8 results on '"Ananya Chattaraj"'
Search Results
2. Atomic scale microstructural insights of superconducting β-tungsten thin films
- Author
-
Ananya Chattaraj, Manju Mishra Patidar, V. Ganesan, Sébastien Joulie, Virginie Serin, Alain Claverie, Vijay Kumar, Aloke Kanjilal, SHIV NADAR UNIVERSITY [ Gautam Budh Nagar], Shiv Nadar University, UGC-DAE Consortium for Scientific Research (UGC-DAE ), Bhabha Atomic Research Centre (BARC), Government of India, Department of Atomic Energy-Government of India, Department of Atomic Energy, Matériaux et dispositifs pour l'Electronique et le Magnétisme (CEMES-MEM), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Condensed Matter Physics - Abstract
International audience; The importance of atomic structure to understand the superconducting β-Tungsten (W) thin films especially their critical transition temperature (Tc) and upper critical magnetic field Hc2(0) is reported. Here, Tc and Hc2(0) for a low thickness (~ 35 nm) film are found to be ~ 3.14 K and 10.72 T, whereas for a comparatively thicker (~ 60 nm) film, these are 1.38 K and 2.34 T, respectively. The β-phase is identified by grazing-incidence X-ray diffraction. The microstructure is probed by transmission electron microscopy, where high-resolution images manifest an improvement in crystallinity of the nanoscale grains in a disordered matrix with increasing film thickness. A drastic change in atomic structure corresponding to two different thicknesses is found to be associated with the change in oxygen concentration. Particularly, the existence of amorphous-W in the presence of β-W is revealed in 35 nm film, which is further supported by ab-initio calculations. Based on the atomic and microstructure, superconducting properties of the β-W films are analyzed and discussed.
- Published
- 2022
- Full Text
- View/download PDF
3. Crucial role of oxygen on the bulk and surface electronic properties of stable β phase of tungsten
- Author
-
Ananya Chattaraj, Sebastien Joulie, Virginie Serin, Alain Claverie, Vijay Kumar, Aloke Kanjilal, Shiv Nadar University, Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Matériaux et dispositifs pour l'Electronique et le Magnétisme (CEMES-MEM), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
- Subjects
Multidisciplinary ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] - Abstract
The A15 β phase of tungsten has recently attracted great interest for spintronic applications due to the finding of giant spin-Hall effect. As β phase is stabilized by oxygen, we have studied the electronic structure of O-doped β-W from first principles calculations. It is found that 20 at.% O-doping makes β phase lower in energy than α-W. These results are in good agreement with energy dispersive X-ray spectroscopy which also shows ~ 16.84 at.% O in 60 nm thick W films. The latter has predominantly β phase as confirmed by grazing incidence X-ray diffraction (XRD). The simulated XRD of bulk β having 15.79 at.% O also agrees with XRD results. Oxygen binds strongly on the surface and affects the Dirac fermion behavior in pure β-W. There is structural disorder, O-inhomogeneity, and higher density-of-states in O-doped β-W at EF compared with pure α. These results are promising to understand the properties of β-W.
- Published
- 2022
- Full Text
- View/download PDF
4. Ab initio study of the structural stability and Dirac fermion behaviour in A3B (A = Cr, Mo, W; B = Al, Ga, In, Si, Ge, Sn, Be) and W3M, M = Ru, Ta, Re, Os, Ir, Au compounds
- Author
-
Ananya Chattaraj, Aloke Kanjilal, and Vijay Kumar
- Subjects
Electrical and Electronic Engineering ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
5. Probing the impact of surface reactivity on charge transport in dimensional phase changed tungsten films
- Author
-
Saif A. Khan, Aloke Kanjilal, Lukasz Walczak, and Ananya Chattaraj
- Subjects
010302 applied physics ,Materials science ,Scanning electron microscope ,Fermi level ,Analytical chemistry ,chemistry.chemical_element ,Tungsten ,Condensed Matter Physics ,01 natural sciences ,Crystallographic defect ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,symbols.namesake ,X-ray photoelectron spectroscopy ,chemistry ,Phase (matter) ,Vacancy defect ,0103 physical sciences ,symbols ,Reactivity (chemistry) ,Electrical and Electronic Engineering - Abstract
A clear understanding of the surface chemical reactivity of tungsten (W) films is indispensable for photocatalytic, sensing and memory applications, especially in the presence of WOx (0 ≤ x ≤ 3) for low thicknesses. Here, surface reactivity of the film through diffusion of oxygen and its ability to make bonds with W is identified by X-ray photoelectron spectroscopy (XPS). Further inspection of XPS valence band spectra confirms the possible hybridization of W 5d and O 2p electrons in the presence of defect states near Fermi level. Exploration of surface morphology by scanning electron microscopy (SEM) reveals agglomeration of grains with increasing film thickness. Detailed microstructural and grazing-incidence X-ray diffraction (GIXRD) studies suggest the formation of β W nanocrystallites in amorphous matrix, and establish a knowledge of thickness dependent phase transformation of W beside surface oxidation. The nonlinear surface current–voltage characteristics at low thickness further indicates dimensional phase change owing to the involvement of point defects. We also report a detailed study of interstitial and vacancy mediated diffusion probability of oxygen in W films, where the estimated diffusion constant is found to be relatively higher than that of other body-centered cubic transition metals.
- Published
- 2019
- Full Text
- View/download PDF
6. Growth-dependent structural ordering and stability in β-tungsten films for spintronic applications
- Author
-
Ananya Chattaraj, Joshua Asirvatham, Gangadhar Das, Gouranga Manna, Pinku Saha, Vijay Kumar, and Aloke Kanjilal
- Subjects
General Physics and Astronomy - Abstract
The β phase of tungsten has attracted great interest for spintronic applications due to its higher spin Hall angle compared to other elemental solids and large spin–orbit torque, but the stability of this phase is yet to be well understood as many different results are there in the literature mainly based on the film thickness, temperature, and overall growth conditions. The growth of films by sputter deposition has emerged as a promising technique to achieve β-W owing to its compatibility with current spintronic technology. We demonstrate here the efficient ability of dc magnetron sputtering to grow stable β-W films up to a thickness of ∼180 nm at room temperature by varying a set of deposition parameters like pressure, power, and deposition time and discuss the various underlying mechanisms. From these results, the optimized set of deposition parameters for growing β-W films is given. A clear understanding of the influence of oxygen in the atomic structure of β-W is obtained by varying the thickness of the films. This is confirmed from the ab initio molecular dynamics (MD) simulations, where the atomic structure is influenced by the oxygen doping concentration. A stable polycrystalline β phase can be achieved by controlled doping of oxygen. Additionally, a phase transformation from α to β with the doping of oxygen is also evident by MD simulations.
- Published
- 2022
- Full Text
- View/download PDF
7. Unravelling oxygen driven α to β phase transformation in tungsten
- Author
-
Shambhu Nath Jha, Virginie Serin, Aloke Kanjilal, Anil K. Sinha, Sudipta Roy Barman, Ashok Kumar Yadav, Vijay Kumar, Sébastien Joulié, Mohammad Balal, Alain Claverie, Ananya Chattaraj, Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Matériaux Multi-fonctionnels et Multi-échelles (CEMES-M3), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Matériaux et dispositifs pour l'Electronique et le Magnétisme (CEMES-MEM), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
- Subjects
Materials for devices ,Materials science ,Absorption spectroscopy ,lcsh:Medicine ,chemistry.chemical_element ,02 engineering and technology ,Tungsten ,01 natural sciences ,Oxygen ,Article ,X-ray photoelectron spectroscopy ,Impurity ,Ab initio quantum chemistry methods ,Phase (matter) ,0103 physical sciences ,lcsh:Science ,Condensed-matter physics ,Theory and computation ,010302 applied physics ,Nanoscale materials ,Multidisciplinary ,lcsh:R ,021001 nanoscience & nanotechnology ,chemistry ,Chemical physics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,lcsh:Q ,Limiting oxygen concentration ,0210 nano-technology - Abstract
Thin films of β-W are the most interesting for manipulating magnetic moments using spin–orbit torques, and a clear understanding of α to β phase transition in W by doping impurity, especially oxygen, is needed. Here we present a combined experimental and theoretical study using grazing incidence X-ray diffraction, photoelectron spectroscopy, electron microscopy, and ab initio calculations to explore atomic structure, bonding, and oxygen content for understanding the formation of β-W. It is found that the W films on SiO2/Si have 13–22 at.% oxygen in A15 β structure. Ab initio calculations show higher solution energy of oxygen in β-W, and a tendency to transform locally from α to β phase with increasing oxygen concentration. X-ray absorption spectroscopy also revealed local geometry of oxygen in β-W, in agreement with the simulated one. These results offer an opportunity for a fundamental understanding of the structural transition in α-W and further development of β-W phase for device applications.
- Published
- 2020
- Full Text
- View/download PDF
8. The effect of Ti+ ion implantation on the anatase-rutile phase transformation and resistive switching properties of TiO 2 thin films
- Author
-
Sanjeev Kumar Srivastava, Pratap K. Sahoo, P. Dash, Shikha Varma, Shalik Ram Joshi, D. Kanjilal, A. Barman, Biswarup Satpati, Ashis K. Manna, Ananya Chattaraj, and Aloke Kanjilal
- Subjects
010302 applied physics ,Anatase ,Materials science ,Analytical chemistry ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Fluence ,Nanocrystalline material ,Ion implantation ,X-ray photoelectron spectroscopy ,Rutile ,Phase (matter) ,0103 physical sciences ,Thin film ,0210 nano-technology - Abstract
We investigate here the structural phase transformation and electrical resistive switching properties of TiO 2 thin films (80 nm) after their self-ion implantation with 50 keV Ti + ions at several fluences. UV-Raman, grazing incidence x-ray diffraction (GIXRD), transmission electron microscopy, x-ray photoelectron spectroscopy, and atomic force microscopy techniques have been utilized to investigate the modifications in thin films. Both, the as-grown and ion implanted, films display mixed phases of rutile (R) and anatase (A). Surprisingly, however, a phase transition from A to R is observed at a critical fluence, where some anatase content transforms into rutile. This A to R transformation increases with additional fluence. The critical fluence found by GIXRD is slightly smaller ( 1 × 10 13 ions/cm 2) than from UV-Raman ( 1 × 10 14 ions/cm 2), indicating the first initiation of phase transformation probably in bulk. All the films contain anatase in nanocrystalline form also and the phase transformation seems to take place via aggregation of anatase nanoparticles. Thin films also show the presence of oxygen vacancies (O V) Ti 3 +, whose number grows with fluence. These O V as well as thermal spikes created during Ti + ion implantation are also crucial for the A-R transition. After implantation at the highest fluence, TiO 2 thin films show bipolar resistive switching behavior. The development of conducting filaments, formed by the migration of many oxygen vacancies generated during ion implantation, can be responsible for this behavior.We investigate here the structural phase transformation and electrical resistive switching properties of TiO 2 thin films (80 nm) after their self-ion implantation with 50 keV Ti + ions at several fluences. UV-Raman, grazing incidence x-ray diffraction (GIXRD), transmission electron microscopy, x-ray photoelectron spectroscopy, and atomic force microscopy techniques have been utilized to investigate the modifications in thin films. Both, the as-grown and ion implanted, films display mixed phases of rutile (R) and anatase (A). Surprisingly, however, a phase transition from A to R is observed at a critical fluence, where some anatase content transforms into rutile. This A to R transformation increases with additional fluence. The critical fluence found by GIXRD is slightly smaller ( 1 × 10 13 ions/cm 2) than from UV-Raman ( 1 × 10 14 ions/cm 2), indicating the first initiation of phase transformation probably in bulk. All the films contain anatase in nanocrystalline form also and the phase t...
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.