1. Seeded free-electron laser driven by a compact laser plasma accelerator
- Author
-
Marie Labat, Jurjen Couperus Cabadağ, Amin Ghaith, Arie Irman, Anthony Berlioux, Philippe Berteaud, Frédéric Blache, Stefan Bock, François Bouvet, Fabien Briquez, Yen-Yu Chang, Sébastien Corde, Alexander Debus, Carlos De Oliveira, Jean-Pierre Duval, Yannick Dietrich, Moussa El Ajjouri, Christoph Eisenmann, Julien Gautier, René Gebhardt, Simon Grams, Uwe Helbig, Christian Herbeaux, Nicolas Hubert, Charles Kitegi, Olena Kononenko, Michael Kuntzsch, Maxwell LaBerge, Stéphane Lê, Bruno Leluan, Alexandre Loulergue, Victor Malka, Fabrice Marteau, Manh Huy N. Guyen, Driss Oumbarek-Espinos, Richard Pausch, Damien Pereira, Thomas Püschel, Jean-Paul Ricaud, Patrick Rommeluere, Eléonore Roussel, Pascal Rousseau, Susanne Schöbel, Mourad Sebdaoui, Klaus Steiniger, Keihan Tavakoli, Cédric Thaury, Patrick Ufer, Mathieu Valléau, Marc Vandenberghe, José Vétéran, Ulrich Schramm, Marie-Emmanuelle Couprie, Synchrotron SOLEIL [SSOLEIL], Helmholtz-Zentrum Dresden-Rossendorf [HZDR], Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM], Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institute of Radiation Physics [Dresden], Weizmann Institute of Science [Rehovot, Israël], DYnamique des Systèmes COmplexes (DYSCO), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), ANR-19-CE30-0031,ULTRASYNC,Exploration et contrôle ULTRArapide de la dynamique des paquets d'électrons dans les sources de lumière SYNChrotron(2019), European Project: 340015,EC:FP7:ERC,ERC-2013-ADG,COXINEL(2014), European Project: 653782,H2020,H2020-INFRADEV-1-2014-1,EuPRAXIA(2015), European Project: 339128,EC:FP7:ERC,ERC-2013-ADG,X-FIVE(2014), European Project: M-PAC, European Project: 871124, and The University of Texas at Austin
- Subjects
[PHYS]Physics [physics] ,seeded FEL driven by LPA beams ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,free electron laser ,laser plasma accelerator ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Abstract
Free-electron lasers generate high-brilliance coherent radiation at wavelengths spanning from the infrared to the X-ray domains. The recent development of short-wavelength seeded free-electron lasers now allows for unprecedented levels of control on longitudinal coherence[1], opening new scientific avenues as ultra-fast dynamics on complex systems and X-ray nonlinear optics. While those devices rely on state-of-the-art large-scale accelerators, advancements on laser-plasma accelerators, which harness giga-volt-per-centimeter accelerating fields, showcase a promising technology as compact drivers for free-electron lasers. Using such miniaturized accelerators, exponential amplification of a shot-noise type of radiation in a self-amplified spontaneous emission configuration was recently achieved [2]. However, employing this compact approach for the delivery of temporally coherent pulses in a controlled manner remained a major challenge. Here, we present the experimental demonstration of a laser-plasma accelerator driven free-electron laser in a seeded configuration, where control over the radiation wavelength is accomplished. Furthermore, the appearance of interference fringes, resulting from the interaction between the phase-locked emitted radiation and the seed, confirms longitudinal coherence. Building on our scientific achievements, we anticipate a straightforward scaling to extreme-ultraviolet wavelengths, paving the way towards university-scale free-electron lasers, unique tools for a multitude of applications. [1] Meyer, M. FELs of europe: Whitebook on science with free electron lasers 8–19 (2016). [2] Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator.
- Published
- 2023