1. Trusted IP solution in multi-tenant cloud FPGA platform
- Author
-
Ahmed, Muhammed Kawser, Saha, Sujan Kumar, and Bobda, Christophe
- Subjects
FOS: Computer and information sciences ,Computer Science - Cryptography and Security ,FOS: Electrical engineering, electronic engineering, information engineering ,Systems and Control (eess.SY) ,Electrical Engineering and Systems Science - Systems and Control ,Cryptography and Security (cs.CR) - Abstract
Because FPGAs outperform traditional processing cores like CPUs and GPUs in terms of performance per watt and flexibility, they are being used more and more in cloud and data center applications. There are growing worries about the security risks posed by multi-tenant sharing as the demand for hardware acceleration increases and gradually gives way to FPGA multi-tenancy in the cloud. The confidentiality, integrity, and availability of FPGA-accelerated applications may be compromised if space-shared FPGAs are made available to many cloud tenants. We propose a root of trust-based trusted execution mechanism called \textbf{TrustToken} to prevent harmful software-level attackers from getting unauthorized access and jeopardizing security. With safe key creation and truly random sources, \textbf{TrustToken} creates a security block that serves as the foundation of trust-based IP security. By offering crucial security characteristics, such as secure, isolated execution and trusted user interaction, \textbf{TrustToken} only permits trustworthy connection between the non-trusted third-party IP and the rest of the SoC environment. The suggested approach does this by connecting the third-party IP interface to the \textbf{TrustToken} Controller and running run-time checks on the correctness of the IP authorization(Token) signals. With an emphasis on software-based assaults targeting unauthorized access and information leakage, we offer a noble hardware/software architecture for trusted execution in FPGA-accelerated clouds and data centers.
- Published
- 2022
- Full Text
- View/download PDF