Pellissier, Loïc, Albouy, Camille, Bascompte, Jordi, Farwig, Nina, Graham, Catherine, Loreau, Michel, Maglianesi, Maria Alejandra, Melián, Carlos J., Pitteloud, Camille, Roslin, Tomas, Rohr, Rudolf, Thuiller, Wilfried, Woodward, Guy, Zimmermann, Niklaus E., Gravel, Dominique, Saavedra Sanchez, Serguei, University of Zurich, Pellissier, Loïc, Institute of Terrestrial Ecosystems (ITES), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Swiss Federal Research Institute, Écologie et Modèles pour l'Halieutique (IFREMER EMH), Institut Français de Recherche pour l'Exploitation de la Mer - Atlantique (IFREMER Atlantique), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Universität Zürich [Zürich] = University of Zurich (UZH), Philipps Universität Marburg, Station d'écologie théorique et expérimentale (SETE), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Universidad Estatal a Distancia (UNED), Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Goethe-Universität Frankfurt am Main-Senckenberg – Leibniz Institution for Biodiversity and Earth System Research - Senckenberg Gesellschaft für Naturforschung, Leibniz Association-Leibniz Association, Swiss Federal Insitute of Aquatic Science and Technology [Dübendorf] (EAWAG), Swedish University of Agricultural Sciences (SLU), University of Fribourg, Massachusetts Institute of Technology (MIT), Laboratoire d'Ecologie Alpine (LECA ), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Imperial College London, Université de Sherbrooke (UdeS), ANR-11-IDEX-0002,UNITI,Université Fédérale de Toulouse(2011), ANR-16-CE02-0009,GlobNets,Biogéographie globale des réseaux écologiques des forêts du monde(2016), Écologie et Modèles pour l'Halieutique (EMH), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Philipps Universität Marburg = Philipps University of Marburg, Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Fribourg = University of Fribourg (UNIFR), Massachusetts Institute of Technology. Department of Civil and Environmental Engineering, and Saavedra Sanchez, Serguei
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co‐variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant–hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis‐based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients. Keywords: network; metaweb; motif; rarefaction analysis; null model; environmental gradient; network comparison; network properties