans le cas de la neige de surface à Dome C, et révèlent d'importantes surestimations. A contratio, la prise en compte conjointe de la diffusion en phase solide ainsi que d'un processus de co-condensation permet de bien reproduire qualitativement les séries temporelles de plus d'un an, couvrant donc à la fois l'été et l'hiver austral, qui présentent chacun des caractéristiques distinctes en terme de concentration mesurées.Cette étude révèle ainsi l'importance de ces processus physico-chimiques d'échange dans la modélisation de la chimie de la neige, et pose les bases des mécanismes à prendre en compte dans le cadre de développements futurs.