185 results on '"A. Manalaysay"'
Search Results
2. Background determination for the LUX-ZEPLIN dark matter experiment
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Bang, J., Bargemann, J. W., Baxter, A., Beattie, K., Beltrame, P., Bernard, E. P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Chan, C., Chawla, A., Chen, H., Chiang, A. P. S., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Dahl, C. E., David, A., Dey, S., de Viveiros, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibbons, R., Gilchriese, M. G. D., Gokhale, S., Green, J., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Han, S., Hartigan-O’Connor, E., Haselschwardt, S. J., Hertel, S. A., Heuermann, G., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Khaitan, D., Khurana, I., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Porzio, D., Poudel, S., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rossiter, P., Rushton, T., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, R., Taylor, W. C., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A. C., Wang, A., Wang, J. J., Wang, W., Wang, Y., Watson, J. R., Webb, R. C., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., and Yeh, M.
- Abstract
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2×10−48 cm2 for the spin-independent interaction of a 36 GeV/c2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was (6.3±0.5)×10−5 events/keVee/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment.
- Published
- 2023
3. Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment
- Author
-
Aalbers, J., Akerib, D. S., Musalhi, A. K. Al, Alder, F., Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Baker, A., Bang, J., Bargemann, J. W., Baxter, A., Beattie, K., Beltrame, P., Bernard, E. P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Chan, C., Chawla, A., Chen, H., Chiang, A. P. S., Chott, N. I., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Dahl, C. E., David, A., Dey, S., de Viveiros, L., Ding, C., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibbons, R., Gilchriese, M. G. D., Gokhale, S., Green, J., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Han, S., Hartigan-O'Connor, E., Haselschwardt, S. J., Hertel, S. A., Heuermann, G., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., James, R. S., Johnson, J., Kaboth, A. C., Kamaha, A. C., Khaitan, D., Khurana, I., Kirk, R., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Lu, C., Luitz, S., Majewski, P. A., Manalaysay, A., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Olcina, I., Oliver-Mallory, K. C., Orpwood, J., Palladino, K. J., Palmer, J., Parveen, N., Patton, S. J., Penning, B., Pereira, G., Perry, E., Pershing, T., Piepke, A., Porzio, D., Poudel, S., Qie, Y., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Riyat, H. S., Rosero, R., Rossiter, P., Rushton, T., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, R., Taylor, W. C., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A. C., Wang, A., Wang, J. J., Wang, W., Wang, Y., Watson, J. R., Webb, R. C., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., and Yeh, M.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,High Energy Physics - Experiment - Abstract
The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to $9.2\times10^{-48}$ cm$^2$ for the spin-independent interaction of a 36 GeV/c$^2$ WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was $(6.3\pm0.5)\times10^{-5}$ events/keV$_{ee}$/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment., 25 pages, 15 figures
- Published
- 2022
4. A Review of NEST Models, and Their Application to Improvement of Particle Identification in Liquid Xenon Experiments
- Author
-
Szydagis, M., Balajthy, J., Block, G. A., Brodsky, J. P., Brown, E., Cutter, J. E., Farrell, S. J., Huang, J., Kozlova, E. S., Liebenthal, C. S., Manalaysay, A., Mckinsey, D. N., Mcmichael, K., Mooney, M., Mueller, J., Kaixuan Ni, Rischbieter, G. R. C., Tripathi, M., Tunnell, C. D., Velan, V., Wyman, M. D., Zhao, Z., and Zhong, M.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Nuclear Experiment ,High Energy Physics - Experiment - Abstract
This paper discusses microphysics simulation of interactions in liquid xenon, the medium in many leading rare-event physics searches, and describes experimental observables useful to understanding detector performance. Scintillation and ionization yield distributions for signal and background are presented using the Noble Element Simulation Technique (NEST), a toolkit based on experimental data and simple, empirical formulae. NEST models of light and charge production as a function of particle type, energy, and electric field are reviewed, as well as of energy resolution and final pulse areas. After vetting of NEST against raw data, with several specific examples pulled from XENON, ZEPLIN, LUX / LZ, and PandaX, we interpolate and extrapolate its models to draw new conclusions on the properties of future detectors (e.g., XLZD), in terms of the best possible discrimination of electron(ic) recoil backgrounds from a potential nuclear recoil signal, especially WIMP dark matter. We discover that the oft-quoted value of 99.5% discrimination is overly conservative. NEST shows that another order of magnitude improvement (99.95% discrimination) can be achieved with a high photon detection efficiency (g1 ~ 15-20%) at reasonably achievable drift fields of 200 to 350 V/cm., 24 Pages, 6 Tables, 15 Figures, and 15 Equations
- Published
- 2022
5. Cross-Sectional Study on Philippine National Insurance Data on Malignancy
- Author
-
S Alip, C Castillo, K. Ong, A J Castro, K Gonzales, G Gasa, P Fernandez, P Firaza, F Manalaysay, C Semblante, S Sergio, J Prodigalidad, M Macalalag, R Arcinas, and A Roque
- Abstract
IntroductionThe purpose of the Urologic Diseases in the Philippines study is three-fold: to assess the burden of urologic disease in the country in prevalence and incidence, to identify orphan populations or underserved areas where urological care is most needed, and to provide an administrative data registry for which clinical data may be anchored on.Materials & MethodsThe data were then requested from the Corporate Planning Unit of PhilHealth, with the following inclusion parameters: all beneficiaries (members and their dependents) with a hospital claim in the years 2011 to 2021 with the following primary or secondary diagnoses e following variables: age, sex, admission date, outpatient/inpatient classification, specific illness code, claim amount, claim status, region and type of facility. Prevalence and incidence data were computed considering a 2-year lookback period. Health claims data is limited by limited clinical information it contains, and the selection bias of patients in frequent contact with the healthcare system.ResultsMore than 30,000 health claims were reviewed. Incidence data for 2020, in comparison with the Globocan model is as follows: kidney cancer incidence (Philhealth 371 cases, Globocan model 2211) bladder cancer (Philhealth 261 cases, Globocan model 1,541), prostate cancer incidence (Philhealth 934, Globocan model 7,290), testicular cancer incidence (Philhealth 129, Globocan model 355), and penile cancer incidence (Philhealth 32, Globocan model 114). Other information such as prevalence data, regional and facility-type data are contained in the tables and supplementary material. Disparities in reporting may be due to remediable logistical and reporting issues, RVS and ICD exclusivity, and low service utilization.ConclusionIncidence across cancer types follow the trend of global estimates, with prostate cancer being the most prevalent, followed by kidney, bladder, testis, and penile cancers. For future studies, it is imperative that administrative and clinical data linkages are established to form a more holistic picture of the urologic disease burden in the country.
- Published
- 2022
- Full Text
- View/download PDF
6. Improved Dark Matter Search Sensitivity Resulting from LUX Low-Energy Nuclear Recoil Calibration
- Author
-
LUX Collaboration, Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Balajthy, J., Bang, J., Baxter, A., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Boxer, B., Brás, P., Burdin, S., Byram, D., Carmona-Benitez, M. C., Chan, C., Cutter, J. E., de Viveiros, L., Druszkiewicz, E., Fan, A., Fiorucci, S., Gaitskell, R. J., Ghag, C., Gilchriese, M. G. D., Gwilliam, C., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Korolkova, E. V., Kravitz, S., Kudryavtsev, V. A., Leason, E., Lesko, K. T., Liao, J., Lin, J., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marangou, N., McKinsey, D. N., Mei, D. -M., Morad, J. A., Murphy, A. St. J., Naylor, A., Nehrkorn, C., Nelson, H. N., Neves, F., Nilima, A., Oliver-Mallory, K. C., Palladino, K. J., Rhyne, C., Riffard, Q., Rischbieter, G. R. C., Rossiter, P., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, D. J., Taylor, R., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tvrznikova, L., Utku, U., Vacheret, A., Vaitkus, A., Velan, V., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Xiang, X., Xu, J., and Zhang, C.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,hep-ex ,astro-ph.CO ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,physics.ins-det ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment - Abstract
Dual-phase xenon time projection chamber (TPC) detectors have demonstrated superior search sensitivities to dark matter over a wide range of particle masses. To extend their sensitivity to include low-mass dark matter interactions, it is critical to characterize both the light and charge responses of liquid xenon to sub-keV nuclear recoils. In this work, we report a new nuclear recoil calibration in the LUX detector $\textit{in situ}$ using neutron events from a pulsed Adelphi Deuterium-Deuterium neutron generator. We demonstrate direct measurements of light and charge yields down to 0.45 keV (1.4 scintillation photons) and 0.27 keV (1.3 ionization electrons), respectively, approaching the physical limit of liquid xenon detectors. We discuss the implication of these new measurements on the physics reach of dual-phase xenon TPCs for nuclear-recoil-based low-mass dark matter detection.
- Published
- 2022
7. A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics
- Author
-
Aalbers, J, AbdusSalam, SS, Abe, K, Aerne, V, Agostini, F, Ahmed Maouloud, S, Akerib, DS, Akimov, DY, Akshat, J, Al Musalhi, AK, Alder, F, Alsum, SK, Althueser, L, Amarasinghe, CS, Amaro, FD, Ames, A, Anderson, TJ, Andrieu, B, Angelides, N, Angelino, E, Angevaare, J, Antochi, VC, Antón Martin, D, Antunovic, B, Aprile, E, Araújo, HM, Armstrong, JE, Arneodo, F, Arthurs, M, Asadi, P, Baek, S, Bai, X, Bajpai, D, Baker, A, Balajthy, J, Balashov, S, Balzer, M, Bandyopadhyay, A, Bang, J, Barberio, E, Bargemann, JW, Baudis, L, Bauer, D, Baur, D, Baxter, A, Baxter, AL, Bazyk, M, Beattie, K, Behrens, J, Bell, NF, Bellagamba, L, Beltrame, P, Benabderrahmane, M, Bernard, EP, Bertone, GF, Bhattacharjee, P, Bhatti, A, Biekert, A, Biesiadzinski, TP, Binau, AR, Biondi, R, Biondi, Y, Birch, HJ, Bishara, F, Bismark, A, Blanco, C, Blockinger, GM, Bodnia, E, Boehm, C, Bolozdynya, AI, Bolton, PD, Bottaro, S, Bourgeois, C, Boxer, B, Brás, P, Breskin, A, Breur, PA, Brew, CAJ, Brod, J, Brookes, E, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, Bui, TK, Burdin, S, Buse, S, Busenitz, JK, Buttazzo, D, Buuck, M, Buzulutskov, A, Cabrita, R, Cai, C, Cai, D, Capelli, C, Cardoso, JMR, Carmona-Benitez, MC, Cascella, M, Catena, R, Chakraborty, S, Chan, C, Chang, S, Chauvin, A, Chawla, A, Chen, H, Chepel, V, Chott, NI, Cichon, D, Cimental Chavez, A, Cimmino, B, Clark, M, Co, RT, Colijn, AP, Conrad, J, Converse, MV, Costa, M, Cottle, A, Cox, G, Creaner, O, Cuenca Garcia, JJ, Cussonneau, JP, Cutter, JE, Dahl, CE, D’Andrea, V, David, A, Decowski, MP, Dent, JB, Deppisch, FF, De Viveiros, L, Di Gangi, P, Di Giovanni, A, Di Pede, S, Dierle, J, Diglio, S, Dobson, JEY, Doerenkamp, M, Douillet, D, Drexlin, G, Druszkiewicz, E, Dunsky, D, Eitel, K, Elykov, A, Emken, T, Engel, R, Eriksen, Fairbairn, M, Fan, A, Fan, JJ, Farrell, SJ, Fayer, S, Fearon, NM, Ferella, A, Ferrari, C, Fieguth, A, Fiorucci, S, Fischer, H, Flaecher, H, Flierman, M, Florek, T, Foot, R, Fox, PJ, Franceschini, R, Fraser, ED, Frenk, CS, Frohlich, S, Fruth, T, Fulgione, W, Fuselli, C, Gaemers, P, Gaior, R, Gaitskell, RJ, Galloway, M, Gao, F, Garcia Garcia, I, Genovesi, J, Ghag, C, Ghosh, S, Gibson, E, Gil, W, Giovagnoli, D, Girard, F, Glade-Beucke, R, Glück, F, Gokhale, S, De Gouvêa, A, Gráf, L, Grandi, L, Grigat, J, Grinstein, B, Van Der Grinten, MGD, Grössle, R, Guan, H, Guida, M, Gumbsheimer, R, Gwilliam, CB, Hall, CR, Hall, LJ, Hammann, R, Han, K, Hannen, V, Hansmann-Menzemer, S, Harata, R, Hardin, SP, Hardy, E, Hardy, CA, Harigaya, K, Harnik, R, Haselschwardt, SJ, Hernandez, M, Hertel, SA, Higuera, A, Hils, C, Hochrein, S, Hoetzsch, L, Hoferichter, M, Hood, N, Hooper, D, Horn, M, Howlett, J, Huang, DQ, Huang, Y, Hunt, D, Iacovacci, M, Iaquaniello, G, Ide, R, Ignarra, CM, Iloglu, G, Itow, Y, Jacquet, E, Jahangir, O, Jakob, J, James, RS, Jansen, A, Ji, W, Ji, X, Joerg, F, Johnson, J, Joy, A, Kaboth, AC, Kalhor, L, Kamaha, AC, Kanezaki, K, Kar, K, Kara, M, Kato, N, Kavrigin, P, Kazama, S, Keaveney, AW, Kellerer, J, Khaitan, D, Khazov, A, Khundzakishvili, G, Khurana, I, Kilminster, B, Kleifges, M, Ko, P, Kobayashi, M, Kodroff, D, Koltmann, G, Kopec, A, Kopmann, A, Kopp, J, Korley, L, Kornoukhov, VN, Korolkova, EV, Kraus, H, Krauss, LM, Kravitz, S, Kreczko, L, Kudryavtsev, VA, Kuger, F, Kumar, J, López Paredes, B, LaCascio, L, Laha, R, Laine, Q, Landsman, H, Lang, RF, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levinson, L, Levy, C, Li, I, Li, SC, Li, T, Liang, S, Liebenthal, CS, Lin, J, Lin, Q, Lindemann, S, Lindner, M, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Liu, K, Liu, J, Loizeau, J, Lombardi, F, Long, J, Lopes, MI, Lopez Asamar, E, Lorenzon, W, Lu, C, Luitz, S, Ma, Y, Machado, PAN, Macolino, C, Maeda, T, Mahlstedt, J, Majewski, PA, Manalaysay, A, Mancuso, A, Manenti, L, Manfredini, A, Mannino, RL, Marangou, N, March-Russell, J, Marignetti, F, Marrodán Undagoitia, T, Martens, K, Martin, R, Martinez-Soler, I, Masbou, J, Masson, D, Masson, E, Mastroianni, S, Mastronardi, M, Matias-Lopes, JA, McCarthy, ME, McFadden, N, McGinness, E, McKinsey, DN, McLaughlin, J, McMichael, K, Meinhardt, P, Menéndez, J, Meng, Y, Messina, M, Midha, R, Milisavljevic, D, Miller, EH, Milosevic, B, Milutinovic, S, Mitra, SA, Miuchi, K, Mizrachi, E, Mizukoshi, K, Molinario, A, Monte, A, Monteiro, CMB, Monzani, ME, Moore, JS, Morå, K, Morad, JA, Morales Mendoza, JD, Moriyama, S, Morrison, E, Morteau, E, Mosbacher, Y, Mount, BJ, Mueller, J, Murphy, A St J, Murra, M, Naim, D, Nakamura, S, Nash, E, Navaieelavasani, N, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Newstead, JL, Ni, K, Nikoleyczik, JA, Niro, V, Oberlack, UG, Obradovic, M, Odgers, K, O’Hare, CAJ, Oikonomou, P, Olcina, I, Oliver-Mallory, K, Oranday, A, Orpwood, J, Ostrovskiy, I, Ozaki, K, Paetsch, B, Pal, S, Palacio, J, Palladino, KJ, Palmer, J, Panci, P, Pandurovic, M, Parlati, A, Parveen, N, Patton, SJ, Pěč, V, Pellegrini, Q, Penning, B, Pereira, G, Peres, R, Perez-Gonzalez, Y, Perry, E, Pershing, T, Petrossian-Byrne, R, Pienaar, J, Piepke, A, Pieramico, G, Pierre, M, Piotter, M, Pizzella, V, Plante, G, Pollmann, T, Porzio, D, Qi, J, Qie, Y, Qin, J, Quevedo, F, Raj, N, Rajado Silva, M, Ramanathan, K, Ramírez García, D, Ravanis, J, Redard-Jacot, L, Redigolo, D, Reichard, S, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rocchetti, A, Rosenfeld, SL, Rosero, R, Rupp, N, Rushton, T, Saha, S, Salucci, P, Sanchez, L, Sanchez-Lucas, P, Santone, D, Dos Santos, JMF, Sarnoff, I, Sartorelli, G, Sazzad, ABMR, Scheibelhut, M, Schnee, RW, Schrank, M, Schreiner, J, Schulte, P, Schulte, D, Schulze Eissing, H, Schumann, M, Schwemberger, T, Schwenk, A, Schwetz, T, Scotto Lavina, L, Scovell, PR, Sekiya, H, Selvi, M, Semenov, E, Semeria, F, Shagin, P, Shaw, S, Shi, S, Shockley, E, Shutt, TA, Si-Ahmed, R, Silk, JJ, Silva, C, Silva, MC, Simgen, H, Šimkovic, F, Sinev, G, Singh, R, Skulski, W, Smirnov, J, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Sparmann, TJ, Stancu, I, Steidl, M, Stevens, A, Stifter, K, Strigari, LE, Subotic, D, Suerfu, B, Suliga, AM, Sumner, TJ, Szabo, P, Szydagis, M, Takeda, A, Takeuchi, Y, Tan, P-L, Taricco, C, Taylor, WC, Temples, DJ, Terliuk, A, Terman, PA, Thers, D, Thieme, K, Thümmler, T, Tiedt, DR, Timalsina, M, To, WH, Toennies, F, Tong, Z, Toschi, F, Tovey, DR, Tranter, J, Trask, M, Trinchero, GC, Tripathi, M, Tronstad, DR, Trotta, R, Tsai, YD, Tunnell, CD, Turner, WG, Ueno, R, Urquijo, P, Utku, U, Vaitkus, A, Valerius, K, Vassilev, E, Vecchi, S, Velan, V, Vetter, S, Vincent, AC, Vittorio, L, Volta, G, Von Krosigk, B, Von Piechowski, M, Vorkapic, D, Wagner, CEM, Wang, AM, Wang, B, Wang, Y, Wang, W, Wang, JJ, Wang, L-T, Wang, M, Watson, Wei, Y, Weinheimer, C, Weisman, E, Weiss, M, Wenz, D, West, SM, Whitis, TJ, Williams, M, Wilson, MJ, Winkler, D, Wittweg, C, Wolf, J, Wolf, T, Wolfs, FLH, Woodford, S, Woodward, D, Wright, CJ, Wu, VHS, Wu, P, Wüstling, S, Wurm, M, Xia, Q, Xiang, X, Xing, Y, Xu, J, Xu, Z, Xu, D, Yamashita, M, Yamazaki, R, Yan, H, Yang, L, Yang, Y, Ye, J, Yeh, M, Young, I, Yu, HB, Yu, TT, Yuan, L, Zavattini, G, Zerbo, S, Zhang, Y, Zhong, M, Zhou, N, Zhou, X, Zhu, T, Zhu, Y, Zhuang, Y, Zopounidis, JP, Zuber, K, Zupan, J, Aalbers, J, S AbdusSalam, S, Abe, K, Aerne, V, Agostini, F, Ahmed Maouloud, S, S Akerib, D, Y Akimov, D, Akshat, J, K Al Musalhi, A, Alder, F, K Alsum, S, Althueser, L, S Amarasinghe, C, D Amaro, F, Ames, A, J Anderson, T, Andrieu, B, Angelides, N, Angelino, E, Angevaare, J, C Antochi, V, Ant??n Martin, D, Antunovic, B, Aprile, E, M Ara??jo, H, E Armstrong, J, Arneodo, F, Arthurs, M, Asadi, P, Baek, S, Bai, X, Bajpai, D, Baker, A, Balajthy, J, Balashov, S, Balzer, M, Bandyopadhyay, A, Bang, J, Barberio, E, W Bargemann, J, Baudis, L, Bauer, D, Baur, D, Baxter, A, L Baxter, A, Bazyk, M, Beattie, K, Behrens, J, F Bell, N, Bellagamba, L, Beltrame, P, Benabderrahmane, M, P Bernard, E, F Bertone, G, Bhattacharjee, P, Bhatti, A, Biekert, A, P Biesiadzinski, T, R Binau, A, Biondi, R, Biondi, Y, J Birch, H, Bishara, F, Bismark, A, Blanco, C, M Blockinger, G, Bodnia, E, Boehm, C, I Bolozdynya, A, D Bolton, P, Bottaro, S, Bourgeois, C, Boxer, B, Br??s, P, Breskin, A, A Breur, P, J Brew, C A, Brod, J, Brookes, E, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, K Bui, T, Burdin, S, Buse, S, K Busenitz, J, Buttazzo, D, Buuck, M, Buzulutskov, A, Cabrita, R, Cai, C, Cai, D, Capelli, C, R Cardoso, J M, C Carmona-Benitez, M, Cascella, M, Catena, R, Chakraborty, S, Chan, C, Chang, S, Chauvin, A, Chawla, A, Chen, H, Chepel, V, I Chott, N, Cichon, D, Cimental Chavez, A, Cimmino, B, Clark, M, T Co, R, P Colijn, A, Conrad, J, V Converse, M, Costa, M, Cottle, A, Cox, G, Creaner, O, J Cuenca Garcia, J, P Cussonneau, J, E Cutter, J, E Dahl, C, D???andrea, V, David, A, P Decowski, M, B Dent, J, F Deppisch, F, de Viveiros, L, Di Gangi, P, Di Giovanni, A, Di Pede, S, Dierle, J, Diglio, S, Y Dobson, J E, Doerenkamp, M, Douillet, D, Drexlin, G, Druszkiewicz, E, Dunsky, D, Eitel, K, Elykov, A, Emken, T, Engel, R, R Eriksen, S, Fairbairn, M, Fan, A, J Fan, J, J Farrell, S, Fayer, S, M Fearon, N, Ferella, A, Ferrari, C, Fieguth, A, Fiorucci, S, Fischer, H, Flaecher, H, Flierman, M, Florek, T, Foot, R, J Fox, P, Franceschini, R, D Fraser, E, S Frenk, C, Frohlich, S, Fruth, T, Fulgione, W, Fuselli, C, Gaemers, P, Gaior, R, J Gaitskell, R, Galloway, M, Gao, F, Garcia Garcia, I, Genovesi, J, Ghag, C, Ghosh, S, Gibson, E, Gil, W, Giovagnoli, D, Girard, F, Glade-Beucke, R, Gl??ck, F, Gokhale, S, de Gouv??a, A, Gr??f, L, Grandi, L, Grigat, J, Grinstein, B, D van der Grinten, M G, Gr??ssle, R, Guan, H, Guida, M, Gumbsheimer, R, B Gwilliam, C, R Hall, C, J Hall, L, Hammann, R, Han, K, Hannen, V, Hansmann-Menzemer, S, Harata, R, P Hardin, S, Hardy, E, A Hardy, C, Harigaya, K, Harnik, R, J Haselschwardt, S, Hernandez, M, A Hertel, S, Higuera, A, Hils, C, Hochrein, S, Hoetzsch, L, Hoferichter, M, Hood, N, Hooper, D, Horn, M, Howlett, J, Q Huang, D, Huang, Y, Hunt, D, Iacovacci, M, Iaquaniello, G, Ide, R, M Ignarra, C, Iloglu, G, Itow, Y, Jacquet, E, Jahangir, O, Jakob, J, S James, R, Jansen, A, Ji, W, Ji, X, Joerg, F, Johnson, J, Joy, A, C Kaboth, A, Kalhor, L, C Kamaha, A, Kanezaki, K, Kar, K, Kara, M, Kato, N, Kavrigin, P, Kazama, S, W Keaveney, A, Kellerer, J, Khaitan, D, Khazov, A, Khundzakishvili, G, Khurana, I, Kilminster, B, Kleifges, M, Ko, P, Kobayashi, M, Kodroff, D, Koltmann, G, Kopec, A, Kopmann, A, Kopp, J, Korley, L, N Kornoukhov, V, V Korolkova, E, Kraus, H, M Krauss, L, Kravitz, S, Kreczko, L, A Kudryavtsev, V, Kuger, F, Kumar, J, L??pez Paredes, B, Lacascio, L, Laha, R, Laine, Q, Landsman, H, F Lang, R, A Leason, E, Lee, J, S Leonard, D, T Lesko, K, Levinson, L, Levy, C, I, Li, C Li, S, Li, T, Liang, S, S Liebenthal, C, Lin, J, Lin, Q, Lindemann, S, Lindner, M, Lindote, A, Linehan, R, H Lippincott, W, Liu, X, Liu, K, Liu, J, Loizeau, J, Lombardi, F, Long, J, I Lopes, M, Lopez Asamar, E, Lorenzon, W, Lu, C, Luitz, S, Ma, Y, N Machado, P A, Macolino, C, Maeda, T, Mahlstedt, J, A Majewski, P, Manalaysay, A, Mancuso, A, Manenti, L, Manfredini, A, L Mannino, R, Marangou, N, March-Russell, J, Marignetti, F, Marrod??n Undagoitia, T, Martens, K, Martin, R, Martinez-Soler, I, Masbou, J, Masson, D, Masson, E, Mastroianni, S, Mastronardi, M, A Matias-Lopes, J, E McCarthy, M, Mcfadden, N, Mcginness, E, N McKinsey, D, Mclaughlin, J, Mcmichael, K, Meinhardt, P, Men??ndez, J, Meng, Y, Messina, M, Midha, R, Milisavljevic, D, H Miller, E, Milosevic, B, Milutinovic, S, A Mitra, S, Miuchi, K, Mizrachi, E, Mizukoshi, K, Molinario, A, Monte, A, B Monteiro, C M, E Monzani, M, S Moore, J, Mor??, K, A Morad, J, D Morales Mendoza, J, Moriyama, S, Morrison, E, Morteau, E, Mosbacher, Y, J Mount, B, Mueller, J, J Murphy, A St, Murra, M, Naim, D, Nakamura, S, Nash, E, Navaieelavasani, N, Naylor, A, Nedlik, C, N Nelson, H, Neves, F, L Newstead, J, Ni, K, A Nikoleyczik, J, Niro, V, G Oberlack, U, Obradovic, M, Odgers, K, J O???Hare, C A, Oikonomou, P, Olcina, I, Oliver-Mallory, K, Oranday, A, Orpwood, J, Ostrovskiy, I, Ozaki, K, Paetsch, B, Pal, S, Palacio, J, J Palladino, K, Palmer, J, Panci, P, Pandurovic, M, Parlati, A, Parveen, N, J Patton, S, P????, V, Pellegrini, Q, Penning, B, Pereira, G, Peres, R, Perez-Gonzalez, Y, Perry, E, Pershing, T, Petrossian-Byrne, R, Pienaar, J, Piepke, A, Pieramico, G, Pierre, M, Piotter, M, Pizzella, V, Plante, G, Pollmann, T, Porzio, D, Qi, J, Qie, Y, Qin, J, Quevedo, F, Raj, N, Rajado Silva, M, Ramanathan, K, Ram??rez Garc??a, D, Ravanis, J, Redard-Jacot, L, Redigolo, D, Reichard, S, Reichenbacher, J, A Rhyne, C, Richards, A, Riffard, Q, C Rischbieter, G R, Rocchetti, A, L Rosenfeld, S, Rosero, R, Rupp, N, Rushton, T, Saha, S, Salucci, P, Sanchez, L, Sanchez-Lucas, P, Santone, D, F dos Santos, J M, Sarnoff, I, Sartorelli, G, R Sazzad, A B M, Scheibelhut, M, W Schnee, R, Schrank, M, Schreiner, J, Schulte, P, Schulte, D, Schulze Eissing, H, Schumann, M, Schwemberger, T, Schwenk, A, Schwetz, T, Scotto Lavina, L, R Scovell, P, Sekiya, H, Selvi, M, Semenov, E, Semeria, F, Shagin, P, Shaw, S, Shi, S, Shockley, E, A Shutt, T, Si-Ahmed, R, J Silk, J, Silva, C, C Silva, M, Simgen, H, imkovic, F, Sinev, G, Singh, R, Skulski, W, Smirnov, J, Smith, R, Solmaz, M, N Solovov, V, Sorensen, P, Soria, J, J Sparmann, T, Stancu, I, Steidl, M, Stevens, A, Stifter, K, E Strigari, L, Subotic, D, Suerfu, B, M Suliga, A, J Sumner, T, Szabo, P, Szydagis, M, Takeda, A, Takeuchi, Y, Tan, P-L, Taricco, C, C Taylor, W, J Temples, D, Terliuk, A, A Terman, P, Thers, D, Thieme, K, Th??mmler, T, R Tiedt, D, Timalsina, M, H To, W, Toennies, F, Tong, Z, Toschi, F, R Tovey, D, Tranter, J, Trask, M, C Trinchero, G, Tripathi, M, R Tronstad, D, Trotta, R, D Tsai, Y, D Tunnell, C, G Turner, W, Ueno, R, Urquijo, P, Utku, U, Vaitkus, A, Valerius, K, Vassilev, E, Vecchi, S, Velan, V, Vetter, S, C Vincent, A, Vittorio, L, Volta, G, von Krosigk, B, von Piechowski, M, Vorkapic, D, M Wagner, C E, M Wang, A, Wang, B, Wang, Y, Wang, W, J Wang, J, Wang, L-T, Wang, M, R Watson, J, Wei, Y, Weinheimer, C, Weisman, E, Weiss, M, Wenz, D, M West, S, J Whitis, T, Williams, M, J Wilson, M, Winkler, D, Wittweg, C, Wolf, J, Wolf, T, H Wolfs, F L, Woodford, S, Woodward, D, J Wright, C, S Wu, V H, Wu, P, W??stling, S, Wurm, M, Xia, Q, Xiang, X, Xing, Y, Xu, J, Xu, Z, Xu, D, Yamashita, M, Yamazaki, R, Yan, H, Yang, L, Yang, Y, Ye, J, Yeh, M, Young, I, B Yu, H, T Yu, T, Yuan, L, Zavattini, G, Zerbo, S, Zhang, Y, Zhong, M, Zhou, N, Zhou, X, Zhu, T, Zhu, Y, Zhuang, Y, P Zopounidis, J, Zuber, K, Zupan, J, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), HEP, INSPIRE, Lang, RF [0000-0001-7594-2746], Schumann, M [0000-0002-5036-1256], and Apollo - University of Cambridge Repository
- Subjects
detector: technology ,Nuclear and High Energy Physics ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex] ,Physics::Instrumentation and Detectors ,530 Physics ,FOS: Physical sciences ,dark matter ,neutrinoless double-beta decay ,neutrinos ,supernova ,direct detection ,astroparticle physics ,xenon ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,double-beta decay: (0neutrino) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Nuclear Physics - Experiment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Topical Review ,Nuclear Experiment (nucl-ex) ,Detectors and Experimental Techniques ,physics.ins-det ,Nuclear Experiment ,Engineering & allied operations ,activity report ,xenon: liquid ,hep-ex ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,dark matter: detector ,[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,astro-ph.CO ,time projection chamber: xenon ,High Energy Physics::Experiment ,ddc:620 ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Particle Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector., 77 pages, 40 figures, 1262 references
- Published
- 2022
- Full Text
- View/download PDF
8. Coping with bereavement: The experience of a Filipino who lives life using a wheelchair
- Author
-
Peter Bontje, Daryl Patrick G. Yao, Aoi Tanaka, Kaoru Inoue, and Jeana Lacsamana-Manalaysay
- Subjects
Coping (psychology) ,Wheelchair ,medicine ,Life stressors ,Psychology ,medicine.disease ,Spinal cord injury ,Mental health ,Clinical psychology ,Narrative inquiry - Abstract
Individuals with spinal cord injury are vulnerable to developing mental health issues, as their capability to participate in occupations for coping with life stressors, such as bereavement, is alte...
- Published
- 2021
- Full Text
- View/download PDF
9. Cosmogenic production of Ar37 in the context of the LUX-ZEPLIN experiment
- Author
-
Aalbers, J, Akerib, DS, Musalhi, AKA, Alder, F, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Baker, A, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beattie, K, Bernard, EP, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chawla, A, Chen, H, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, David, A, de Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gilchriese, MGD, Gokhale, S, van der Grinten, MGD, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Hunt, D, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Kudryavtsev, VA, Leason, EA, Leonard, DS, Lesko, KT, Levy, C, Lee, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Asamar, EL, Lopez-Paredes, B, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Mendoza, JDM, Morrison, E, Mount, BJ, St. J. Murphy, A, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, K, Pal, S, Palladino, KJ, Palmer, J, Parveen, N, Patton, SJ, Pease, EK, Penning, B, Pereira, G, Perry, E, Pershing, J, Piepke, A, Porzio, D, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Rushton, T, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Sinev, G, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tong, Z, Tovey, DR, Trask, M, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, Y, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodford, S, Woodward, D, Wright, CJ, Xia, Q, Xiang, X, Xu, J, and Yeh, M
- Published
- 2022
10. Cosmogenic production of <math><mrow><mmultiscripts><mrow><mi>Ar</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>37</mn></mrow></mmultiscripts></mrow></math> in the context of the LUX-ZEPLIN experiment
- Author
-
Aalbers, J., Akerib, D. S., Al Musalhi, A. K., Alder, F., Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Baker, A., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beattie, K., Bernard, E. P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chawla, A., Chen, H., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., David, A., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gilchriese, M. G. D., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Kudryavtsev, V. A., Leason, E. A., Leonard, D. S., Lesko, K. T., Levy, C., Lee, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Lopez Asamar, E., Lopez-Paredes, B., Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Morales Mendoza, J. D., Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Olcina, I., Oliver-Mallory, K., Pal, S., Palladino, K. J., Palmer, J., Parveen, N., Patton, S. J., Pease, E. K., Penning, B., Pereira, G., Perry, E., Pershing, J., Piepke, A., Porzio, D., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Rushton, T., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Sinev, G., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tong, Z., Tovey, D. R., Trask, M., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, Y., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodford, S., Woodward, D., Wright, C. J., Xia, Q., Xiang, X., Xu, J., and Yeh, M.
- Abstract
We estimate the amount of Ar37 produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting Ar37 concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of Ar37 in natural xenon is estimated to be 0.024 atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne/month, the average Ar37 activity after 10 tons are purified and transported underground is 0.058−0.090 μBq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic Ar37 will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of Ar37 should be considered when planning for future liquid-xenon-based experiments.
- Published
- 2022
11. Cosmogenic production of 37 Ar in the context of the LUX-ZEPLIN experiment
- Author
-
Aalbers, J, Akerib, DS, Al Musalhi, AK, Alder, F, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Baker, A, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beattie, K, Bernard, EP, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chawla, A, Chen, H, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, David, A, De Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gilchriese, MGD, Gokhale, S, Van der Grinten, MGD, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Hunt, D, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Kudryavtsev, VA, Leason, EA, Leonard, DS, Lesko, KT, Levy, C, Lee, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Lopez Asamar, E, Lopez-Paredes, B, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morales Mendoza, JD, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, K, Pal, S, Palladino, KJ, Palmer, J, Parveen, N, Patton, SJ, Pease, EK, Penning, B, Pereira, G, Perry, E, Pershing, J, Piepke, A, Porzio, D, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Rushton, T, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Sinev, G, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tong, Z, Tovey, DR, Trask, M, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, Y, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodford, S, Woodward, D, Wright, CJ, Xia, Q, Xiang, X, Xu, J, and Yeh, M
- Subjects
hep-ex ,astro-ph.CO ,hep-ph ,astro-ph.IM - Abstract
We estimate the amount of 37 Ar produced in natural xenon via cosmic-ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth’s surface. We then calculate the resulting 37 Ar concentration in a 10-tonne payload (similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage, and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea-level production rate of 37 Ar in natural xenon is estimated to be 0.024 atoms / kg / day . Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1 tonne / month , the average 37 Ar activity after 10 tons are purified and transported underground is 0.058 − 0.090 μ Bq / kg , depending on the degree of argon removal during above-ground purification. Such cosmogenic 37 Ar will appear as a noticeable background in the early science data, while decaying with a 35-day half-life. This newly noticed production mechanism of 37 Ar should be considered when planning for future liquid-xenon-based experiments.
- Published
- 2022
12. Erratum to: The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
- Author
-
Akerib, D., Akerlof, C., Akimov, D., Alquahtani, A., Alsum, S., Anderson, T., Angelides, N., Araújo, H., Arbuckle, A., Armstrong, J., Arthurs, M., Auyeung, H., Aviles, S., Bai, X., Bailey, A., Balajthy, J., Balashov, S., Bang, J., Barry, M., Bauer, D., Bauer, P., Baxter, A., Belle, J., Beltrame, P., Bensinger, J., Benson, T., Bernard, E., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T., Birch, H., Birrittella, B., Boast, K., Bolozdynya, A., Boulton, E., Boxer, B., Bramante, R., Branson, S., Brás, P., Breidenbach, M., Brew, C., Buckley, J., Bugaev, V., Bunker, R., Burdin, S., Busenitz, J., Cabrita, R., Campbell, J., Carels, C., Carlsmith, D., Carlson, B., Carmona-Benitez, M., Cascella, M., Chan, C., Cherwinka, J., Chiller, A., Chiller, C., Chott, N., Cole, A., Coleman, J., Colling, D., Conley, R., Cottle, A., Coughlen, R., Cox, G., Craddock, W., Curran, D., Currie, A., Cutter, J., Cunha, J., Dahl, C., Dardin, S., Dasu, S., Davis, J., Davison, T., Viveiros, L., Decheine, N., Dobi, A., Dobson, J., Druszkiewicz, E., Dushkin, A., Edberg, T., Edwards, W., Edwards, B., Edwards, J., Elnimr, M., Emmet, W., Eriksen, S., Faham, C., Fan, A., Fayer, S., Fiorucci, S., Flaecher, H., Florang, I., Ford, P., Francis, V., Fraser, E., Froborg, F., Fruth, T., Gaitskell, R., Gantos, N., Garcia, D., Gehman, V., Gelfand, R., Genovesi, J., Gerhard, R., Ghag, C., Gibson, E., Gilchriese, M., Gokhale, S., Gomber, B., Gonda, T., Greenall, A., Greenwood, S., Gregerson, G., Grinten, M., Gwilliam, C., Hall, C., Hamilton, D., Hans, S., Hanzel, K., Harrington, T., Harrison, A., Harrison, J., Hasselkus, C., Haselschwardt, S., Hemer, D., Hertel, S., Heise, J., Hillbrand, S., Hitchcock, O., Hjemfelt, C., Hoff, M., Holbrook, B., Holtom, E., Hor, J., Horn, M., Huang, D., Hurteau, T., Ignarra, C., Irving, M., Jacobsen, R., Jahangir, O., Jeffery, S., Ji, W., Johnson, M., Johnson, J., Johnson, P., Jones, W., Kaboth, A., Kamaha, A., Kamdin, K., Kasey, V., Kazkaz, K., Keefner, J., Khaitan, D., Khaleeq, M., Khazov, A., Khromov, A., Khurana, I., Kim, Y., Kim, W., Kocher, C., Kodroff, D., Konovalov, A., Korley, L., Korolkova, E., Koyuncu, M., Kras, J., Kraus, H., Kravitz, S., Krebs, H., Kreczko, L., Krikler, B., Kudryavtsev, V., Kumpan, A., Kyre, S., Lambert, A., Landerud, B., Larsen, N., Laundrie, A., Leason, E., Lee, H., Lee, J., Lee, C., Lenardo, B., Leonard, D., Leonard, R., Lesko, K., Levy, C., Li, J., Liu, Y., Liao, J., Liao, F.T., Lin, J., Lindote, A., Linehan, R., Lippincott, W., Liu, R., Liu, X., Loniewski, C., Lopes, M., Lopez-Asamar, E., Paredes, B., Lorenzon, W., Lucero, D., Luitz, S., Lyle, J., Lynch, C., Majewski, P., Makkinje, J., Malling, D., Manalaysay, A., Manenti, L., Mannino, R., Marangou, N., Markley, D., MarrLaundrie, P., Martin, T., Marzioni, M., Maupin, C., McConnell, C., McKinsey, D., McLaughlin, J., Mei, D.M., Meng, Y., Miller, E., Minaker, Z., Mizrachi, E., Mock, J., Molash, D., Monte, A., Monzani, M., Morad, J., Morrison, E., Mount, B., Murphy, A., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Nelson, H., Nesbit, J., Neves, F., Nikkel, J., Nikoleyczik, J., Nilima, A., O’Dell, J., Oh, H., O’Neill, F., O’Sullivan, K., Olcina, I., Olevitch, M., Oliver-Mallory, K., Oxborough, L., Pagac, A., Pagenkopf, D., Pal, S., Palladino, K., Palmaccio, V., Palmer, J., Pangilinan, M., Parveen, N., Patton, S., Pease, E., Penning, B., Pereira, G., Pereira, C., Peterson, I., Piepke, A., Pierson, S., Powell, S., Preece, R., Pushkin, K., Qie, Y., Racine, M., Ratcliff, B., Reichenbacher, J., Reichhart, L., Rhyne, C., Richards, A., Riffard, Q., Rischbieter, G., Rodrigues, J., Rose, H., Rosero, R., Rossiter, P., Rucinski, R., Rutherford, G., Saba, J., Sabarots, L., Santone, D., Sarychev, M., Sazzad, A., Schnee, R., Schubnell, M., Scovell, P., Severson, M., Seymour, D., Shaw, S., Shutt, G., Shutt, T., Silk, J., Silva, C., Skarpaas, K., Skulski, W., Smith, A., Smith, R., So, J., Solmaz, M., Solovov, V., Sorensen, P., Sosnovtsev, V., Stancu, I., Stark, M., Stephenson, S., Stern, N., Stevens, A., Stiegler, T., Stifter, K., Studley, R., Sumner, T., Sundarnath, K., Sutcliffe, P., Swanson, N., Szydagis, M., Tan, M., Taylor, W., Taylor, R., Taylor, D., Temples, D., Tennyson, B., Terman, P., Thomas, K., Thomson, J., Tiedt, D., Timalsina, M., To, W., Tomás, A., Tope, T., Tripathi, M., Tronstad, D., Tull, C., Turner, W., Tvrznikova, L., Utes, M., Utku, U., Uvarov, S., Va’vra, J., Vacheret, A., Vaitkus, A., Verbus, J., Vietanen, T., Voirin, E., Vuosalo, C., Walcott, S., Waldron, W., Walker, K., Wang, J., Wang, R., Wang, L., Wang, W., Wang, Y., Watson, J., Migneault, J., Weatherly, S., Webb, R., Wei, W.Z., While, M., White, R., White, J., White, D., Whitis, T., Wisniewski, W., Wilson, K., Witherell, M., Wolfs, F., Wolfs, J., Woodward, D., Worm, S., Xiang, X., Xiao, Q., Xu, J., Yeh, M., Yin, J., Young, I., Zhang, C., and Zarzhitsky, P.
- Subjects
Physics and Astronomy (miscellaneous) ,Engineering (miscellaneous) - Published
- 2022
- Full Text
- View/download PDF
13. Fast and Flexible Analysis of Direct Dark Matter Search Data with Machine Learning
- Author
-
Collaboration, LUX, Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Bang, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carrara, N, Carmona-Benitez, MC, Chan, C, Cutter, JE, Viveiros, L de, Druszkiewicz, E, Ernst, J, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, McKinsey, DN, Mei, D-M, Morad, JA, Murphy, A St J, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Rhyne, C, Riffard, Q, Rischbieter, GRC, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tvrznikova, L, Utku, U, Vacheret, A, Vaitkus, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xian, X, Xu, J, and Zhang, C
- Subjects
High Energy Physics - Experiment (hep-ex) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,hep-ex ,astro-ph.CO ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Astrophysics - Instrumentation and Methods for Astrophysics ,physics.ins-det ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,astro-ph.IM ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment - Abstract
We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its flexibility to capture non-linear correlations between variables (such as smearing in light and charge signals due to position variation) by achieving equal performance using pulse areas with and without position-corrections applied. Its efficiency and scalability furthermore enables searching for dark matter using additional variables without significant computational burden. We demonstrate this by including a light signal pulse shape variable alongside more traditional inputs such as light and charge signal strengths. This technique can be exploited by future dark matter experiments to make use of additional information, reduce computational resources needed for signal searches and simulations, and make inclusion of physical nuisance parameters in fits tractable.
- Published
- 2022
14. PS-R02-8: RUPTURED SINUS OF VALSALVA ANEURYSMS: A CASE SERIES OF THE 3-YEAR EXPERIENCE IN THE PHILIPPINE GENERAL HOSPITAL
- Author
-
Paula Victoria Catherine Young Cheng, Roxanne Yen Bongcawil, Amanda Mae Ramos Manalaysay, Stephanie Obillos Laforteza, Celia Catherine Uy, Jose Donato Magno, and Felix Eduardo Punzalan
- Subjects
Physiology ,Internal Medicine ,Cardiology and Cardiovascular Medicine - Published
- 2023
- Full Text
- View/download PDF
15. Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double β decays of 134Xe
- Author
-
Akerib, DS, Al Musalhi, AK, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, de Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, van der Grinten, MGD, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, gnarra, MCI, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Liao, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, López Asamar, E, López Paredes, B, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morales Mendoza, JD, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Patton, S, Parveen, N, Pease, EK, Penning, B, Pereira, G, Piepke, A, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tovey, DR, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodward, D, Wright, CJ, Xiang, X, Xu, J, Yeh, M, and Zarzhitsky, P
- Published
- 2021
16. Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
- Author
-
The LZ Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Brás, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hardy, C. A., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. López, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Nguyen, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Science & Technology ,Physics::Instrumentation and Detectors ,hep-ex ,Physics ,FOS: Physical sciences ,XMASS ,hep-ph ,Astronomy & Astrophysics ,High Energy Physics - Experiment ,Physics, Particles & Fields ,MODEL ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,LIMITS ,High Energy Physics - Phenomenology (hep-ph) ,SOLAR AXIONS ,SEARCH ,Physical Sciences ,DARK-MATTER ,astro-ph.CO ,NEUTRINO ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axion-like particles forming the galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6t 1000d exposure and low expected rate of electron recoil backgrounds in the $, Comment: v2 updates exclusion sensitivities from single-sided to two-sided
- Published
- 2021
17. Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double β decays of Xe134
- Author
-
Akerib, DS, Al Musalhi, AK, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Bodnia, E, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, De Viveiros, L, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Van der Grinten, MGD, Gwilliam, CB, Hall, CR, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Gnarra, MCI, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Liao, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, López Asamar, E, López Paredes, B, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morales Mendoza, JD, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Patton, S, Parveen, N, Pease, EK, Penning, B, Pereira, G, Piepke, A, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tovey, DR, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodward, D, Wright, CJ, Xiang, X, Xu, J, Yeh, M, and Zarzhitsky, P
- Subjects
nucl-ex ,physics.ins-det - Abstract
The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double β decay of 134 Xe is presented. LZ is a 10-tonne xenon time-projection chamber optimized for the detection of dark matter particles and is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double β decay of 134 Xe , for which xenon detectors enriched in 136 Xe are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7 × 10 24 years at 90% confidence level (CL) and has a three-sigma observation potential of 8.7 × 10 23 years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3 × 10 24 years at 90% CL.
- Published
- 2021
18. Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
- Author
-
Collaboration, TLZ, Akerib, DS, Musalhi, AKA, Alsum, SK, Amarasinghe, CS, Ames, A, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Bargemann, JW, Bauer, D, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Blockinger, GM, Boxer, B, Brew, CAJ, Brás, P, Burdin, S, Busenitz, JK, Buuck, M, Cabrita, R, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Converse, MV, Cottle, A, Cox, G, Creaner, O, Cutter, JE, Dahl, CE, Viveiros, LD, Dobson, JEY, Druszkiewicz, E, Eriksen, SR, Fan, A, Fayer, S, Fearon, NM, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gokhale, S, Grinten, MGDVD, Gwilliam, CB, Hall, CR, Hardy, CA, Haselschwardt, SJ, Hertel, SA, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, James, RS, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kodroff, D, Korley, L, Korolkova, EV, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lesko, KT, Levy, C, Li, J, Liao, J, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Asamar, EL, Paredes, BL, Lorenzon, W, Luitz, S, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, McCarthy, ME, McKinsey, DN, McLaughlin, J, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Mendoza, JDM, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Patton, S, Parveen, N, Pease, EK, Penning, B, Pereira, G, Piepke, A, Qie, Y, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Santone, D, Sazzad, ABMR, Schnee, RW, Scovell, PR, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Stancu, I, Stevens, A, Stifter, K, Suerfu, B, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, To, WH, Tovey, DR, Tripathi, M, Tronstad, DR, Turner, W, Utku, U, Vaitkus, A, Wang, B, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Williams, M, Wolfs, FLH, Woodward, D, Wright, CJ, Xiang, X, Xu, J, Yeh, M, and Zarzhitsky, P
- Subjects
Physics::Instrumentation and Detectors - Abstract
LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼7-tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the
- Published
- 2021
19. Recommended conventions for reporting results from direct dark matter searches
- Author
-
K. Morå, S. J. Haselschwardt, E. Bodnia, R. F. Lang, C. McCabe, Jan Conrad, M. Selvi, Q. Lin, W. H. Lippincott, Jianglai Liu, A. C. Kaboth, Ning Zhou, A. Manalaysay, R. Neilson, Y. Yang, X. Chen, D. Naim, J. E. Y. Dobson, M.-C. Piro, B. von Krosigk, S. Westerdale, I. Olcina, I. Bloch, D. Durnford, D. Baxter, and P. Di Gangi
- Subjects
Physics and Astronomy (miscellaneous) ,Dark matter ,FOS: Physical sciences ,QC770-798 ,Astrophysics ,Atomic ,01 natural sciences ,Field (computer science) ,High Energy Physics - Experiment ,DEAP ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,High Energy Physics - Phenomenology (hep-ph) ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,Statistical inference ,Nuclear ,010306 general physics ,Set (psychology) ,010303 astronomy & astrophysics ,Engineering (miscellaneous) ,Axion ,Light dark matter ,Physics ,Quantum Physics ,Information retrieval ,Molecular ,Nuclear & Particles Physics ,QB460-466 ,High Energy Physics - Phenomenology ,Neutrino - Abstract
The field of dark matter detection is a highly visible and highly competitive one. In this paper, we propose recommendations for presenting dark matter direct detection results particularly suited for weak-scale dark matter searches, although we believe the spirit of the recommendations can apply more broadly to searches for other dark matter candidates, such as very light dark matter or axions. To translate experimental data into a final published result, direct detection collaborations must make a series of choices in their analysis, ranging from how to model astrophysical parameters to how to make statistical inferences based on observed data. While many collaborations follow a standard set of recommendations in some areas, for example the expected flux of dark matter particles (to a large degree based on a paper from Lewin and Smith in 1995), in other areas, particularly in statistical inference, they have taken different approaches, often from result to result by the same collaboration. We set out a number of recommendations on how to apply the now commonly used Profile Likelihood Ratio method to direct detection data. In addition, updated recommendations for the Standard Halo Model astrophysical parameters and relevant neutrino fluxes are provided. The authors of this note include members of the DAMIC, DarkSide, DARWIN, DEAP, LZ, NEWS-G, PandaX, PICO, SBC, SENSEI, SuperCDMS, and XENON collaborations, and these collaborations provided input to the recommendations laid out here. Wide-spread adoption of these recommendations will make it easier to compare and combine future dark matter results., 20 pages, 8 figures, 4 tables, version 2 to match publication
- Published
- 2021
20. Constraints on effective field theory couplings using 311.2 days of LUX data
- Author
-
A. St. J. Murphy, Adam Bernstein, T. P. Biesiadzinski, M.I. Lopes, Jilei Xu, C. Nehrkorn, S. Alsum, M. Horn, P. A. Terman, A. Fan, J. T. White, P. Rossiter, Sergey Burdin, A. Baxter, S. J. Haselschwardt, R. Taylor, T. J. Whitis, A. Manalaysay, D. Byram, Antonin Vacheret, B. G. Lenardo, Q. Riffard, N. Swanson, P. Brás, K. T. Lesko, V. Velan, Ethan Bernard, A. Nilima, Matthew Szydagis, T. J. Sumner, S. Shaw, R. G. Jacobsen, K. Palladino, P. Sorensen, D. Khaitan, R. C. Webb, L. de Viveiros, J. A. Morad, M. Solmaz, B. P. Tennyson, O. Jahangir, U. Utku, W. C. Taylor, X. Bai, K. Kazkaz, E. Leason, J. Bang, H. N. Nelson, Henrique Araujo, W. Ji, L. Tvrznikova, V. A. Kudryavtsev, F. Neves, D. R. Tiedt, J. Balajthy, B. Boxer, C. M. Ignarra, A. Lindote, R. L. Mannino, S. A. Hertel, S. Fiorucci, Carl Gwilliam, T. A. Shutt, W. H. To, D. S. Akerib, E. Druszkiewicz, V. N. Solovov, C. R. Hall, K. C. Oliver-Mallory, D. Woodward, D. J. Taylor, Chao Zhang, D. P. Hogan, M. C. Carmona-Benitez, M. G. D. Gilchriese, C. Rhyne, N. Marangou, Elena Korolkova, J. Liao, G. R. C. Rischbieter, R. J. Gaitskell, Dongming Mei, F. L. H. Wolfs, E. M. Boulton, K. Kamdin, X. Xiang, J. Lin, Daniel McKinsey, A. Naylor, J. E. Cutter, D. Q. Huang, C. Ghag, Michael S. Witherell, Catarina Silva, C. Chan, A. Vaitkus, S. Kravitz, and Science and Technology Facilities Council (STFC)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,SPECTROSCOPIC SURVEY ,Nuclear Theory ,FOS: Physical sciences ,Astronomy & Astrophysics ,Atomic ,7. Clean energy ,01 natural sciences ,Physics, Particles & Fields ,Particle and Plasma Physics ,0103 physical sciences ,Effective field theory ,DARK-MATTER ,Order (group theory) ,Nuclear ,010306 general physics ,Mathematical physics ,Physics ,Quantum Physics ,Science & Technology ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Molecular ,Nuclear & Particles Physics ,Physical Sciences ,astro-ph.CO ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report here the results of an Effective Field Theory (EFT) WIMP search analysis using LUX data. We build upon previous LUX analyses by extending the search window to include nuclear recoil energies up to $\sim$180 keV$_{nr}$, requiring a reassessment of data quality cuts and background models. In order to use a binned Profile Likelihood statistical framework, the development of new analysis techniques to account for higher-energy backgrounds was required. With a 3.14$\times10^4$ kg$\cdot$day exposure using data collected between 2014 and 2016, we set 90\% C.L. exclusion limits on non-relativistic EFT WIMP couplings to neutrons and protons, providing the most stringent constraints on a significant fraction of the possible EFT WIMP interactions. Additionally, we report world-leading exclusion limits on inelastic EFT WIMP-nucleon recoils., 19 Pages, 10 Figures, 4 Table
- Published
- 2021
- Full Text
- View/download PDF
21. Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique
- Author
-
Collaboration, LUX, Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Bang, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, Viveiros, LD, Druszkiewicz, E, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, McKinsey, DN, Mei, D-M, Morad, JA, Murphy, ASJ, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Rhyne, C, Riffard, Q, Rischbieter, GRC, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Swanson, N, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tvrznikova, L, Utku, U, Vacheret, A, Vaitkus, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xiang, X, Xu, J, Zhang, C, and Science and Technology Facilities Council (STFC)
- Subjects
Active target ,Novel technique ,Wire grid ,Particle physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,Astronomy & Astrophysics ,Atomic ,01 natural sciences ,High Energy Physics - Experiment ,Physics, Particles & Fields ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,Low energy ,Ionization ,0103 physical sciences ,Nuclear ,Sensitivity (control systems) ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,physics.ins-det ,Physics ,Quantum Physics ,Science & Technology ,010308 nuclear & particles physics ,hep-ex ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Physical Sciences ,astro-ph.CO ,Low Mass ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the LUX detector, signatures of low-mass DM interactions would be very low energy ($\sim$keV) scatters in the active target that ionize only a few xenon atoms and seldom produce detectable scintillation signals. In this regime, extra precaution is required to reject a complex set of low-energy electron backgrounds that have long been observed in this class of detector. Noticing backgrounds from the wire grid electrodes near the top and bottom of the active target are particularly pernicious, we develop a machine learning technique based on ionization pulse shape to identify and reject these events. We demonstrate the technique can improve Poisson limits on low-mass DM interactions by a factor of $2$-$7$ with improvement depending heavily on the size of ionization signals. We use the technique on events in an effective $5$ tonne$\cdot$day exposure from LUX's 2013 science operation to place strong limits on low-mass DM particles with masses in the range $m_{\chi}\in0.15$-$10$ GeV. This machine learning technique is expected to be useful for near-future experiments, such as LZ and XENONnT, which hope to perform low-mass DM searches with the stringent background control necessary to make a discovery., Comment: 14 pages, 13 figures
- Published
- 2021
22. An Effective Field Theory Analysis of the First LUX Dark Matter Search
- Author
-
Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, Viveiros, LD, Druszkiewicz, E, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Larsen, NA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, McKinsey, DN, Mei, D-M, Moongweluwan, M, Morad, JA, Murphy, ASJ, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xu, J, and Zhang, C
- Subjects
Coupling ,Elastic scattering ,Physics ,Time projection chamber ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,FOS: Physical sciences ,01 natural sciences ,Nuclear physics ,Xenon ,WIMP ,chemistry ,Ionization ,0103 physical sciences ,Effective field theory ,astro-ph.CO ,010306 general physics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6e-46 cm^2 on the spin-independent WIMP-nucleon elastic scattering cross section based on a 1.4e4 kg*day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUX's first science run. Limits are placed on each coupling as a function of WIMP mass., Comment: 11 pages, 6 figures
- Published
- 2021
- Full Text
- View/download PDF
23. Effective field theory analysis of the first LUX dark matter search
- Author
-
Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, de Viveiros, L, Druszkiewicz, E, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Larsen, NA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, McKinsey, DN, Mei, D-M, Moongweluwan, M, Morad, JA, St. J. Murphy, A, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xu, J, and Zhang, C
- Subjects
Quantum Physics ,Particle and Plasma Physics ,Physics::Instrumentation and Detectors ,Astrophysics::Instrumentation and Methods for Astrophysics ,Molecular ,Nuclear ,Atomic ,Nuclear & Particles Physics ,Astronomical and Space Sciences - Abstract
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6×10-46 cm2 on the spin-independent WIMP-nucleon elastic scattering cross section based on a 1.4×104 kg·day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUX's first science run. Limits are placed on each coupling as a function of WIMP mass.
- Published
- 2021
24. The Mini-CAPTAIN liquid argon time projection chamber
- Author
-
C. Sterbenz, R. G. Van de Water, Y. Sun, E. Pantic, J. Shin, C. Mauger, L. W. Koerner, Y. Wang, A. Yarritu, M. B. Smy, G. T. Garvey, Keith Rielage, M. Gold, N. Dokania, J. Chaves, S. Locke, C. Yanagisawa, J. Yoo, W. C. Louis, M. Tzanov, Charles E. Taylor, Hui Wang, A. R. Sanchez, Todd Haines, H. S. Chen, A. Manalaysay, P. Madigan, S. Elliot, Robert Svoboda, Jeremy Danielson, I. Stancu, A. Karlin, B. Philipbar, C. McGrew, C. Callahan, Kun-Chun Lee, A. Mills, N. Kamp, N. Walsh, B. Bhandari, S. Gardiner, J. Maricic, S. M. Fernandes, R. L. Cooper, C. Grant, S. Martynenko, Veljko Radeka, G. B. Mills, J. Mirabal-Martinez, J. Bian, C. Pitcher, Elena Guardincerri, Juan Ricardo Vidal Medina, J. Y. Ji, D. L. Danielson, M. J. Martinez, V. M. Gehman, R. W. Kadel, M. Rosen, W. Ketchum, G. Sinnis, K. Bilton, E. Martin, David B. Cline, A. Olivier, W. E. Sondheim, C. E. Tull, C. E. Thorn, F. Giuliani, S. Glavin, A. Teymourian, Q. Liu, P. J. Medina, John Ramsey, A. Higuera, and D. M. Lee
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,01 natural sciences ,Atomic ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,010306 general physics ,Neutron measurement ,Nuclear Experiment ,Instrumentation ,physics.ins-det ,Mathematical physics ,Physics ,Time projection chamber ,010308 nuclear & particles physics ,hep-ex ,Center (category theory) ,Photon detection system ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Liquid argon detector ,Other Physical Sciences ,Liquid argon ,Physics::Accelerator Physics ,Astronomical and Space Sciences - Abstract
This manuscript describes the commissioning of the Mini-CAPTAIN liquid argon detector in a neutron beam at the Los Alamos Neutron Science Center (LANSCE), which led to a first measurement of high-energy neutron interactions in argon. The Mini-CAPTAIN detector consists of a Time Projection Chamber (TPC) with an accompanying photomultiplier tube (PMT) array sealed inside a liquid-argon-filled cryostat. The liquid argon is constantly purified and recirculated in a closed-loop cycle during operation. The specifications and assembly of the detector subsystems and an overview of their performance in a neutron beam are reported., 21 pages, 27 figures
- Published
- 2021
25. Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of $^{134}$Xe
- Author
-
LUX-ZEPLIN, The, Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araujo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Bras, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. Lopez, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double beta decay of $^{134}$Xe, for which xenon detectors enriched in $^{136}$Xe are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7$\times$10$^{24}$ years at 90% confidence level (CL), and has a three-sigma observation potential of 8.7$\times$10$^{23}$ years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3$\times$10$^{24}$ years at 90% CL., Comment: Version accepted for publication in Phys. Rev. C
- Published
- 2021
- Full Text
- View/download PDF
26. Studies on the carboxyl terminal amino acid residues of rabbit lens proteins
- Author
-
Manalaysay, Alvin R. S.
- Published
- 2021
- Full Text
- View/download PDF
27. Feel It, See It, Get It: Is Internal Medicine Residents' Use of Ultrasound in Lumbar Puncture Associated With Higher Success Rate?
- Author
-
May Kam, Mohammed G. Elhassan, Mossab Mohameden, April Manalaysay, and Ratnali Jain
- Subjects
medicine.medical_specialty ,030204 cardiovascular system & hematology ,Logistic regression ,Palpation ,03 medical and health sciences ,0302 clinical medicine ,Lumbar ,Internal medicine ,Statistical significance ,Anesthesiology ,Internal Medicine ,Medicine ,lumbar puncture ,medical procedures ,internal medicine residents ,medicine.diagnostic_test ,business.industry ,Lumbar puncture ,ultrasound ,Ultrasound ,General Engineering ,Medical Education ,business ,Radiology ,Body mass index ,030217 neurology & neurosurgery - Abstract
Introduction: Multiple emergency medicine and anesthesiology research studies suggest that ultrasound (US) is potentially useful in assisting with needle insertion in a lumbar puncture (LP). However, little is known about its value when utilized by internal medicine (IM) residents. The objective of this study is to examine whether the use of ultrasound in LPs performed by internal medicine residents is associated with a higher success rate than the traditional palpation method. Materials and Methods: We reviewed all LP procedure notes in our hospital's records written by IM residents from June 2017 to December 2018 in a single community teaching hospital. We examined the association between the US use and success using the Chi-squared test and logistic regression model. Results: Among the 152 lumbar punctures documented, 130 specified whether US was used or not. Among these, 39 were ultrasound-assisted and 91 were not. Use of ultrasound was associated with a higher success rate compared to the non-ultrasound-use (87% vs 73%; p=0.1). The association was strengthened using logistic regression but did not reach statistical significance (OR 3.5; CI: 0.9 -13.8; p=0.07). Success was significantly associated with a fewer number of attempts (p
- Published
- 2020
28. Discrimination of electronic recoils from nuclear recoils in two-phase xenon time projection chambers
- Author
-
F. L. H. Wolfs, E. M. Boulton, T. A. Shutt, Ethan Bernard, P. Brás, Kareem Kazkaz, T. P. Biesiadzinski, J. T. White, Henrique Araujo, L. Tvrznikova, C. R. Hall, S. Uvarov, X. Bai, E. Druszkiewicz, M. Horn, M. G. D. Gilchriese, Carl Gwilliam, D. J. Taylor, Daniel McKinsey, E. Leason, Q. Riffard, V. A. Kudryavtsev, C. M. Ignarra, Catarina Silva, S. Alsum, A. Naylor, Robert A. Taylor, P. Rossiter, M. Moongweluwan, C. Chan, Chao Zhang, S. Kravitz, D. Q. Huang, T. J. Whitis, Elena Korolkova, B. G. Lenardo, J. A. Morad, G. R. C. Rischbieter, T. J. Sumner, K. T. Lesko, N. Marangou, S. Shaw, M. Solmaz, M. S. Witherell, O. Jahangir, P. A. Terman, Dongming Mei, D. R. Tiedt, Antonin Vacheret, D. S. Akerib, J. Lin, P. Sorensen, V. Velan, J. E. Cutter, A. St. J. Murphy, F. Neves, Adam Bernstein, B. P. Tennyson, D. Khaitan, M.I. Lopes, C. Ghag, K. C. Oliver-Mallory, J. Liao, D. P. Hogan, A. Fan, K. J. Palladino, C. Rhyne, R. J. Gaitskell, E. K. Pease, V. N. Solovov, R. C. Webb, L. de Viveiros, R. L. Mannino, S. Fiorucci, W. H. To, D. Woodward, W. C. Taylor, J. Balajthy, Jilei Xu, C. Nehrkorn, U. Utku, D. Byram, B. Boxer, Matthew Szydagis, S. A. Hertel, Sergey Burdin, A. Baxter, A. Manalaysay, A. Lindote, M. C. Carmona-Benitez, K. Kamdin, S. J. Haselschwardt, H. N. Nelson, R. G. Jacobsen, W. Ji, A. Nilima, and Science and Technology Facilities Council (STFC)
- Subjects
Photon ,Large Underground Xenon experiment ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Massive particle ,FOS: Physical sciences ,chemistry.chemical_element ,Astronomy & Astrophysics ,nucl-ex ,01 natural sciences ,Atomic ,Physics, Particles & Fields ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Recoil ,Xenon ,Particle and Plasma Physics ,Electric field ,0103 physical sciences ,Nuclear ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,physics.ins-det ,Physics ,Quantum Physics ,Science & Technology ,010308 nuclear & particles physics ,hep-ex ,Drift field ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Recoil energy ,Nuclear & Particles Physics ,chemistry ,Physical Sciences ,Astronomical and Space Sciences - Abstract
We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclear recoil energy of $\sim$100 keV, we observe an electronic recoil background acceptance of $, 29 pages, 33 figures; minor typos corrected, references updated
- Published
- 2020
- Full Text
- View/download PDF
29. The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs
- Author
-
Mikkel B. Johnson, B. Landerud, A. Biekert, B. N. Edwards, K. Hanzel, T. E. Tope, D. Curran, C. Chiller, J. Palmer, R. Leonard, P. Sutcliffe, E. D. Fraser, R. Bunker, J. So, A. A. Chiller, M. R. While, A. Dobi, D. Hamilton, M. G. D. van der Grinten, W. J. Wisniewski, J. Li, A. Fan, J.S. Saba, C. Lynch, Henrique Araujo, S. Luitz, J. Nesbit, M. Horn, C. D. Kocher, Catarina Silva, F. G. O’Neill, J. C. Davis, J. J. Silk, M. C. Carmona-Benitez, Simon Fayer, M. Pangilinan, K. O’Sullivan, D. Lucero, Q. Xiao, D. Hemer, B. Boxer, J. M. Lyle, C. Chan, C. E. Tull, J. Genovesi, A. Vaitkus, M. Arthurs, V. B. Francis, S. Kravitz, X. Liu, H. J. Birch, R. Linehan, S. Walcott, C. H. Faham, T. J. Anderson, A. B.M.R. Sazzad, D. White, A. Kamaha, M. S. Witherell, R. Studley, K. Sundarnath, R. Liu, H. Oh, L. Korley, H. Flaecher, R. Conley, K. Kamdin, P. Beltrame, S. Stephenson, C. Pereira, C. R. Hall, R. Cabrita, B. Holbrook, B. G. Lenardo, P. Majewski, T.M. Stiegler, I. B. Peterson, A. Manalaysay, A. Monte, C. Ghag, H. Kraus, C. Loniewski, J. Makkinje, X. Xiang, Robert A. Taylor, M. N. Irving, S. Uvarov, Michael Schubnell, J. Heise, R. Coughlen, A. Lambert, F. Froborg, L. Oxborough, D.C. Malling, S. Greenwood, J. Yin, S. J. Haselschwardt, H. J. Krebs, W. H. Lippincott, K. J. Palladino, R. E. Smith, V. A. Kudryavtsev, I. Olcina, C. M. Ignarra, A. Harrison, A. J. Bailey, Minfang Yeh, D. Bauer, W. Skulski, J. Keefner, O. Hitchcock, Ben Carlson, E. Leason, Benjamin Krikler, A. Cottle, E. Mizrachi, Michele Cascella, M. Khaleeq, M. Solmaz, T. J. Whitis, J. J. Wang, N. Angelides, S. Gokhale, K. Skarpaas, Daniel McKinsey, S. Dardin, S. Kyre, D. Santone, P. R. Scovell, T. Vietanen, S. Powell, Y. Wang, David Leonard, E. Morrison, N. Swanson, M. Sarychev, M. A. Olevitch, E. K. Pease, M. Elnimr, P. Brás, N.J. Gantos, R. G. Jacobsen, J. Migneault, Yeongduk Kim, W. Turner, S. D. Worm, Seth Hillbrand, T. Fruth, G. Gregerson, Wenzhao Wei, V. Kasey, L. Kreczko, J. R. Watson, A. Bhatti, D. Naim, Ethan Bernard, B. J. Mount, V. N. Solovov, C. Nedlik, K. Wilson, Elena Korolkova, G. R. C. Rischbieter, P. Ford, A. Stevens, D. J. Taylor, H. N. Nelson, F. Neves, S. Aviles, W. T. Emmet, K. Stifter, B. Birrittella, J. T. White, S. J. Patton, D. Molash, M. Severson, T. A. Shutt, A. Richards, D Kodroff, J. Lin, Kareem Kazkaz, T. P. Biesiadzinski, David Colling, J. Liao, J. Mock, J. A. Morad, E. Holtom, J. E. Y. Dobson, Bjoern Penning, C. E. Dahl, A. Dushkin, A. Konovalov, D. J. Markley, G. W. Shutt, N. Parveen, M. G. D. Gilchriese, Yanwen Liu, C. Carels, Martin Breidenbach, Kathrin C. Walker, V.V. Sosnovtsev, A. Naylor, K. T. Lesko, N. A. Larsen, C. Lee, A. Pagac, J. J. Cherwinka, N. Decheine, J. Bang, J. A. Nikoleyczik, Patrick Bauer, J.P. Rodrigues, S. Branson, T. J. R. Davison, B. Lopez Paredes, D. Pagenkopf, J. S. Campbell, M. Tan, K. C. Oliver-Mallory, M.J. Barry, J. Belle, D. Yu. Akimov, M. Timalsina, S. Shaw, Alexander Bolozdynya, W. Ji, Sridhara Dasu, D. Q. Huang, J. Edwards, F. L. H. Wolfs, K. E. Boast, J. Busenitz, Ren-Jie Wang, S. Fiorucci, N. Stern, C. Rhyne, V. Bugaev, A. Laundrie, G. Rutherford, G. Pereira, E. H. Miller, W. W. Craddock, S. Alsum, J.P. da Cunha, Richard J. Smith, A. Cole, W. Wang, Julie Harrison, I. Khurana, M. Utes, R. J. Gaitskell, J. Kras, D. Khaitan, R. L. Mannino, J. D. Wolfs, H. Auyeung, L. de Viveiros, E. Voirin, E. M. Boulton, N. I. Chott, I. Stancu, L. Tvrznikova, Richard Rosero, P. MarrLaundrie, D. R. Tronstad, T. Benson, Dongming Mei, T. J. Sumner, O. Jahangir, J. Va’vra, Ross G. White, L. Sabarots, A. Currie, A. R. Smith, W. L. Waldron, J. P. Coleman, E. Lopez-Asamar, Wolfgang Lorenzon, A. Piepke, Carl Gwilliam, S. Hans, T. Harrington, Laura Manenti, A. Greenall, F.-T. Liao, G. Cox, J. R. Bensinger, V. M. Gehman, H. J. Rose, Christopher Brew, X. Bai, P. Sorensen, A. Arbuckle, Y. Qie, R. C. Webb, R.M. Gerhard, T.W. Hurteau, K.J. Thomas, P. Rossiter, C. Hasselkus, W. G. Jones, J. Johnson, R. Gelfand, T. G. Gonda, C. O. Vuosalo, A. St. J. Murphy, Adam Bernstein, Chao Zhang, A. Nilima, R. M. Preece, T. K. Edberg, Q. Riffard, B. P. Tennyson, Yue Meng, C. Maupin, J. E. Cutter, J. Reichenbacher, J.Y-K. Hor, N. Marangou, D. Temples, Eli Gibson, M. Hoff, H. S. Lee, J. H. Buckley, Z. J. Minaker, M.I. Lopes, M. Koyuncu, P. A. Terman, J.R. Verbus, Bhawna Gomber, J. A. Nikkel, A. Alquahtani, I. M. Fogarty Florang, D. Seymour, A. V. Kumpan, Antonin Vacheret, C. Hjemfelt, M.R. Stark, S. Pierson, M. Racine, D. R. Tiedt, D. S. Akerib, A. Khazov, W. C. Taylor, J. Balajthy, A.V. Khromov, A. C. Kaboth, V. M. Palmaccio, Duncan Carlsmith, K. Pushkin, S. A. Hertel, S. N. Jeffery, E. Druszkiewicz, R. W. Schnee, S. Pal, R. Bramante, B. N. Ratcliff, M. E. Monzani, J. O'Dell, P. Zarzhitsky, L. Wang, P. Johnson, Matthew Szydagis, W. H. To, J. E. Armstrong, U. Utku, Mani Tripathi, D. Woodward, D. Garcia, W. R. Edwards, Carl W. Akerlof, Jilei Xu, C. Nehrkorn, Ian S. Young, J. McLaughlin, J. Thomson, S. R. Eriksen, R. Rucinski, T.J. Martin, C. Levy, Sergey Burdin, A. Baxter, A. Lindote, L. Reichhart, Juhyeong Lee, S. Balashov, C. T. McConnell, M. F. Marzioni, A. Tomás, W. T. Kim, S. Weatherly, and Science and Technology Facilities Council (STFC)
- Subjects
BACKGROUNDS ,Particle physics ,Photomultiplier ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,lcsh:Astrophysics ,Scintillator ,01 natural sciences ,High Energy Physics - Experiment ,Physics, Particles & Fields ,High Energy Physics - Experiment (hep-ex) ,WIMP ,lcsh:QB460-466 ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Gamma spectroscopy ,Sensitivity (control systems) ,010306 general physics ,DETECTOR ,physics.ins-det ,0206 Quantum Physics ,Engineering (miscellaneous) ,Physics ,Science & Technology ,hep-ex ,010308 nuclear & particles physics ,Scattering ,IMPURITIES ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Content (measure theory) ,lcsh:QC770-798 ,CONSTRUCTION MATERIALS - Abstract
LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented., Comment: 45 pages (79 inc. tables), 7 figures, 9 tables
- Published
- 2020
- Full Text
- View/download PDF
30. Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector
- Author
-
E. M. Boulton, A. Naylor, L. Tvrznikova, P. Brás, T. J. Sumner, A. Manalaysay, A. Lindote, J. A. Morad, Jilei Xu, R. L. Mannino, D. Q. Huang, C. Nehrkorn, M. C. Carmona-Benitez, Carl Gwilliam, Ethan Bernard, Catarina Silva, W. C. Taylor, J. Balajthy, K. Kamdin, Chao Zhang, J. Liao, W. H. To, D. R. Tiedt, S. Uvarov, D. Woodward, A. Fan, Henrique Araujo, J. Lin, D. M. Mei, S. J. Haselschwardt, N. Marangou, Q. Riffard, D. S. Akerib, V. A. Kudryavtsev, Sergey Burdin, D. J. Taylor, T. A. Shutt, C. Rhyne, S. A. Hertel, E. Druszkiewicz, M. Horn, A. Baxter, R. J. Gaitskell, C. Chan, S. Kravitz, C. R. Hall, C. M. Ignarra, K. J. Palladino, U. Utku, D. Byram, A. St. J. Murphy, Adam Bernstein, G. R. C. Rischbieter, Mani Tripathi, M.I. Lopes, Elena Korolkova, M. G. D. Gilchriese, B. G. Lenardo, E. K. Pease, H. N. Nelson, S. Fiorucci, B. Boxer, L. de Viveiros, V. N. Solovov, Daniel McKinsey, S. Alsum, M. Moongweluwan, F. L. H. Wolfs, P. Sorensen, M. Solmaz, M. F. Marzioni, K. C. Oliver-Mallory, R. C. Webb, C. Ghag, J. T. White, D. P. Hogan, D. Khaitan, B. P. Tennyson, P. Rossiter, Matthew Szydagis, Robert A. Taylor, F. Neves, J. E. Cutter, T. J. Whitis, P. A. Terman, Antonin Vacheret, S. Shaw, M. S. Witherell, O. Jahangir, X. Bai, K. T. Lesko, E. Leason, R. G. Jacobsen, Kareem Kazkaz, T. P. Biesiadzinski, W. Ji, A. Nilima, V. Velan, and Science and Technology Facilities Council (STFC)
- Subjects
COLLISIONS ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Electron capture ,Analytical chemistry ,FOS: Physical sciences ,nucl-ex ,Atomic ,01 natural sciences ,7. Clean energy ,Physics, Particles & Fields ,HEAVY-IONS ,LIMITS ,Particle and Plasma Physics ,rare decays ,0103 physical sciences ,Nuclear ,Nuclear Experiment (nucl-ex) ,xenon detectors ,010306 general physics ,Nuclear Experiment ,physics.ins-det ,Physics ,Science & Technology ,dark matter detectors ,010308 nuclear & particles physics ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,3. Good health ,Physics, Nuclear ,double electron capture ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Neutrino - Abstract
Two-neutrino double electron capture is a process allowed in the Standard Model of Particle Physics. This rare decay has been observed in $^{78}$Kr, $^{130}$Ba and more recently in $^{124}$Xe. In this publication we report on the search for this process in $^{124}$Xe and $^{126}$Xe using the full exposure of the Large Underground Xenon (LUX) experiment, in a total of of 27769.5~kg-days. No evidence of a signal was observed, allowing us to set 90\% C.L. lower limits for the half-lives of these decays of $2.0\times10^{21}$~years for $^{124}$Xe and $1.9\times10^{21}$~years for $^{126}$Xe., 8 pages, 3 figures
- Published
- 2020
- Full Text
- View/download PDF
31. Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of ¹³⁶Xe
- Author
-
Akerib, DS, Akerlof, CW, Alqahtani, A, Alsum, SK, Anderson, TJ, Angelides, N, Araujo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Baxter, A, Bensinger, J, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Boast, KE, Boxer, B, Bras, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Cabrita, R, Carels, C, Carlsmith, DL, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Cottle, A, Cutter, JE, Dahl, CE, de Viveiros, L, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Eriksen, SR, Fan, A, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gilchriese, MGD, Gokhale, S, van der Grinten, MGD, Hall, CR, Harrison, A, Haselschwardt, SJ, Hertel, SA, Hor, JY-K, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kocher, CD, Korley, L, Korolkova, EV, Kras, J, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Liao, F-T, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, R, Liu, X, Loniewski, C, Lopes, MI, Paredes, B Lopez, Lorenzon, W, Luitz, S, Lyle, JM, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, McLaughlin, J, Meng, Y, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morrison, E, Mount, BJ, Murphy, A St J, Naim, D, Naylor, A, Nedlik, C, Nehrkorn, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, O'Sullivan, K, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Parveen, N, Pease, EK, Penning, B, Pereira, G, Pushkin, K, Reichenbacher, J, Rhyne, CA, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Rutherford, G, Santone, D, Sazzad, ABMR, Schnee, RW, Schubnell, M, Seymour, D, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Stancu, I, Stevens, A, Stifter, K, Sumner, TJ, Swanson, N, Szydagis, M, Tan, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, Tomas, A, Tripathi, M, Tronstad, DR, Turner, W, Tvrznikova, L, Utku, U, Vacheret, A, Vaitkus, A, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Wolfs, FLH, Woodward, D, Xiang, X, Xu, J, Yeh, M, Zarzhitsky, P, and Collaboration, LUX-ZEPLINLZ
- Published
- 2020
32. Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe136
- Author
-
Richard Rosero, D. R. Tronstad, David Leonard, X. Bai, J. Johnson, X. Liu, J. Busenitz, P. Brás, C. Rhyne, A. Cole, R. J. Gaitskell, R. Linehan, Eli Gibson, C. Levy, Sergey Burdin, R. C. Webb, A. Baxter, L. de Viveiros, A. Alqahtani, A. Monte, C. Ghag, N. Angelides, P. Sorensen, S. Gokhale, S. Shaw, Catarina Silva, J. Palmer, B. Lopez Paredes, T. J. Sumner, N. Marangou, A. Manalaysay, K. E. Boast, O. Jahangir, R. W. Schnee, S. Pal, M. E. Monzani, Yue Meng, D. Naim, I. Stancu, J. Liao, J. J. Wang, K. O’Sullivan, V. Bugaev, N. I. Chott, A. Khazov, P. Zarzhitsky, B. J. Mount, T. A. Shutt, Matthew Szydagis, J. Lin, H. N. Nelson, K. C. Oliver-Mallory, Wolfgang Lorenzon, Ross G. White, J.J. Silk, J. R. Bensinger, E. Leason, Benjamin Krikler, M. G. D. Gilchriese, E. Druszkiewicz, Laura Manenti, J. E. Y. Dobson, C. Carels, E. Mizrachi, C. Chan, Henrique Araujo, J. A. Morad, L. Kreczko, J. R. Watson, F.-T. Liao, A. Vaitkus, S. Kravitz, W. C. Taylor, P. Rossiter, H. J. Birch, D. Khaitan, K. Stifter, A. Kamaha, J. Bang, J. A. Nikoleyczik, D. Seymour, W. Turner, U. Utku, E. D. Fraser, Mani Tripathi, K. T. Lesko, C. Nedlik, A. Biekert, J. Balajthy, V. A. Kudryavtsev, S. Fiorucci, A. C. Kaboth, J. McLaughlin, C. M. Ignarra, C. R. Hall, F. L. H. Wolfs, R. Cabrita, Kareem Kazkaz, G. Rutherford, D. R. Tiedt, A. Harrison, M. Horn, J. Li, T. P. Biesiadzinski, C. D. Kocher, M. G. D. van der Grinten, K. J. Palladino, M. F. Marzioni, M. C. Carmona-Benitez, J. Kras, Michele Cascella, Carl W. Akerlof, H. Kraus, C. E. Dahl, T. Fruth, T. J. Anderson, A. Lindote, J. M. Lyle, Jilei Xu, B. Boxer, C. Nehrkorn, A. B.M.R. Sazzad, A. Tomás, E. K. Pease, Juhyeong Lee, Michael Schubnell, D. S. Akerib, L. Korley, K. Kamdin, S. Balashov, Ethan Bernard, P. Majewski, W. H. Lippincott, V. N. Solovov, X. Xiang, Daniel McKinsey, N. Parveen, Minfang Yeh, A. St. J. Murphy, M. Solmaz, Adam Bernstein, Robert A. Taylor, E. Morrison, D. Woodward, A. Naylor, T. J. Whitis, S. J. Haselschwardt, D. Q. Huang, M.I. Lopes, N. Swanson, W. Wang, P. A. Terman, S. R. Eriksen, R. L. Mannino, Antonin Vacheret, M. Arthurs, S. Luitz, G. Pereira, Richard J. Smith, T. K. Edberg, Q. Riffard, D. Temples, K. Pushkin, J. E. Armstrong, J. H. Buckley, J. Genovesi, M. Tan, E. H. Miller, A. Cottle, I. Olcina, A. Bhatti, S. A. Hertel, C. Loniewski, Elena Korolkova, A. Stevens, G. R. C. Rischbieter, F. Neves, Bjoern Penning, M. Timalsina, L. Tvrznikova, Henning Flaecher, S. Alsum, I. Khurana, J. Y.K. Hor, J. E. Cutter, J. Reichenbacher, W. Ji, A. Fan, Duncan Carlsmith, D. Santone, A. Nilima, and R. Liu
- Subjects
Physics ,010308 nuclear & particles physics ,Active volume ,0103 physical sciences ,Analytical chemistry ,010306 general physics ,01 natural sciences ,Sensitivity (electronics) - Abstract
Author(s): Akerib, DS; Akerlof, CW; Alqahtani, A; Alsum, SK; Anderson, TJ; Angelides, N; Araujo, HM; Armstrong, JE; Arthurs, M; Bai, X; Balajthy, J; Balashov, S; Bang, J; Baxter, A; Bensinger, J; Bernard, EP; Bernstein, A; Bhatti, A; Biekert, A; Biesiadzinski, TP; Birch, HJ; Boast, KE; Boxer, B; Bras, P; Buckley, JH; Bugaev, VV; Burdin, S; Busenitz, JK; Cabrita, R; Carels, C; Carlsmith, DL; Carmona-Benitez, MC; Cascella, M; Chan, C; Chott, NI; Cole, A; Cottle, A; Cutter, JE; Dahl, CE; De Viveiros, L; Dobson, JEY; Druszkiewicz, E; Edberg, TK; Eriksen, SR; Fan, A; Fiorucci, S; Flaecher, H; Fraser, ED; Fruth, T; Gaitskell, RJ; Genovesi, J; Ghag, C; Gibson, E; Gilchriese, MGD; Gokhale, S; Van Der Grinten, MGD; Hall, CR; Harrison, A; Haselschwardt, SJ; Hertel, SA; Hor, JYK; Horn, M; Huang, DQ; Ignarra, CM; Jahangir, O; Ji, W; Johnson, J; Kaboth, AC; Kamaha, AC; Kamdin, K; Kazkaz, K; Khaitan, D; Khazov, A; Khurana, I; Kocher, CD; Korley, L; Korolkova, EV; Kras, J; Kraus, H; Kravitz, S; Kreczko, L; Krikler, B; Kudryavtsev, VA; Leason, EA; Lee, J | Abstract: The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (g600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years.
- Published
- 2020
- Full Text
- View/download PDF
33. Projected sensitivity of the LUX-ZEPLIN experiment to the 0 ν β β decay of 136 Xe
- Author
-
Akerib, DS, Akerlof, CW, Alqahtani, A, Alsum, SK, Anderson, TJ, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Bang, J, Baxter, A, Bensinger, J, Bernard, EP, Bernstein, A, Bhatti, A, Biekert, A, Biesiadzinski, TP, Birch, HJ, Boast, KE, Boxer, B, Brás, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Cabrita, R, Carels, C, Carlsmith, DL, Carmona-Benitez, MC, Cascella, M, Chan, C, Chott, NI, Cole, A, Cottle, A, Cutter, JE, Dahl, CE, De Viveiros, L, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Eriksen, SR, Fan, A, Fiorucci, S, Flaecher, H, Fraser, ED, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gibson, E, Gilchriese, MGD, Gokhale, S, Van der Grinten, MGD, Hall, CR, Harrison, A, Haselschwardt, SJ, Hertel, SA, Hor, JY-K, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, Ji, W, Johnson, J, Kaboth, AC, Kamaha, AC, Kamdin, K, Kazkaz, K, Khaitan, D, Khazov, A, Khurana, I, Kocher, CD, Korley, L, Korolkova, EV, Kras, J, Kraus, H, Kravitz, S, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Liao, F-T, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, R, Liu, X, Loniewski, C, Lopes, MI, López Paredes, B, Lorenzon, W, Luitz, S, Lyle, JM, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, McLaughlin, J, Meng, Y, Miller, EH, Mizrachi, E, Monte, A, Monzani, ME, Morad, JA, Morrison, E, Mount, BJ, Murphy, ASJ, Naim, D, Naylor, A, Nedlik, C, Nehrkorn, C, Nelson, HN, Neves, F, Nikoleyczik, JA, Nilima, A, O'Sullivan, K, Olcina, I, Oliver-Mallory, KC, Pal, S, Palladino, KJ, Palmer, J, Parveen, N, Pease, EK, Penning, B, Pereira, G, Pushkin, K, Reichenbacher, J, Rhyne, CA, Riffard, Q, Rischbieter, GRC, Rosero, R, Rossiter, P, Rutherford, G, Santone, D, Sazzad, ABMR, Schnee, RW, Schubnell, M, Seymour, D, Shaw, S, Shutt, TA, Silk, JJ, Silva, C, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Stancu, I, Stevens, A, Stifter, K, Sumner, TJ, Swanson, N, Szydagis, M, Tan, M, Taylor, WC, Taylor, R, Temples, DJ, Terman, PA, Tiedt, DR, Timalsina, M, Tomás, A, Tripathi, M, Tronstad, DR, Turner, W, Tvrznikova, L, Utku, U, Vacheret, A, Vaitkus, A, Wang, JJ, Wang, W, Watson, JR, Webb, RC, White, RG, Whitis, TJ, Wolfs, FLH, Woodward, D, Xiang, X, Xu, J, Yeh, M, and Zarzhitsky, P
- Subjects
nucl-ex - Abstract
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to 136 Xe neutrinoless double β decay, taking advantage of the significant ( > 600 kg) 136 Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of 136 Xe is projected to be 1.06 × 10 26 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with 136 Xe at 1.06 × 10 27 years.
- Published
- 2020
34. Investigation of background electron emission in the LUX detector
- Author
-
D. J. Taylor, M. G. D. Gilchriese, V. Velan, U. Utku, A. Manalaysay, A. Fan, S. Shaw, L. Tvrznikova, P. A. Terman, T. J. Sumner, J. T. White, Ethan Bernard, H. N. Nelson, W. H. To, D. Woodward, W. C. Taylor, J. Balajthy, B. G. Lenardo, M. S. Witherell, O. Jahangir, P. Brás, Robert A. Taylor, Q. Riffard, Carl Gwilliam, Daniel McKinsey, R. G. Jacobsen, Jilei Xu, C. Nehrkorn, T. J. Whitis, M. Solmaz, X. Bai, D. Khaitan, S. Alsum, M. C. Carmona-Benitez, S. A. Hertel, W. Ji, K. Kamdin, E. Druszkiewicz, M. Moongweluwan, Antonin Vacheret, F. L. H. Wolfs, P. Rossiter, K. J. Palladino, E. M. Boulton, R. L. Mannino, Elena Korolkova, G. R. C. Rischbieter, K. C. Oliver-Mallory, S. J. Haselschwardt, D. Byram, T. A. Shutt, J. A. Morad, J. Lin, D. R. Tiedt, Henrique Araujo, E. K. Pease, D. P. Hogan, B. Boxer, K. T. Lesko, V. N. Solovov, E. Leason, C. R. Hall, Matthew Szydagis, D. S. Akerib, S. Uvarov, R. C. Webb, M. Horn, L. de Viveiros, A. St. J. Murphy, P. Sorensen, Adam Bernstein, B. P. Tennyson, A. Naylor, M.I. Lopes, D. Q. Huang, Kareem Kazkaz, V. A. Kudryavtsev, C. M. Ignarra, T. P. Biesiadzinski, J. Liao, Sergey Burdin, C. Rhyne, A. Baxter, R. J. Gaitskell, A. Lindote, S. Fiorucci, J. E. Cutter, Chao Zhang, C. Ghag, N. Marangou, F. Neves, Dongming Mei, Catarina Silva, C. Chan, S. Kravitz, A. Nilima, and Science and Technology Facilities Council (STFC)
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,Electron ,Photoionization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Atomic ,01 natural sciences ,Physics, Particles & Fields ,ENERGY ,XENON ,Particle and Plasma Physics ,Xenon ,DEPENDENCE ,Impurity ,LIQUID ARGON ,0103 physical sciences ,Nuclear ,FIELD ,010306 general physics ,physics.ins-det ,Physics ,Quantum Physics ,Science & Technology ,010308 nuclear & particles physics ,Detector ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Photoelectric effect ,Nuclear & Particles Physics ,STATE ,KRYPTON ,chemistry ,Physical Sciences ,Atomic physics ,Luminescence ,Astronomical and Space Sciences - Abstract
Dual-phase xenon detectors, as currently used in direct detection dark matter experiments, have observed elevated rates of background electron events in the low energy region. While this background negatively impacts detector performance in various ways, its origins have only been partially studied. In this paper we report a systematic investigation of the electron pathologies observed in the LUX dark matter experiment. We characterize different electron populations based on their emission intensities and their correlations with preceding energy depositions in the detector. By studying the background under different experimental conditions, we identified the leading emission mechanisms, including photoionization and the photoelectric effect induced by the xenon luminescence, delayed emission of electrons trapped under the liquid surface, capture and release of drifting electrons by impurities, and grid electron emission. We discuss how these backgrounds can be mitigated in LUX and future xenon-based dark matter experiments., 17 pages, 13 figures
- Published
- 2020
- Full Text
- View/download PDF
35. An effective field theory analysis of the first LUX dark matter search
- Author
-
Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, Viveiros, LD, Druszkiewicz, E, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Larsen, NA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, McKinsey, DN, Mei, D-M, Moongweluwan, M, Morad, JA, Murphy, ASJ, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xu, J, Zhang, C, Science and Technology Facilities Council (STFC), and The Royal Society
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,astro-ph.CO - Abstract
The Large Underground Xenon (LUX) dark matter search was a 250-kg active mass dual-phase time projection chamber that operated by detecting light and ionization signals from particles incident on a xenon target. In December 2015, LUX reported a minimum 90% upper C.L. of 6e-46 cm^2 on the spin-independent WIMP-nucleon elastic scattering cross section based on a 1.4e4 kg*day exposure in its first science run. Tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for WIMPs outside the standard spin-independent/spin-dependent paradigm. Recent theoretical work has identified a complete basis of 14 independent effective field theory (EFT) operators to describe WIMP-nucleon interactions. In addition to spin-independent and spin-dependent nuclear responses, these operators can produce novel responses such as angular-momentum-dependent and spin-orbit couplings. Here we report on a search for all 14 of these EFT couplings with data from LUX's first science run. Limits are placed on each coupling as a function of WIMP mass.
- Published
- 2020
36. Measurement of the Gamma Ray Background in the Davis Cavern at the Sanford Underground Research Facility
- Author
-
A. Biekert, V. A. Kudryavtsev, M. G. D. van der Grinten, C. M. Ignarra, Henrique Araujo, D. Seymour, E. Leason, B. Boxer, A. Naylor, J. McLaughlin, J. Y.K. Hor, A. Murphy, J. E. Cutter, J. Reichenbacher, C. R. Hall, G. Pereira, M. Horn, C. D. Kocher, K. Pushkin, X. Bai, J. Johnson, D. Q. Huang, H. Kraus, C. Carels, X. Liu, J. M. Lyle, T. K. Edberg, A. Lindote, T. Fruth, M. C. Carmona-Benitez, Q. Riffard, L. Kreczko, D. Woodward, M. F. Marzioni, T.M. Stiegler, Juhyeong Lee, T. P. Biesiadzinski, A. Cottle, A. Tomás, S. Balashov, W.T. Kim, F. Neves, K. E. Boast, A. B.M.R. Sazzad, L. Korley, K. Kamdin, Murdock Gilchriese, David Leonard, Robert A. Taylor, Catarina Silva, C. E. Dahl, M. E. Monzani, A. Angelides, D. Temples, P. Brás, M. Solmaz, A. Manalaysay, D. Khaitan, P. Majewski, E. Morrison, T. J. Whitis, Matthew Szydagis, J. Genovesi, J.P. Rodrigues, J. Busenitz, Benjamin Krikler, A. Fan, C. Rhyne, R. J. Gaitskell, J. E. Armstrong, A. Stevens, Ethan Bernard, Bjoern Penning, Michael Schubnell, J. H. Buckley, Ross G. White, I. Stancu, L. Tvrznikova, P.R. Scovell, Daniel McKinsey, W. Ji, K. J. Palladino, I. Olcina, J. A. Morad, H. N. Nelson, N. Marangou, J. A. Nikoleyczik, R. L. Mannino, Michele Cascella, Sergey Burdin, A. Baxter, C. Nedlik, C. Ghag, P. Rossiter, C. Chan, M.I. Lopes, E. K. Pease, V. Bugaev, S. Kravitz, V. N. Solovov, S. Gokhale, S. Alsum, Julie Harrison, K. C. Oliver-Mallory, J. R. Watson, C. Levy, E. H. Miller, F.-T. Liao, S. Luitz, J. Lin, J. Yin, A. Piepke, S. Hans, J. Liao, S. J. Haselschwardt, F. L. H. Wolfs, A. Nilima, S. Uvarov, G. Rutherford, D. R. Tiedt, J. Kras, R. Linehan, Laura Manenti, K. T. Lesko, D. Naim, B. J. Mount, D. S. Akerib, T. A. Shutt, J. J. Wang, J. E. Y. Dobson, L.D. Viveiros, C. Loniewski, S. Shaw, Wolfgang Lorenzon, Elena Korolkova, H. Flaecher, M. Timalsina, O. Jahangir, P. Sorensen, Yue Meng, W.H. Lippincott, A. Cole, K. Stifter, S. Fiorucci, P. A. Terman, R. Liu, Richard Rosero, R. C. Webb, Antonin Vacheret, M. Arthurs, A. Khazov, J.J. Silk, W. C. Taylor, J. Balajthy, A. C. Kaboth, B.L. Paredes, R. W. Schnee, S. Pal, G.R.C. Rischbieter, C. Nehrkorn, S. A. Hertel, E. Druszkiewicz, U. Utku, Mani Tripathi, J. Li, Carl W. Akerlof, Duncan Carlsmith, and Science and Technology Facilities Council (STFC)
- Subjects
Physics - Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,Flux ,chemistry.chemical_element ,Cosmic ray ,Astronomy & Astrophysics ,01 natural sciences ,Physics, Particles & Fields ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Lead shielding ,Xenon ,Gamma spectroscopy ,0103 physical sciences ,0201 Astronomical and Space Sciences ,010306 general physics ,Underground ,physics.ins-det ,Low background ,Physics ,Science & Technology ,Radiation ,010308 nuclear & particles physics ,hep-ex ,Gamma rays ,Gamma ray ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,chemistry ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Decay chain - Abstract
Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from $\gamma$-rays emitted by $^{40}$K and the $^{238}$U and $^{232}$Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ $\gamma$-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of $1.9\pm0.4$~$\gamma~$cm$^{-2}$s$^{-1}$. The resulting activity in the walls of the cavern can be characterised as $220\pm60$~Bq/kg of $^{40}$K, $29\pm15$~Bq/kg of $^{238}$U, and $13\pm3$~Bq/kg of $^{232}$Th., Comment: 11 pages, 9 figures
- Published
- 2020
- Full Text
- View/download PDF
37. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
- Author
-
Akerib, DS, Akerlof, CW, Alsum, SK, Araújo, HM, Arthurs, M, Bai, X, Bailey, AJ, Balajthy, J, Balashov, S, Bauer, D, Belle, J, Beltrame, P, Benson, T, Bernard, EP, Biesiadzinski, TP, Boast, KE, Boxer, B, Brás, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Carels, C, Carlsmith, DL, Carlson, B, Carmona-Benitez, MC, Chan, C, Cherwinka, JJ, Cole, A, Cottle, A, Craddock, WW, Currie, A, Cutter, JE, Dahl, CE, de Viveiros, L, Dobi, A, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Edwards, WR, Fan, A, Fayer, S, Fiorucci, S, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gilchriese, MGD, van der Grinten, MGD, Hall, CR, Hans, S, Hanzel, K, Haselschwardt, SJ, Hertel, SA, Hillbrand, S, Hjemfelt, C, Hoff, MD, Hor, JY-K, Huang, DQ, Ignarra, CM, Ji, W, Kaboth, AC, Kamdin, K, Keefner, J, Khaitan, D, Khazov, A, Kim, YD, Kocher, CD, Korolkova, EV, Kraus, H, Krebs, HJ, Kreczko, L, Krikler, B, Kudryavtsev, VA, Kyre, S, Lee, J, Lenardo, BG, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Liao, F-T, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Lopes, MI, Paredes, B López, Lorenzon, W, Luitz, S, Lyle, JM, Majewski, P, Manalaysay, A, Mannino, RL, Maupin, C, McKinsey, DN, Meng, Y, and Miller, EH
- Subjects
Quantum Physics ,Particle and Plasma Physics ,hep-ex ,astro-ph.CO ,Molecular ,Nuclear ,Atomic ,Nuclear & Particles Physics ,physics.ins-det ,Astronomical and Space Sciences ,astro-ph.IM - Abstract
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4×10-48 cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3×10-43 cm2 (7.1×10-42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020.
- Published
- 2020
38. Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility
- Author
-
Akerib, DS, Akerlof, CW, Alsum, SK, Angelides, N, Araújo, HM, Armstrong, JE, Arthurs, M, Bai, X, Balajthy, J, Balashov, S, Baxter, A, Bernard, EP, Biekert, A, Biesiadzinski, TP, Boast, KE, Boxer, B, Brás, P, Buckley, JH, Bugaev, VV, Burdin, S, Busenitz, JK, Carels, C, Carlsmith, DL, Carmona-Benitez, MC, Cascella, M, Chan, C, Cole, A, Cottle, A, Cutter, JE, Dahl, CE, de Viveiros, L, Dobson, JEY, Druszkiewicz, E, Edberg, TK, Fan, A, Fiorucci, S, Flaecher, H, Fruth, T, Gaitskell, RJ, Genovesi, J, Ghag, C, Gilchriese, MGD, Gokhale, S, van der Grinten, MGD, Hall, CR, Hans, S, Harrison, J, Haselschwardt, SJ, Hertel, SA, Hor, JYK, Horn, M, Huang, DQ, Ignarra, CM, Jahangir, O, Ji, W, Johnson, J, Kaboth, AC, Kamdin, K, Khaitan, D, Khazov, A, Kim, WT, Kocher, CD, Korley, L, Korolkova, EV, Kras, J, Kraus, H, Kravitz, SW, Kreczko, L, Krikler, B, Kudryavtsev, VA, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levy, C, Li, J, Liao, J, Liao, FT, Lin, J, Lindote, A, Linehan, R, Lippincott, WH, Liu, R, Liu, X, Loniewski, C, Lopes, MI, López Paredes, B, Lorenzon, W, Luitz, S, Lyle, JM, Majewski, PA, Manalaysay, A, Manenti, L, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, McLaughlin, J, Meng, Y, and Miller, EH
- Subjects
Radiation ,hep-ex ,Gamma rays ,Molecular ,Atomic ,Nuclear & Particles Physics ,Particle and Plasma Physics ,Gamma spectroscopy ,Dark matter ,Nuclear ,Underground ,physics.ins-det ,Astronomical and Space Sciences ,Low background - Abstract
Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from γ-rays emitted by 40K and the 238U and 232Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4850-foot level. In order to characterise the cavern background, in-situ γ-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0–3300 keV) varied from 596 Hz to 1355 Hz for unshielded measurements, corresponding to a total flux from the cavern walls of 1.9 ± 0.4 γ cm−2s−1. The resulting activity in the walls of the cavern can be characterised as 220 ± 60 Bq/kg of 40K, 29 ± 15 Bq/kg of 238U, and 13 ± 3 Bq/kg of 232Th.
- Published
- 2020
39. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
- Author
-
Akerib, D.S., Akerlof, C.W., Alsum, S.K., Araújo, H.M., Arthurs, M., Bai, X., Bailey, A.J., Balajthy, J., Balashov, S., Bauer, D., Belle, J., Beltrame, P., Benson, T., Bernard, E.P., Biesiadzinski, T.P., Boast, K.E., Boxer, B., Brás, P., Buckley, J.H., Bugaev, VV., Burdin, S., Busenitz, J.K., Carels, C., Carlsmith, D.L., Carlson, B., Carmona-Benitez, M.C., Chan, C., Cherwinka, J.J., Cole, A., Cottle, A., Craddock, W.W., Currie, A., Cutter, J.E., Dahl, C.E., Viveiros, L.D., Dobi, A., Dobson, J.E.Y., Druszkiewicz, E., Edberg, T.K., Edwards, W.R., Fan, A., Fayer, S., Fiorucci, S., Fruth, T., Gaitskell, R.J., Genovesi, J., Ghag, C., Gilchriese, M.G.D., Grinten, M.G.D.V.D., Hall, C.R., Hans, S., Hanzel, K., Haselschwardt, S.J., Hertel, S.A., Hillbrand, S., Hjemfelt, C., Hoff, M.D., Hor, J.Y.-K., Huang, D.Q., Ignarra, C.M., Ji, W., Kaboth, A.C., Kamdin, K., Keefner, J., Khaitan, D., Khazov, A., Kim, Y.D., Kocher, C.D., Korolkova, E.V., Kraus, H., Krebs, H.J., Kreczko, L., Krikler, B., Kudryavtsev, V.A., Kyre, S., Lee, J., Lenardo, B.G., Leonard, D.S., Lesko, K.T., Levy, C., Li, J., Liao, J., Liao, F.-T., Lin, J., Lindote, A., Linehan, R., Lippincott, W.H., Liu, X., Lopes, M.I., Paredes, B.L., Lorenzon, W., Luitz, S., Lyle, J.M., Majewski, P., Manalaysay, A., Mannino, R.L., Maupin, C., McKinsey, D.N., Meng, Y., Miller, E.H., Mock, J., Monzani, M.E., Morad, J.A., Morrison, E., Mount, B.J., Murphy, A.S.J., Nelson, H.N., Neves, F., Nikoleyczik, J., O'Sullivan, K., Olcina, I., Olevitch, M.A., Oliver-Mallory, K.C., Palladino, K.J., Patton, S.J., Pease, E.K., Penning, B., Piepke, A., Powell, S., Preece, R.M., Pushkin, K., Ratcliff, B.N., Reichenbacher, J., Rhyne, C.A., Richards, A., Rodrigues, J.P., Rosero, R., Rossiter, P., Saba, J.S., Sarychev, M., Schnee, R.W., Schubnell, M., Scovell, P.R., Shaw, S., Shutt, T.A., Silk, J.J., Silva, C., Skarpaas, K., Skulski, W., Solmaz, M., Solovov, V.N., Sorensen, P., Stancu, I., Stark, M.R., Stiegler, T.M., Stifter, K., Szydagis, M., Taylor, W.C., Taylor, R., Taylor, D.J., Temples, D., Terman, P.A., Thomas, K.J., Timalsina, M., To, W.H., Tomás, A., Tope, T.E., Tripathi, M., Tull, C.E., Tvrznikova, L., Utku, U., Va'vra, J., Vacheret, A., Verbus, J.R., Voirin, E., Waldron, W.L., Watson, J.R., Webb, R.C., White, D.T., Whitis, T.J., Wisniewski, W.J., Witherell, M.S., Wolfs, F.L.H., Woodward, D., Worm, S.D., Yeh, M., Yin, J., Young, I., and LUX-ZEPLIN, Collaboration
- Abstract
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. \ud Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2\ud mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020.
- Published
- 2020
40. Extending light WIMP searches to single scintillation photons in LUX
- Author
-
Akerib, D. S., Alsum, S., Ara��jo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Boxer, B., Br��s, P., Burdin, S., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Chiller, A. A., Chiller, C., Currie, A., Cutter, J. E., de Viveiros, L., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Edwards, B. N., Faham, C. H., Fallon, S. R., Fan, A., Fiorucci, S., Gaitskell, R. J., Gehman, V. M., Genovesi, J., Ghag, C., Gibson, K. R., Gilchriese, M. G. D., Grace, E., Gwilliam, C., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., Ji, W., Kamdin, K., Kazka, K., Khaitan, D., Knoche, R., Korolkova, E. V., Kravitz, S., Kudryavtsev, V. A., Larsen, N. A., Leason, E., Lee, C., Lenardo, B. G., Lesko, K. T., Levy, C., Liao, J., Lin, J., Lindote, A., Lopes, M. I., L��pez-Paredes, B., Manalaysay, A., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Naylor, A., Nehrkorn, C., Nelson, H. N., Neves, F., Nilima, A., O'Sullivan, K., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Reichhart, L., Riffard, Q., Rischbieter, G. R. C., Rossiter, P., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Stephenson, S., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, R., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Utku, U., Uvarov, S., Vacheret, A., Velan, V., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Xu, J., Yazdani, K., Young, S. K., Zhang, C., and Science and Technology Facilities Council (STFC)
- Subjects
BACKGROUNDS ,Photomultiplier ,Physics - Instrumentation and Detectors ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Photon ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,Astronomy & Astrophysics ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Physics, Particles & Fields ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,XENON ,Xenon ,WIMP ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,physics.ins-det ,Physics ,Scintillation ,Science & Technology ,hep-ex ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,chemistry ,Weakly interacting massive particles ,Physical Sciences ,astro-ph.CO ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,EMISSION ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a twofold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5 GeV / c 2 WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments.
- Published
- 2020
- Full Text
- View/download PDF
41. Extending light WIMP searches to single scintillation photons in LUX
- Author
-
Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, de Viveiros, L, Druszkiewicz, E, Fallon, SR, Fan, A, Fiorucci, S, Gaitskell, RJ, Genovesi, J, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Paredes, B López, Manalaysay, A, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, Mei, DM, Moongweluwan, M, Morad, JA, St. J. Murphy, A, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tripathi, M, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, and Woodward, D
- Subjects
Quantum Physics ,Particle and Plasma Physics ,Physics::Instrumentation and Detectors ,hep-ex ,Astrophysics::Instrumentation and Methods for Astrophysics ,astro-ph.CO ,Molecular ,Nuclear ,Atomic ,Nuclear & Particles Physics ,physics.ins-det ,Astronomical and Space Sciences ,astro-ph.IM - Abstract
We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a twofold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5 GeV/c2 WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments.
- Published
- 2020
42. Improved modeling of β electronic recoils in liquid xenon using LUX calibration data
- Author
-
The LUX Collaboration, Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Balajthy, J., Baxter, A., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Boxer, B., Brás, P., Burdin, S., Byram, D., Carmona-Benitez, M. C., Chan, C., Cutter, J. E., de Viveiros, L., Druszkiewicz, E., Fan, A., Fiorucci, S., Gaitskell, R. J., Ghag, C., Gilchriese, M. G. D., Gwilliam, C., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Korolkova, E. V., Kravits, S., Kudryavtsev, V. A., Leason, E., Lenardo, B. G., Lesko, K. T., Liao, J., Lin, J., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Naylor, A., Nehrkorn, C., Nelson, H. N., Neves, F., Nilima, A., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Riffard, Q., Rischbieter, G. R. C., Rhyne, C., Rossiter, P., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, R., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Utku, U., Uvarov, S., Vacheret, A., Velan, V., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Xu, J., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors ,interaction of hadrons ,Physics::Instrumentation and Detectors ,with matter ,Monte Carlo method ,Dark matter ,Extrapolation ,Detector modelling and simulations I (interaction of radiation with matter ,Noble liquid detectors ,chemistry.chemical_element ,Time projection Chambers ,01 natural sciences ,High Energy Physics - Experiment ,Recoil ,Xenon ,Engineering ,0103 physical sciences ,Calibration ,010306 general physics ,Dark Matter detectors ,Instrumentation ,physics.ins-det ,Mathematical Physics ,etc) ,Physics ,Scintillation ,010308 nuclear & particles physics ,hep-ex ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,interaction of photons with matter ,Nuclear & Particles Physics ,Computational physics ,chemistry ,Physical Sciences - Abstract
We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $\beta$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction., Comment: 17 Pages, 10 Figures, 2 Tables
- Published
- 2020
- Full Text
- View/download PDF
43. First direct detection constraint on mirror dark matter kinetic mixing using LUX 2013 data
- Author
-
Collaboration, LUX, Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, Viveiros, LD, Druszkiewicz, E, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, Mei, DM, Moongweluwan, M, Morad, JA, Murphy, ASJ, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, O'Sullivan, K, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tripathi, M, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xu, J, and Zhang, C
- Subjects
Large Underground Xenon experiment ,Dark matter ,chemistry.chemical_element ,FOS: Physical sciences ,Electron ,Astronomy & Astrophysics ,Kinetic energy ,Atomic ,01 natural sciences ,High Energy Physics - Experiment ,Physics, Particles & Fields ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,Recoil ,Xenon ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,Nuclear ,010306 general physics ,Physics ,Quantum Physics ,Science & Technology ,010308 nuclear & particles physics ,hep-ex ,Molecular ,hep-ph ,Nuclear & Particles Physics ,High Energy Physics - Phenomenology ,chemistry ,13. Climate action ,Physical Sciences ,Electron temperature ,Atomic physics ,Electron scattering ,Astronomical and Space Sciences - Abstract
Author(s): Akerib, DS; Alsum, S; Araujo, HM; Bai, X; Balajthy, J; Baxter, A; Bernard, EP; Bernstein, A; Biesiadzinski, TP; Boulton, EM; Boxer, B; Bras, P; Burdin, S; Byram, D; Carmona-Benitez, MC; Chan, C; Cutter, JE; De Viveiros, L; Druszkiewicz, E; Fan, A; Fiorucci, S; Gaitskell, RJ; Ghag, C; Gilchriese, MGD; Gwilliam, C; Hall, CR; Haselschwardt, SJ; Hertel, SA; Hogan, DP; Horn, M; Huang, DQ; Ignarra, CM; Jacobsen, RG; Jahangir, O; Ji, W; Kamdin, K; Kazkaz, K; Khaitan, D; Korolkova, EV; Kravitz, S; Kudryavtsev, VA; Leason, E; Lenardo, BG; Lesko, KT; Liao, J; Lin, J; Lindote, A; Lopes, MI; Manalaysay, A; Mannino, RL; Marangou, N; Marzioni, MF; McKinsey, DN; Mei, DM; Moongweluwan, M; Morad, JA; Murphy, ASJ; Naylor, A; Nehrkorn, C; Nelson, HN; Neves, F; Nilima, A; Oliver-Mallory, KC; Palladino, KJ; Pease, EK; Riffard, Q; Rischbieter, GRC; Rhyne, C; Rossiter, P; Shaw, S; Shutt, TA; Silva, C; Solmaz, M; Solovov, VN; Sorensen, P; Sumner, TJ; Szydagis, M; Taylor, DJ; Taylor, R; Taylor, WC; Tennyson, BP; Terman, PA; Tiedt, DR; To, WH; Tripathi, M | Abstract: We present the results of a direct detection search for mirror dark matter interactions, using data collected from the Large Underground Xenon experiment during 2013, with an exposure of 95 live-days×118 kg. Here, the calculations of the mirror electron scattering rate in liquid xenon take into account the shielding effects from mirror dark matter captured within the Earth. Annual and diurnal modulation of the dark matter flux and atomic shell effects in xenon are also accounted for. Having found no evidence for an electron recoil signal induced by mirror dark matter interactions we place an upper limit on the kinetic mixing parameter over a range of local mirror electron temperatures between 0.1 and 0.9 keV. This limit shows significant improvement over the previous experimental constraint from orthopositronium decays and significantly reduces the allowed parameter space for the model. We exclude mirror electron temperatures above 0.3 keV at a 90% confidence level, for this model, and constrain the kinetic mixing below this temperature.
- Published
- 2020
- Full Text
- View/download PDF
44. Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment
- Author
-
T. Fruth, D. Seymour, J. Lin, W. Ji, J. McLaughlin, J. Palmer, L. Tvrznikova, M. Tan, P. R. Scovell, J. Genovesi, Ethan Bernard, E. H. Miller, F. L. H. Wolfs, G. Rutherford, V. Bugaev, J. Kras, D. Woodward, B. Lopez Paredes, M. Solmaz, E. Morrison, A. Biekert, I. Stancu, A. Lindote, K. E. Boast, A. Fan, Kareem Kazkaz, Juhyeong Lee, I. Olcina, A. Bhatti, A. Alqahtani, M. G. D. Gilchriese, S. Balashov, D. Santone, C. Carels, A. Piepke, Ross G. White, A. Cottle, M. E. Monzani, F.-T. Liao, T. P. Biesiadzinski, C. Loniewski, J. Y.K. Hor, J. E. Cutter, J. Reichenbacher, M. G. D. van der Grinten, N. I. Chott, P. Zarzhitsky, Matthew Szydagis, C. Levy, Sergey Burdin, K. J. Palladino, P. Rossiter, Elena Korolkova, Laura Manenti, G. R. C. Rischbieter, A. Baxter, D. R. Tiedt, C. E. Dahl, B. Boxer, T. K. Edberg, S. A. Hertel, Q. Riffard, U. Utku, K. C. Oliver-Mallory, R. W. Schnee, S. Pal, G. Pereira, Richard J. Smith, Michele Cascella, David Leonard, E. Druszkiewicz, D. S. Akerib, Mani Tripathi, A. Nilima, Simon Fayer, M. Timalsina, E. K. Pease, D. Temples, K. Pushkin, N. Angelides, P. Majewski, M. C. Carmona-Benitez, T. J. Anderson, N. Marangou, J. Busenitz, W. H. Lippincott, Michael Schubnell, A. B.M.R. Sazzad, C. Rhyne, J. E. Armstrong, V. N. Solovov, A. Manalaysay, A. Khazov, J.J. Silk, A. St. J. Murphy, Adam Bernstein, A. Naylor, D. Naim, S. Shaw, J. Li, S. Luitz, S. Gokhale, A. Cole, R. J. Gaitskell, J. H. Buckley, L. Korley, N. Parveen, K. Kamdin, R. Linehan, Minfang Yeh, W. C. Taylor, D. Q. Huang, B. J. Mount, T. A. Shutt, Catarina Silva, Carl W. Akerlof, Jilei Xu, C. Nehrkorn, H. J. Birch, J. Balajthy, M.I. Lopes, O. Jahangir, A. Monte, Daniel McKinsey, A. C. Kaboth, J. E. Y. Dobson, X. Xiang, A. Richards, C. Ghag, V. A. Kudryavtsev, C. Chan, A. Vaitkus, S. Kravitz, D. Khaitan, J. J. Wang, C. M. Ignarra, P. A. Terman, D. Bauer, M. F. Marzioni, A. Tomás, L. Kreczko, J. R. Watson, A. Harrison, R. L. Mannino, Antonin Vacheret, S. J. Haselschwardt, M. Arthurs, F. Neves, W. Wang, E. D. Fraser, P. Sorensen, E. Leason, T. J. Sumner, P. Brás, Henning Flaecher, Benjamin Krikler, K. T. Lesko, Yue Meng, T. J. Whitis, X. Bai, E. Mizrachi, J. Johnson, S. R. Eriksen, Duncan Carlsmith, Wolfgang Lorenzon, X. Liu, N. Swanson, J. R. Bensinger, Eli Gibson, A. Kamaha, H. N. Nelson, W. Turner, C. Nedlik, Henrique Araujo, C. R. Hall, R. Cabrita, H. Kraus, R. Liu, Richard Rosero, D. R. Tronstad, R. C. Webb, L. de Viveiros, K. Stifter, S. Fiorucci, J. Liao, J. A. Morad, J. Bang, J. A. Nikoleyczik, M. Horn, C. D. Kocher, J. M. Lyle, Robert A. Taylor, S. Alsum, I. Khurana, A. Stevens, and Bjoern Penning
- Subjects
Physics ,Particle physics ,Physics - Instrumentation and Detectors ,hep-ex ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Monte Carlo method ,Detector ,Dark matter ,FOS: Physical sciences ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,WIMP ,0103 physical sciences ,Sensitivity (control systems) ,Projection (set theory) ,physics.ins-det ,010303 astronomy & astrophysics ,Event (particle physics) ,Background radiation - Abstract
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$\times10^{-12}$\,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data., Comment: 24 pages, 19 figures; Corresponding Authors: A. Cottle, V. Kudryavtsev, D. Woodward
- Published
- 2020
- Full Text
- View/download PDF
45. Screening of BCL-2 associated X protein gene polymorphism associated with scrotal hernia in domesticated swine using polymerase chain reaction-restriction fragment length polymorphism
- Author
-
Joseph F. Bambico, Claro N. Mingala, Nathaniel D. Antonio, Ralph Lorenz R. Apilado, and Jessica G. Manalaysay
- Subjects
0301 basic medicine ,Scrotal Hernia ,Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) ,Swine ,Mutant ,BAX Gene ,lcsh:Animal biochemistry ,Biology ,Gene ,Article ,law.invention ,03 medical and health sciences ,0302 clinical medicine ,law ,lcsh:QP501-801 ,Polymerase ,Polymerase chain reaction ,lcsh:SF1-1100 ,Molecular biology ,DNA extraction ,Animal Biotechnology ,030104 developmental biology ,030220 oncology & carcinogenesis ,biology.protein ,Screening ,Animal Science and Zoology ,Gene polymorphism ,lcsh:Animal culture ,Restriction fragment length polymorphism ,Food Science - Abstract
Objective This study was conducted to screen scrotal hernia in domesticated swine from selected breeders in the Philippines. This defect is associated with a cytosine to thymine mutation in the BCL-2 associated X protein (BAX) gene of swine. Methods Genetic screening was done by DNA extraction followed by amplification and digestion using polymerase chain reaction-restriction fragment length polymorphism, amplifying the 416 bp region of the BAX gene that was subjected to digestion using the Ear I enzyme. Sequencing was also conducted to validate the results. Results Results revealed that out of 538 samples tested, 411 (76.4%) of the samples were found to be normal whereas the remaining were carriers of the mutation in which 80 (14.9%) were heterozygous mutants and 47 (8.7%) were homozygous mutants. Pietrain breed was found to have the highest incidence. Conclusion Having a scrotal hernia eliminates the chances of using the boar as a breeder stock because the following generations arising from it would most likely exhibit herniation. It is therefore advised to establish a genetic screening method for Scrotal Hernia in the Philippines to eliminate the negative gene from the herd.
- Published
- 2017
46. Projected sensitivity of the LUX-ZEPLIN experiment to the $0\nu\beta\beta$ decay of $^{136}$Xe
- Author
-
Akerib, D. S., Akerlof, C. W., Alqahtani, A., Alsum, S. K., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Baxter, A., Bensinger, J., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Boast, K. E., Boxer, B., Brás, P., Buckley, J. H., Bugaev, V. V., Burdin, S., Busenitz, J. K., Cabrita, R., Carels, C., Carlsmith, D. L., Benitez, M. C. Carmona, Cascella, M., Chan, C., Chott, N. I., Cole, A., Cottle, A., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Edberg, T. K., Eriksen, S. R., Fan, A., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gilchriese, M. G. D., Gokhale, S., van der Grinten, M. G. D., Hall, C. R., Harrison, A., Haselschwardt, S. J., Hertel, S. A., Hor, J. YK., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kocher, C. D., Korley, L., Korolkova, E. V., Kras, J., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Liao, F. T., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, R., Liu, X., Loniewski, C., Lopes, M. I., Paredes, B. López, Lorenzon, W., Luitz, S., Lyle, J. M., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., McLaughlin, J., Meng, Y., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., O'Sullivan, K., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Pushkin, K., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Rutherford, G., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Schubnell, M., Seymour, D., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Stancu, I., Stevens, A., Stifter, K., Sumner, T. J., Swanson, N., Szydagis, M., Tan, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., Tomás, A., Tripathi, M., Tronstad, D. R., Turner, W., Tvrznikova, L., Utku, U., Vacheret, A., Vaitkus, A., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Wolfs, F. L. H., Woodward, D., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
Nuclear Experiment - Abstract
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to $^{136}$Xe neutrinoless double beta decay, taking advantage of the significant ($>$600 kg) $^{136}$Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of $^{136}$Xe is projected to be 1.06$\times$10$^{26}$ years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with $^{136}$Xe at 1.06$\times$10$^{27}$ years., Comment: 13 pages, 7 figures, 2 tables, version 2 changes: additional clarifications requested by referee on Sections II.A, III.C, III.E, III.F and IV.B
- Published
- 2019
47. The LUX-ZEPLIN (LZ) Experiment
- Author
-
P. Sorensen, J. C. Davis, J. J. Silk, M. C. Carmona-Benitez, E. Holtom, T. J. Anderson, A. B.M.R. Sazzad, V.V. Sosnovtsev, J. J. Cherwinka, V. B. Francis, A. Naylor, L. Korley, K. Kamdin, W. Craddock, P. Beltrame, X. Xiang, A. Manalaysay, P. R. Scovell, D. Q. Huang, Ethan Bernard, B. P. Tennyson, Yue Meng, I. B. Peterson, A. Cottle, A. Biekert, A. Kamaha, M. S. Witherell, R. Studley, M. E. Monzani, J. S. Campbell, Alexander Bolozdynya, C. Chiller, M. G. D. van der Grinten, Matthew Szydagis, C. O. Vuosalo, M. Tan, E. H. Miller, V. Bugaev, B. Boxer, R. Coughlen, J. Liao, I. Stancu, L. de Viveiros, P. MarrLaundrie, A. Lambert, L. Kreczko, J. R. Watson, Michael Schubnell, A. Piepke, S. Greenwood, J. P. Coleman, A. Geffre, D. Bauer, G. W. Shutt, W. H. Lippincott, Y. Qie, Dongming Mei, L. Sabarots, S. Hans, Bhawna Gomber, W. Skulski, J. A. Nikkel, S. A. Hertel, A. Arbuckle, F.-T. Liao, S. R. Eriksen, Daniel McKinsey, E. Druszkiewicz, Jilei Xu, P. Sutcliffe, H. J. Rose, C. Nehrkorn, K. T. Lesko, N. A. Larsen, C. Lee, B. Landerud, Martin Breidenbach, D. Molash, Candace Lynch, W. G. Jones, M. A. Olevitch, Ian S. Young, M. Sarychev, B. N. Edwards, A. Pagac, L. Tvrznikova, P. Ford, S. Luitz, T. J. R. Davison, D. Pagenkopf, P. Majewski, G. Gregerson, Chao Zhang, Mary Severson, A. Currie, Ross G. White, Carl Gwilliam, S. J. Patton, A. J. Bailey, David Colling, Minfang Yeh, K. Wilson, P. Rossiter, S. Alsum, G. Pereira, V. M. Gehman, A. Dushkin, I. Khurana, Richard J. Smith, Benjamin Krikler, N. Marangou, John Heise, C. Loniewski, J. Bang, J. A. Nikoleyczik, J. Belle, D. Yu. Akimov, E. Mizrachi, C. Levy, M. R. While, A. Dobi, H. N. Nelson, X. Bai, J. Johnson, J. O'Dell, W. T. Kim, S. Weatherly, L. Wang, P. Johnson, Elena Korolkova, S. Pierson, W. T. Emmet, K. Stifter, B. Birrittella, T. Tope, A. Richards, Yufeng Wang, Ren-Jie Wang, J. Genovesi, C. Maupin, Kathrin C. Walker, G. R. C. Rischbieter, Eli Gibson, Yeongduk Kim, W. Turner, S. D. Worm, E. M. Boulton, G. Rutherford, S. Kyre, J. Mock, Seth Hillbrand, D. White, Q. Xiao, Sridhara Dasu, R. Leonard, J. Y.K. Hor, B. Holbrook, C. Nedlik, S. Fiorucci, J. Keefner, J. Kras, J. Yin, F. Froborg, F. Neves, D. Khaitan, S. J. Haselschwardt, L. Oxborough, D.S. Hamilton, O. Hitchcock, J.P. da Cunha, J.S. Saba, Henrique Araujo, I. Olcina, David Leonard, A. Bhatti, U. Utku, W. J. Wisniewski, S. Powell, M. Pangilinan, F.L.H. Wolfs, J. Barthel, D. Naim, D. Hemer, M. Timalsina, B. J. Mount, T. A. Shutt, S. Shaw, J. A. Morad, N. Swanson, J.P. Rodrigues, J. Nesbit, W.L. Waldron, J. E. Y. Dobson, J. Busenitz, C. R. Hall, N. Stern, C. Rhyne, A. Cole, R. J. Gaitskell, T. K. Edberg, Q. Riffard, O. Jahangir, B. G. Lenardo, D. Temples, C. Chan, C. E. Tull, A. Vaitkus, D. Garcia, S. Kravitz, T. G. Gonda, M. Elnimr, K. Pushkin, M. Horn, Kareem Kazkaz, H. Kraus, J. Li, C. H. Faham, T.M. Stiegler, A. Monte, C. D. Kocher, T. P. Biesiadzinski, C. Ghag, J. E. Armstrong, H. S. Lee, W. R. Edwards, K. J. Palladino, T. Benson, J. H. Buckley, Z. J. Minaker, Carl W. Akerlof, R. Bunker, M. Solmaz, M. Koyuncu, J.R. Verbus, J. M. Lyle, C. E. Dahl, E. Morrison, J. E. Cutter, J. Reichenbacher, H.J. Krebs, J. So, S. Branson, Peter Bauer, H. Auyeung, D. Seymour, Michele Cascella, A. A. Chiller, Mani Tripathi, Richard Rosero, D. R. Tronstad, R. Liu, M. Khaleeq, N. Decheine, M. N. Irving, Yunpeng Liu, S. Uvarov, J. McLaughlin, A. R. Smith, S. Dardin, J. Thomson, K. Sundarnath, Robert A. Taylor, Ben Carlson, T. Harrington, C. T. McConnell, E. K. Pease, A. Greenall, T. J. Whitis, M. F. Marzioni, C. Silva, V. Kasey, D. Rynders, R. C. Webb, J. Palmer, P. Brás, V. N. Solovov, T.J. Martin, R. Conley, P. A. Terman, A. Tomás, B. Lopez Paredes, K. E. Boast, J. T. White, D. Markley, A. Konovalov, A. Lindote, A. Alquahtani, L. Reichhart, D.C. Malling, K. C. Oliver-Mallory, E. Leason, Juhyeong Lee, D. Curran, Henning Flaecher, S. Balashov, A.V. Khromov, B. N. Ratcliff, J. Migneault, A. V. Kumpan, Simon Fayer, Antonin Vacheret, C. Hjemfelt, R. Linehan, M. Arthurs, S. Stephenson, V. M. Palmaccio, N. I. Chott, M.R. Stark, Duncan Carlsmith, Wenzhao Wei, M. Utes, Laura Manenti, A. Stevens, D. J. Taylor, R. E. Smith, V. A. Kudryavtsev, S. Walcott, C. M. Ignarra, N.J. Gantos, R. G. Jacobsen, M. Racine, A. Fan, Bjoern Penning, J. Va’vra, A. Harrison, H. Oh, J. Makkinje, W. Ji, R. Rucinski, Sergey Burdin, A. Baxter, D. Santone, E. Voirin, R.M. Gerhard, T.W. Hurteau, K.J. Thomas, X. Liu, R. Gelfand, T. Vietanen, A. Nilima, R. M. Preece, A. Laundrie, Mikkel B. Johnson, K. Hanzel, F. G. O'Neill, A. Khazov, W. C. Taylor, J. Balajthy, M.J. Barry, K. O’Sullivan, D. Lucero, A. C. Kaboth, R. L. Mannino, J. D. Wolfs, J. Lin, C. Pereira, N. Angelides, S. Gokhale, A. St. J. Murphy, Adam Bernstein, M. Hoff, M.I. Lopes, M. G. D. Gilchriese, C. Carels, I. M. Fogarty Florang, J. Edwards, S. N. Jeffery, R. W. Schnee, S. Pal, R. Bramante, T. Fruth, T. J. Sumner, W. H. To, Wolfgang Lorenzon, J. R. Bensinger, J. J. Wang, D. Woodward, C. Hasselkus, K. Skarpaas, D. R. Tiedt, D. S. Akerib, and Science and Technology Facilities Council (STFC)
- Subjects
Nuclear and High Energy Physics ,Technology ,Physics - Instrumentation and Detectors ,0299 Other Physical Sciences ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,Scintillator ,01 natural sciences ,7. Clean energy ,Physics, Particles & Fields ,High Energy Physics - Experiment ,Nuclear physics ,LEAD ,High Energy Physics - Experiment (hep-ex) ,XENON ,Low energy ,Xenon ,WIMP ,0103 physical sciences ,0201 Astronomical and Space Sciences ,010306 general physics ,Nuclear Science & Technology ,Underground ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Instruments & Instrumentation ,physics.ins-det ,Physics ,Dark matter detector ,Time projection chamber ,Science & Technology ,010308 nuclear & particles physics ,hep-ex ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Neutron capture ,Physics, Nuclear ,chemistry ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Liquid xenon ,EMISSION ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements. info:eu-repo/semantics/publishedVersion
- Published
- 2019
- Full Text
- View/download PDF
48. Improved modeling of $β$ electronic recoils in liquid xenon using LUX calibration data
- Author
-
Collaboration, TLUX, Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, Viveiros, LD, Druszkiewicz, E, Fan, A, Fiorucci, S, Gaitskell, RJ, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravits, S, Kudryavtsev, VA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, Mei, DM, Moongweluwan, M, Morad, JA, Murphy, ASJ, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tripathi, M, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, Xu, J, Zhang, C, and Science and Technology Facilities Council (STFC)
- Subjects
Physics::Instrumentation and Detectors ,hep-ex ,physics.ins-det - Abstract
We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $\beta$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction.
- Published
- 2019
49. The Usability of Metropolitan Manila Development Authority (MMDA) Mobile Traffic Navigator as Perceived by Users in Quezon City and Mandaluyong City, Philippines
- Author
-
Kristy Anne C. Topacio-Manalaysay, Alfred Angelo C. Urlanda, Mahrife M. Panopio, Juan Edmund F. Martinez, Yogi Tri Prasetyo, and Rex Aurelius C. Robielos
- Subjects
Mobile traffic ,Computer science ,business.industry ,MMDA ,Usability ,Metropolitan area ,Structural equation modeling ,Transport engineering ,chemistry.chemical_compound ,Information visualization ,Young professional ,chemistry ,User experience design ,business - Abstract
The purpose of this study was to evaluate the usability of the System View, Map View, and Line View that constitute the Metropolitan Manila Development Authority (MMDA) mobile traffic navigator. The usability and information visualization evaluations were collected from 100 young professionals living in Quezon City and Mandaluyong City. The results indicated that Line View had the highest usability index followed by Map View and System View. Finally, structural equation modeling was applied to derive the causal relationship between effectiveness, efficiency, and satisfaction dimensions. The results could be very beneficial for MMDA especially in terms of improvement on the content and design of the mobile traffic navigator.
- Published
- 2019
- Full Text
- View/download PDF
50. Improved measurements of the β-decay response of liquid xenon with the LUX detector
- Author
-
Akerib, DS, Alsum, S, Araújo, HM, Bai, X, Balajthy, J, Baxter, A, Beltrame, P, Bernard, EP, Bernstein, A, Biesiadzinski, TP, Boulton, EM, Boxer, B, Brás, P, Burdin, S, Byram, D, Carmona-Benitez, MC, Chan, C, Cutter, JE, de Viveiros, L, Druszkiewicz, E, Fallon, SR, Fan, A, Fiorucci, S, Gaitskell, RJ, Genovesi, J, Ghag, C, Gilchriese, MGD, Gwilliam, C, Hall, CR, Haselschwardt, SJ, Hertel, SA, Hogan, DP, Horn, M, Huang, DQ, Ignarra, CM, Jacobsen, RG, Jahangir, O, Ji, W, Kamdin, K, Kazkaz, K, Khaitan, D, Korolkova, EV, Kravitz, S, Kudryavtsev, VA, Leason, E, Lenardo, BG, Lesko, KT, Liao, J, Lin, J, Lindote, A, Lopes, MI, Manalaysay, A, Mannino, RL, Marangou, N, Marzioni, MF, McKinsey, DN, Mei, D-M, Moongweluwan, M, Morad, JA, St. J. Murphy, A, Naylor, A, Nehrkorn, C, Nelson, HN, Neves, F, Nilima, A, Oliver-Mallory, KC, Palladino, KJ, Pease, EK, Riffard, Q, Rischbieter, GRC, Rhyne, C, Rossiter, P, Shaw, S, Shutt, TA, Silva, C, Solmaz, M, Solovov, VN, Sorensen, P, Sumner, TJ, Szydagis, M, Taylor, DJ, Taylor, R, Taylor, WC, Tennyson, BP, Terman, PA, Tiedt, DR, To, WH, Tripathi, M, Tvrznikova, L, Utku, U, Uvarov, S, Vacheret, A, Velan, V, Webb, RC, White, JT, Whitis, TJ, Witherell, MS, Wolfs, FLH, Woodward, D, and Xu, J
- Subjects
Quantum Physics ,Particle and Plasma Physics ,hep-ex ,Molecular ,Nuclear ,physics.ins-det ,Atomic ,Nuclear & Particles Physics ,Astronomical and Space Sciences ,astro-ph.IM - Abstract
We report results from an extensive set of measurements of the \b{eta}-decay response in liquid xenon.These measurements are derived from high-statistics calibration data from injected sources of both $^{3}$H and $^{14}$C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491 V/cm, and for energies ranging from 1.5 to 145 keV.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.