57 results on '"A. M. Kofman"'
Search Results
2. The Simons Observatory: Development and Validation of the Large Aperture Telescope Receiver
- Author
-
Tanay Bhandarkar, Sanah Bhimani, Gabriele Coppi, Simon Dicker, Saianeesh Haridas, Kathleen Harrington, Jeffrey Iuliano, Bradley Johnson, Anna M. Kofman, Jack Lashner, Jenna Moore, David Nguyen, John L. Orlowski-Scherer, Karen Perez Sarmiento, Julia Robe, Maximiliano Silva-Feaver, Robert J. Thornton, Yuhan Wang, and Zhilei Xu
- Subjects
FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sensor (TES) detectors at 100 mK across 7 optics tubes (OT), all within the Large Aperture Telescope Receiver (LATR). Additionally, the LATR has the capability to expand to 62,000 TES across 13 OTs. The LAT will be capable of making arcminute-resolution observations of the CMB, with detector bands centered at 30, 40, 90, 150, 230, and 280 GHz. We have rigorously tested the LATR systems prior to deployment in order to fully characterize the instrument and show that it can achieve the desired sensitivity levels. We show that the LATR meets cryogenic and mechanical requirements, and maintains acceptably low baseline readout noise.
- Published
- 2022
3. The Simons Observatory: Characterizing the Large Aperture Telescope Receiver with Radio Holography
- Author
-
Grace E. Chesmore, Kathleen Harrington, Carlos E. Sierra, Patricio A. Gallardo, Shreya Sutariya, Tommy Alford, Alexandre E. Adler, Tanay Bhandarkar, Gabriele Coppi, Nadia Dachlythra, Joseph Golec, Jon Gudmundsson, Saianeesh K. Haridas, Bradley R. Johnson, Anna M. Kofman, Jeffrey Iuliano, Jeff McMahon, Michael D. Niemack, John Orlowski-Scherer, Karen Perez Sarmiento, Roberto Puddu, Max Silva-Feaver, Sara M. Simon, Julia Robe, Edward J. Wollack, Zhilei Xu, Chesmore, G, Harrington, K, Sierra, C, Gallardo, P, Sutariya, S, Alford, T, Adler, A, Bhandarkar, T, Coppi, G, Dachlythra, N, Golec, J, Gudmundsson, J, Haridas, S, Johnson, B, Kofman, A, Iuliano, J, Mcmahon, J, Niemack, M, Orlowski-Scherer, J, Perez Sarmiento, K, Puddu, R, Silva-Feaver, M, Simon, S, Robe, J, Wollack, E, and Xu, Z
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Electrical and Electronic Engineering ,Astrophysics - Instrumentation and Methods for Astrophysics ,Engineering (miscellaneous) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Atomic and Molecular Physics, and Optics ,optics ,Astrophysics::Galaxy Astrophysics - Abstract
We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments.
- Published
- 2022
4. Simons Observatory Microwave SQUID Multiplexing Readout: Cryogenic RF Amplifier and Coaxial Chain Design
- Author
-
Suzanne T. Staggs, Maria Salatino, Shuay-Pwu Patty Ho, Justin Mathewson, Trevor Sasse, Zhilei Xu, Jenna Moore, Philip Daniel Mauskopf, Aashrita Mangu, Nicholas Galitzki, Ningfeng Zhu, Shawn W. Henderson, Kam Arnold, Akito Kusaka, Bradley Dober, Maximiliano Silva-Feaver, Peter Ashton, Shannon M. Duff, Heather McCarrick, Eve M. Vavagiakis, Michael D. Niemack, Jonathan Hoh, Christopher Raum, Aamir Ali, Benjamin Westbrook, Joel N. Ullom, Grant Teply, Erin Healy, Jason R. Stevens, Adrian T. Lee, Cody J. Duell, Sara M. Simon, A. M. Kofman, Mayuri Sathyanarayana Rao, Joseph Seibert, and Robert Thornton
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Coaxial cable ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,010305 fluids & plasmas ,law.invention ,law ,biology.animal ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Squid ,biology ,business.industry ,RF power amplifier ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Optoelectronics ,Transition edge sensor ,Coaxial ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Microwave - Abstract
The Simons Observatory (SO) is an upcoming polarization-sensitive Cosmic Microwave Background (CMB) experiment on the Cerro Toco Plateau (Chile) with large overlap with other optical and infrared surveys (e.g., DESI, LSST, HSC). To enable the readout of \bigO(10,000) detectors in each of the four telescopes of SO, we will employ the microwave SQUID multiplexing technology. With a targeted multiplexing factor of \bigO{(1,000)}, microwave SQUID multiplexing has never been deployed on the scale needed for SO. Here we present the design of the cryogenic coaxial cable and RF component chain that connects room temperature readout electronics to superconducting resonators that are coupled to Transition Edge Sensor bolometers operating at sub-Kelvin temperatures. We describe design considerations including cryogenic RF component selection, system linearity, noise, and thermal power dissipation., 10 pages, 2 figures
- Published
- 2020
5. CCAT-prime: Design of the Mod-Cam receiver and 280 GHz MKID instrument module
- Author
-
Eve M. Vavagiakis, Cody J. Duell, Jason Austermann, James Beall, Tanay Bhandarkar, Scott C. Chapman, Steve K. Choi, Gabriele Coppi, Simon Dicker, Mark Devlin, Rodrigo G. Freundt, Jiansong Gao, Christopher Groppi, Terry L. Herter, Zachary B. Huber, Johannes Hubmayr, Doug Johnstone, Ben Keller, Anna M. Kofman, Yaqiong Li, Philip Mauskopf, Jeff McMahon, Jenna Moore, Colin C. Murphy, Michael Niemack, Thomas Nikola, John Orlowski-Scherer, Kayla M. Rossi, Adrian K. Sinclair, Gordon J. Stacey, Joel Ullom, Michael Vissers, Jordan Wheeler, Zhilei Xu, Ningfeng Zhu, and Bugao Zou
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Mod-Cam is a first light and commissioning instrument for the CCAT-prime project's six-meter aperture Fred Young Submillimeter Telescope (FYST), currently under construction at 5600 m on Cerro Chajnantor in Chile's Atacama Desert. Prime-Cam, a first-generation science instrument for FYST, will deliver over ten times greater mapping speed than current and near-term facilities for unprecedented 280-850 GHz broadband and spectroscopic measurements with microwave kinetic inductance detectors (MKIDs). CCAT-prime will address a suite of science goals, from Big Bang cosmology to star formation and galaxy evolution over cosmic time. Mod-Cam deployment on FYST with a 280 GHz instrument module containing MKID arrays is planned for early science observations in 2024. Mod-Cam will be used to test instrument modules for Prime-Cam, which can house up to seven instrument modules. We discuss the design and status of the 0.9 m diameter, 1.8 m long Mod-Cam receiver and 40 cm diameter 280 GHz instrument module, with cold stages at 40 K, 4 K, 1 K, and 100 mK. We also describe the instrument module's cryogenic readout designs to enable the readout of more than 10,000 MKIDs across 18 networks., Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI
- Published
- 2022
- Full Text
- View/download PDF
6. On-Sky Performance of the SPT-3G Frequency-Domain Multiplexed Readout
- Author
-
J. A. Sobrin, Thomas Cecil, E. V. Denison, S. S. Meyer, Kent D. Irwin, Peter A. R. Ade, W. L. Holzapfel, K. T. Story, K. Vanderlinde, A. E. Lowitz, V. Novosad, Donna Kubik, Aled Jones, John E. Carlstrom, G. I. Noble, Lincoln Bryant, Jason W. Henning, T. de Haan, Ki Won Yoon, Volodymyr Yefremenko, Nathan Whitehorn, Zeeshan Ahmed, T. Natoli, N. L. Harrington, Gene C. Hilton, Robert Gardner, Amy N. Bender, Carole Tucker, Jason Gallicchio, E. M. Leitch, C. L. Chang, A. E. Gambrel, W. B. Everett, A. Foster, Adrian T. Lee, D. Howe, D. Dutcher, Antony A. Stark, M. Jonas, Aritoki Suzuki, J. E. Ruhl, J. Stephen, Trupti Khaire, D. Riebel, Bradford Benson, J. F. Cliche, Joshua Montgomery, H. M. Cho, Ari Cukierman, Graeme Smecher, Z. Pan, Alexandra S. Rahlin, R. Basu Thakur, Matt Dobbs, K. R. Ferguson, Faustin Carter, Andrew Nadolski, Junjia Ding, Adam Anderson, M. R. Young, N. W. Halverson, Leila R. Vale, Oliver Jeong, Chao-Lin Kuo, Keith L. Thompson, John Groh, Karen Byrum, John E. Pearson, P. Paschos, N. Huang, A. Gilbert, J. Fu, A. M. Kofman, Jessica Avva, R. Guyser, Stephen Padin, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, S. Guns, Daniel Michalik, Gensheng Wang, W. Quan, Erik Shirokoff, Peter S. Barry, A. H. Harke-Hosemann, H. T. Nguyen, M. Korman, and J. T. Sayre
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,Noise (electronics) ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,business.industry ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,White noise ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,South Pole Telescope ,Frequency domain ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Voltage - Abstract
Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This scheme enables the operation and readout of multiple bolometers on a single pair of wires, reducing thermal loading onto sub-Kelvin stages. The current receiver on the South Pole Telescope, SPT-3G, uses a 68x fMux system to operate its large-format camera of $\sim$16,000 TES bolometers. We present here the successful implementation and performance of the SPT-3G readout as measured on-sky. Characterization of the noise reveals a median pair-differenced 1/f knee frequency of 33 mHz, indicating that low-frequency noise in the readout will not limit SPT-3G's measurements of sky power on large angular scales. Measurements also show that the median readout white noise level in each of the SPT-3G observing bands is below the expectation for photon noise, demonstrating that SPT-3G is operating in the photon-noise-dominated regime., Comment: 9 pages, 5 figures submitted to the Journal of Low Temperature Physics: LTD18 Special Edition
- Published
- 2019
7. Asteroid Measurements at Millimeter Wavelengths with the South Pole Telescope
- Author
-
P. M. Chichura, A. Foster, C. Patel, N. Ossa-Jaen, P. A. R. Ade, Z. Ahmed, A. J. Anderson, M. Archipley, J. E. Austermann, J. S. Avva, L. Balkenhol, P. S. Barry, R. Basu Thakur, J. A. Beall, K. Benabed, A. N. Bender, B. A. Benson, F. Bianchini, L. E. Bleem, F. R. Bouchet, L. Bryant, K. Byrum, J. E. Carlstrom, F. W. Carter, T. W. Cecil, C. L. Chang, P. Chaubal, G. Chen, H. C. Chiang, H.-M. Cho, T-L. Chou, R. Citron, J.-F. Cliche, T. M. Crawford, A. T. Crites, A. Cukierman, C. M. Daley, E. V. Denison, K. Dibert, J. Ding, M. A. Dobbs, D. Dutcher, W. Everett, C. Feng, K. R. Ferguson, J. Fu, S. Galli, J. Gallicchio, A. E. Gambrel, R. W. Gardner, E. M. George, N. Goeckner-Wald, R. Gualtieri, S. Guns, N. Gupta, R. Guyser, T. de Haan, N. W. Halverson, A. H. Harke-Hosemann, N. L. Harrington, J. W. Henning, G. C. Hilton, E. Hivon, G. P. Holder, W. L. Holzapfel, J. C. Hood, D. Howe, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, O. B. Jeong, M. Jonas, A. Jones, T. S. Khaire, L. Knox, A. M. Kofman, M. Korman, D. L. Kubik, S. Kuhlmann, C.-L. Kuo, A. T. Lee, E. M. Leitch, D. Li, A. Lowitz, C. Lu, D. P. Marrone, J. J. McMahon, S. S. Meyer, D. Michalik, M. Millea, L. M. Mocanu, J. Montgomery, C. Corbett Moran, A. Nadolski, T. Natoli, H. Nguyen, J. P. Nibarger, G. Noble, V. Novosad, Y. Omori, S. Padin, Z. Pan, P. Paschos, S. Patil, J. Pearson, K. A. Phadke, C. M. Posada, K. Prabhu, C. Pryke, W. Quan, A. Rahlin, C. L. Reichardt, D. Riebel, B. Riedel, M. Rouble, J. E. Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer, E. Schiappucci, E. Shirokoff, C. Sievers, G. Smecher, J. A. Sobrin, A. Springmann, A. A. Stark, J. Stephen, K. T. Story, A. Suzuki, C. Tandoi, K. L. Thompson, B. Thorne, C. Tucker, C. Umilta, L. R. Vale, T. Veach, J. D. Vieira, G. Wang, N. Whitehorn, W. L. K. Wu, V. Yefremenko, K. W. Yoon, and M. R. Young
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present the first measurements of asteroids in millimeter wavelength (mm) data from the South Pole Telescope (SPT), which is used primarily to study the cosmic microwave background (CMB). We analyze maps of two $\sim270$ deg$^2$ sky regions near the ecliptic plane, each observed with the SPTpol camera $\sim100$ times over one month. We subtract the mean of all maps of a given field, removing static sky signal, and then average the mean-subtracted maps at known asteroid locations. We detect three asteroids$\text{ -- }$(324) Bamberga, (13) Egeria, and (22) Kalliope$\text{ -- }$with signal-to-noise ratios (S/N) of 11.2, 10.4, and 6.1, respectively, at 2.0 mm (150 GHz); we also detect (324) Bamberga with S/N of 4.1 at 3.2 mm (95 GHz). We place constraints on these asteroids' effective emissivities, brightness temperatures, and light curve modulation amplitude. Our flux density measurements of (324) Bamberga and (13) Egeria roughly agree with predictions, while our measurements of (22) Kalliope suggest lower flux, corresponding to effective emissivities of $0.66 \pm 0.11$ at 2.0 mm and $, 21 pages, 9 figures
- Published
- 2022
8. Measurements of the E -mode polarization and temperature- E -mode correlation of the CMB from SPT-3G 2018 data
- Author
-
Faustin Carter, S. E. Kuhlmann, Junjia Ding, Gene C. Hilton, J. C. Hood, A. T. Lee, M. Millea, Erik Shirokoff, Oliver Jeong, N. W. Halverson, Thomas Cecil, John E. Pearson, G. I. Noble, John E. Carlstrom, E. V. Denison, B. Thorne, K. Prabhu, C. L. Kuo, François R. Bouchet, M. Korman, Federico Bianchini, K. Dibert, S. Padin, Ethan Anderes, Neil Goeckner-Wald, D. Riebel, J. E. Ruhl, Jason W. Henning, Nikhel Gupta, N. Huang, M. Rouble, M. Jonas, RB Thakur, K. L. Thompson, J. T. Sayre, C. Tucker, A. A. Stark, A. Lowitz, M. A. Dobbs, N. L. Harrington, Z. Pan, Karen Byrum, A. H. Harke-Hosemann, C. Lu, Srinivasan Raghunathan, B. Riedel, C. L. Chang, A. Cukierman, Andreas Bender, Z. Ahmed, K. Aylor, E. M. Leitch, Alexandra S. Rahlin, S. Guns, J. A. Sobrin, K. W. Yoon, D. Howe, P. Chaubal, Young, Graeme Smecher, C. Umilta, J. F. Cliche, T. de Haan, Silvia Galli, H. Nguyen, Lloyd Knox, T. Natoli, K. Vanderlinde, T. M. Crawford, J. Fu, P. Paschos, S. S. Meyer, Christian L. Reichardt, H-M. Cho, L. R. Vale, A. Foster, K. T. Story, Karim Benabed, E. Hivon, E. Schiappucci, Anthony P. Jones, Andrew Nadolski, Lindsey Bleem, Jessica Avva, Peter S. Barry, L. Balkenhol, Bradford Benson, Yefremenko, R. Guyser, R. Gualtieri, C. M. Posada, Chang Feng, G. P. Holder, A. M. Kofman, Daniel Michalik, Novosad, J. D. Vieira, C. Daley, Gensheng Wang, W. L. Holzapfel, W. Quan, K. R. Ferguson, Adam Anderson, Gang Chen, Nathan Whitehorn, Robert Gardner, M. Archipley, Y. Omori, A. Suzuki, Lincoln Bryant, D. Dutcher, T.-L. Chou, Trupti Khaire, Joshua Montgomery, J. Stephen, A. E. Gambrel, Kent D. Irwin, W. L. K. Wu, Donna Kubik, P. A. R. Ade, and W. B. Everett
- Subjects
Physics ,010308 nuclear & particles physics ,Cosmic microwave background ,Spectral density ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Parameter space ,01 natural sciences ,7. Clean energy ,symbols.namesake ,Amplitude ,Gravitational lens ,South Pole Telescope ,0103 physical sciences ,symbols ,Planck ,Multipole expansion ,010303 astronomy & astrophysics - Abstract
We present measurements of the $E$-mode ($EE$) polarization power spectrum and temperature-$E$-mode ($TE$) cross-power spectrum of the cosmic microwave background using data collected by SPT-3G, the latest instrument installed on the South Pole Telescope. This analysis uses observations of a 1500 deg$^2$ region at 95, 150, and 220 GHz taken over a four month period in 2018. We report binned values of the $EE$ and $TE$ power spectra over the angular multipole range $300 \le \ell < 3000$, using the multifrequency data to construct six semi-independent estimates of each power spectrum and their minimum-variance combination. These measurements improve upon the previous results of SPTpol across the multipole ranges $300 \le \ell \le 1400$ for $EE$ and $300 \le \ell \le 1700$ for $TE$, resulting in constraints on cosmological parameters comparable to those from other current leading ground-based experiments. We find that the SPT-3G dataset is well-fit by a $\Lambda$CDM cosmological model with parameter constraints consistent with those from Planck and SPTpol data. From SPT-3G data alone, we find $H_0 = 68.8 \pm 1.5 \mathrm{km\,s^{-1}\,Mpc^{-1}}$ and $\sigma_8 = 0.789 \pm 0.016$, with a gravitational lensing amplitude consistent with the $\Lambda$CDM prediction ($A_L = 0.98 \pm 0.12$). We combine the SPT-3G and the Planck datasets and obtain joint constraints on the $\Lambda$CDM model. The volume of the 68% confidence region in six-dimensional $\Lambda$CDM parameter space is reduced by a factor of 1.5 compared to Planck-only constraints, with only slight shifts in central values. We note that the results presented here are obtained from data collected during just half of a typical observing season with only part of the focal plane operable, and that the active detector count has since nearly doubled for observations made with SPT-3G after 2018.
- Published
- 2021
9. The Design and Integrated Performance of SPT-3G
- Author
-
J. A. Sobrin, A. J. Anderson, A. N. Bender, B. A. Benson, D. Dutcher, A. Foster, N. Goeckner-Wald, J. Montgomery, A. Nadolski, A. Rahlin, P. A. R. Ade, Z. Ahmed, E. Anderes, M. Archipley, J. E. Austermann, J. S. Avva, K. Aylor, L. Balkenhol, P. S. Barry, R. Basu Thakur, K. Benabed, F. Bianchini, L. E. Bleem, F. R. Bouchet, L. Bryant, K. Byrum, J. E. Carlstrom, F. W. Carter, T. W. Cecil, C. L. Chang, P. Chaubal, G. Chen, H.-M. Cho, T.-L. Chou, J.-F. Cliche, T. M. Crawford, A. Cukierman, C. Daley, T. de Haan, E. V. Denison, K. Dibert, J. Ding, M. A. Dobbs, W. Everett, C. Feng, K. R. Ferguson, J. Fu, S. Galli, A. E. Gambrel, R. W. Gardner, R. Gualtieri, S. Guns, N. Gupta, R. Guyser, N. W. Halverson, A. H. Harke-Hosemann, N. L. Harrington, J. W. Henning, G. C. Hilton, E. Hivon, G. P. Holder, W. L. Holzapfel, J. C. Hood, D. Howe, N. Huang, K. D. Irwin, O. B. Jeong, M. Jonas, A. Jones, T. S. Khaire, L. Knox, A. M. Kofman, M. Korman, D. L. Kubik, S. Kuhlmann, C.-L. Kuo, A. T. Lee, E. M. Leitch, A. E. Lowitz, C. Lu, S. S. Meyer, D. Michalik, M. Millea, T. Natoli, H. Nguyen, G. I. Noble, V. Novosad, Y. Omori, S. Padin, Z. Pan, P. Paschos, J. Pearson, C. M. Posada, K. Prabhu, W. Quan, C. L. Reichardt, D. Riebel, B. Riedel, M. Rouble, J. E. Ruhl, B. Saliwanchik, J. T. Sayre, E. Schiappucci, E. Shirokoff, G. Smecher, A. A. Stark, J. Stephen, K. T. Story, A. Suzuki, C. Tandoi, K. L. Thompson, B. Thorne, C. Tucker, C. Umilta, L. R. Vale, K. Vanderlinde, J. D. Vieira, G. Wang, N. Whitehorn, W. L. K. Wu, V. Yefremenko, K. W. Yoon, M. R. Young, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and SPT-3G
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Space and Planetary Science ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,7. Clean energy ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful dataset for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, millimeter-wave bright galaxies, and a variety of transient phenomena. The SPT-3G instrument provides a significant improvement in mapping speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of the instrument achieves a 430 mm diameter image plane across observing bands of 95 GHz, 150 GHz, and 220 GHz, with 1.2 arcmin FWHM beam response at 150 GHz. In the receiver, this image plane is populated with 2690 dual-polarization, tri-chroic pixels (~16000 detectors) read out using a 68X digital frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear survey of 1500 deg$^{2}$ of the southern sky. We summarize the unique optical, cryogenic, detector, and readout technologies employed in SPT-3G, and we report on the integrated performance of the instrument., Comment: 25 pages, 11 figures. Accepted for publication in ApJS
- Published
- 2021
10. Performance of Al–Mn Transition-Edge Sensor Bolometers in SPT-3G
- Author
-
M. Korman, Kent D. Irwin, W. L. Holzapfel, J. E. Ruhl, H. M. Cho, Ari Cukierman, V. Novosad, Donna Kubik, C. L. Chang, A. E. Gambrel, Alexandra S. Rahlin, Matt Dobbs, K. Vanderlinde, Keith L. Thompson, D. Howe, M. R. Young, Karen Byrum, Thomas Cecil, R. Basu Thakur, Erik Shirokoff, P. Paschos, Aled Jones, Peter A. R. Ade, Zeeshan Ahmed, Amy N. Bender, Ki Won Yoon, A. H. Harke-Hosemann, K. T. Story, A. E. Lowitz, H. T. Nguyen, D. Dutcher, Antony A. Stark, J. A. Sobrin, J. Stephen, Jason Gallicchio, Lincoln Bryant, Jason W. Henning, J. T. Sayre, S. S. Meyer, Volodymyr Yefremenko, Nathan Whitehorn, John E. Pearson, Peter S. Barry, N. L. Harrington, T. Natoli, Andrew Nadolski, Jessica Avva, G. I. Noble, Carole Tucker, R. Guyser, Stephen Padin, Trupti Khaire, N. Huang, A. Foster, Joshua Montgomery, A. Gilbert, C. M. Posada, Bradford Benson, Robert Gardner, J. F. Cliche, Steve Kuhlmann, Gene C. Hilton, Joaquin Vieira, Chao-Lin Kuo, S. Guns, Graeme Smecher, W. B. Everett, N. W. Halverson, Daniel Michalik, Gensheng Wang, John Groh, J. Fu, E. V. Denison, W. Quan, A. M. Kofman, M. Jonas, Leila R. Vale, Adrian T. Lee, Aritoki Suzuki, Faustin Carter, Junjia Ding, John E. Carlstrom, T. de Haan, E. M. Leitch, D. Riebel, Oliver Jeong, Z. Pan, K. R. Ferguson, and Adam Anderson
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,Wafer ,010306 general physics ,Anisotropy ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,business.industry ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,South Pole Telescope ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
SPT-3G is a polarization-sensitive receiver, installed on the South Pole Telescope, that measures the anisotropy of the cosmic microwave background (CMB) from degree to arcminute scales. The receiver consists of ten 150~mm-diameter detector wafers, containing a total of 16,000 transition-edge sensor (TES) bolometers observing at 95, 150, and 220 GHz. During the 2018-2019 austral summer, one of these detector wafers was replaced by a new wafer fabricated with Al-Mn TESs instead of the Ti/Au design originally deployed for SPT-3G. We present the results of in-lab characterization and on-sky performance of this Al-Mn wafer, including electrical and thermal properties, optical efficiency measurements, and noise-equivalent temperature. In addition, we discuss and account for several calibration-related systematic errors that affect measurements made using frequency-domain multiplexing readout electronics., Comment: 9 pages, 5 figures, submitted to the Journal of Low Temperature Physics: LTD18 Special Edition
- Published
- 2019
11. The Integration and Testing Program for the Simons Observatory Large Aperture Telescope Optics Tubes
- Author
-
Shreya Sutariya, Grace E. Chesmore, Eve M. Vavagiakis, Carlos Sierra, A. M. Kofman, Jeff McMahon, Shuay-Pwu Patty Ho, Brian J. Koopman, Steve K. Choi, Zhilei Xu, Jack Lashner, Kathleen Harrington, Nicholas Galitzki, John Orlowski-Scherer, Max Silva-Feaver, Aamir Ali, Ningfeng Zhu, Simon Dicker, Michael D. Niemack, Nicholas F. Cothard, and Joseph Seibert
- Subjects
Physics ,Cryostat ,business.industry ,Physics::Instrumentation and Detectors ,Detector ,Cosmic microwave background ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Spectral bands ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Dichroic glass ,law.invention ,Telescope ,Optics ,Observatory ,law ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). The 6~m Large Aperture Telescope (LAT), which will target the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. Each optics tube is comprised of three silicon lenses, IR blocking filters, and three dual-polarization, dichroic TES detector wafers. The scientific objectives of the SO project require these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the SO LATR optics tubes that will verify the design and assembly of the optics tubes before they are shipped to the SO site and installed in the LATR cryostat. The program includes a quick turn-around test cryostat that is used to cool single optics tubes and validate the cryogenic performance and detector readout assembly. We discuss the optical design specifications the optics tubes must meet to be deployed on sky and the suite of optical test equipment that is prepared to measure these requirements.
- Published
- 2021
12. The Simons Observatory: modeling optical systematics in the Large Aperture Telescope
- Author
-
Rolando Dünner, John Orlowski-Scherer, Adrian T. Lee, Kavilan Moodley, Aamir Ali, Philip Daniel Mauskopf, Giuseppe Puglisi, Patricio A. Gallardo, Sara M. Simon, Carlos Sierra, Michael D. Niemack, Grace E. Chesmore, Giulio Fabbian, Alexandre E. Adler, Nicholas F. Cothard, Lyman A. Page, Gabriele Coppi, Ningfeng Zhu, Nicholas Galitzki, Edward J. Wollack, Federico Nati, Shuay-Pwu Patty Ho, Nadia Dachlythra, Bruce Partridge, Michele Limon, Zhilei Xu, Christian L. Reichardt, A. M. Kofman, Jon E. Gudmundsson, Simon Dicker, Peter Charles Hargrave, Joseph E. Golec, Andrew Bazarko, Roberto Puddu, Frederick Matsuda, Carole Tucker, Mark J. Devlin, Grant Teply, Gudmundsson, J, Gallardo, P, Puddu, R, Dicker, S, Adler, A, Ali, A, Bazarko, A, Chesmore, G, Coppi, G, Cothard, N, Dachlythra, N, Devlin, M, Dünner, R, Fabbian, G, Galitzki, N, Golec, J, Patty Ho, S, Hargrave, P, Kofman, A, Lee, A, Limon, M, Matsuda, F, Mauskopf, P, Moodley, K, Nati, F, Niemack, M, Orlowski-Scherer, J, Page, L, Partridge, B, Puglisi, G, Reichardt, C, Sierra, C, Simon, S, Teply, G, Tucker, C, Wollack, E, Xu, Z, and Zhu, N
- Subjects
FOS: Physical sciences ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Optics ,Observatory ,law ,0103 physical sciences ,Light beam ,Electrical and Electronic Engineering ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Engineering (miscellaneous) ,Physics ,Geometrical optics ,business.industry ,Stray light ,Settore FIS/05 ,Optical Design, Telescope, Simons Observatory ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Physical optics ,Atomic and Molecular Physics, and Optics ,Ray tracing (graphics) ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope; allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics which are now being built. We describe non-sequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far field beam patterns which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction., 15 pages, 13 figures
- Published
- 2021
13. The Simons Observatory: the Large Aperture Telescope Receiver (LATR) Integration and Validation Results
- Author
-
Suzanne T. Staggs, Jenna Moore, Jake Connors, John Orlowski-Scherer, Steve K. Choi, Federico Nati, Michael D. Niemack, Erin Healy, Ningfeng Zhu, Joseph Seibert, Bradley Dober, Robert Thornton, Brian J. Koopman, Zhilei Xu, Johannes Hubmayr, Jack Lashner, Tanay Bhandarkar, Christian L. Reichardt, Nicholas F. Cothard, Jason E. Austermann, Giulio Fabbian, Shuay-Pwu Patty Ho, Edward J. Wollack, Gabriele Coppi, Yuhan Wang, Michele Limon, Jeffrey Iuliano, Mark J. Devlin, Kathleen Harrington, Kaiwen Zheng, Shannon M. Duff, Kam Arnold, Heather McCarrick, Samantha Walker, Simon Dicker, Eve M. Vavagiakis, Maximiliano Silva-Feaver, Nicholas Galitzki, A. M. Kofman, Rita Sonka, Michael R. Vissers, Karen Perez Sarmiento, Yaqiong Li, Aamir Ali, Saianeesh K. Haridas, Zmuidzinas J.,Gao J.-R., Xu, Z, Bhandarkar, T, Coppi, G, Kofman, A, Orlowski-Scherer, J, Zhu, N, Ali, A, Arnold, K, Austermann, J, Choi, S, Connors, J, Cothard, N, Devlin, M, Dicker, S, Dober, B, Duff, S, Fabbian, G, Galitzki, N, Haridas, S, Harrington, K, Healy, E, Ho, S, Hubmayr, J, Iuliano, J, Lashner, J, Li, Y, Limon, M, Koopman, B, Mccarrick, H, Moore, J, Nati, F, Niemack, M, Reichardt, C, Sarmiento, K, Seibert, J, Silva-Feaver, M, Sonka, R, Staggs, S, Thornton, R, Vavagiakis, E, Vissers, M, Walker, S, Wang, Y, Wollack, E, and Zheng, K
- Subjects
Physics ,COSMIC cancer database ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Observa-tional Cosmology ,Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radio spectrum ,Cryogenic Technology ,law.invention ,Astronomical Instrumentation ,Telescope ,law ,Observatory ,Observational cosmology ,Cosmic Microwave Background ,Astrophysics::Earth and Planetary Astrophysics ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $, Comment: 20 pages, 12 figures, submitted to the 2020 SPIE Astronomical Telescopes + Instrumentation
- Published
- 2020
14. The Simons Observatory: A large-diameter truss for a refracting telescope cooled to 1 K
- Author
-
Kevin D. Crowley, Peter Dow, Jordan E. Shroyer, John C. Groh, Bradley Dober, Jacob Spisak, Nicholas Galitzki, Tanay Bhandarkar, Mark J. Devlin, Simon Dicker, Patricio A. Gallardo, Kathleen Harrington, Jeffrey Iuliano, Bradley R. Johnson, Delwin Johnson, Anna M. Kofman, Akito Kusaka, Adrian Lee, Michele Limon, Federico Nati, John Orlowski-Scherer, Lyman Page, Michael Randall, Grant Teply, Tran Tsan, Edward J. Wollack, Zhilei Xu, Ningfeng Zhu, Crowley, K, Dow, P, Shroyer, J, Groh, J, Dober, B, Spisak, J, Galitzki, N, Bhandarkar, T, Devlin, M, Dicker, S, Gallardo, P, Harrington, K, Iuliano, J, Johnson, B, Johnson, D, Kofman, A, Kusaka, A, Lee, A, Limon, M, Nati, F, Orlowski-Scherer, J, Page, L, Randall, M, Teply, G, Tsan, T, Wollack, E, Xu, Z, and Zhu, N
- Subjects
Instrumentation ,CMB, cosmology, telescopes - Abstract
We present the design and measured performance of a new carbon fiber strut design that is used in a cryogenically cooled truss for the Simons Observatory small aperture telescope. The truss consists of two aluminum 6061 rings separated by 24 struts. Each strut consists of a central carbon fiber tube fitted with two aluminum end caps. We tested the performance of the strut and truss by (i) cryogenically cycling and destructively pull-testing strut samples, (ii) non-destructively pull-testing the final truss, and (iii) measuring the thermal conductivity of the carbon fiber tubes. We found that the strut strength is limited by the mounting fasteners and the strut end caps, not the epoxy adhesive or the carbon fiber tube. This result is consistent with our numerical predictions. Our thermal measurements suggest that the conductive heat load through the struts (from 4 to 1 K) will be less than 1 mW. This strut design may be a promising candidate for use in other cryogenic support structures.
- Published
- 2022
15. Impact of Electrical Contacts Design and Materials on the Stability of Ti Superconducting Transition Shape
- Author
-
Volodymyr Yefremenko, Trupti Khaire, Joshua Montgomery, A. Cukierman, Stephen S. Meyer, Peter A. R. Ade, Zeeshan Ahmed, K. T. Story, Nathan Whitehorn, Faustin Carter, W. B. Everett, Erik Shirokoff, H. Nguyen, Junjia Ding, G. I. Noble, Gene C. Hilton, Jason E. Austermann, Graeme Smecher, Q. Y. Tang, Carole Tucker, Ralu Divan, M. Korman, A. M. Kofman, Alexandra S. Rahlin, J. A. Sobrin, Adam Anderson, Andrew Nadolski, I. Shirley, N. Huang, A. Gilbert, N. L. Harrington, Amy N. Bender, Ki Won Yoon, D. Dutcher, Antony A. Stark, John E. Carlstrom, Michelle Jonas, Angelina H. Harke-Hosemann, C. S. Miller, N. W. Halverson, Oliver Jeong, Matt Dobbs, Bradford Benson, Z. Pan, A. E. Lowitz, C. L. Chang, Valentine Novosad, Adrian T. Lee, Jean Francois Cliche, Daniel Michalik, K. Vanderlinde, Gensheng Wang, Keith L. Thompson, Jason W. Henning, Kent D. Irwin, W. L. Holzapfel, Donna Kubik, Tijmen de Haan, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, John E. Pearson, Aritoki Suzuki, Thomas Cecil, J. T. Sayre, Liliana Stan, Jessica Avva, Stephen Padin, E. V. Denison, T. Natoli, J. E. Ruhl, Leila R. Vale, Robitan Basu Thakur, L. J. Saunders, A. Foster, Chao-Lin Kuo, John Groh, R. N. Gannon, and M. R. Young
- Subjects
Superconductivity ,Reproducibility ,Materials science ,Condensed matter physics ,Scanning electron microscope ,Bolometer ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electrical contacts ,law.invention ,Differential interference contrast microscopy ,law ,0103 physical sciences ,General Materials Science ,Diffusion (business) ,Transition edge sensor ,010306 general physics ,0210 nano-technology - Abstract
The South Pole Telescope SPT-3G camera utilizes Ti/Au transition edge sensors (TESs). A key requirement for these sensors is reproducibility and long-term stability of the superconducting (SC) transitions. Here, we discuss the impact of electrical contacts design and materials on the shape of the SC transitions. Using scanning electron microscope, atomic force microscope, and optical differential interference contrast microscopy, we observed the presence of unexpected defects of morphological nature on the titanium surface and their evolution in time in proximity to Nb contacts. We found direct correlation between the variations of the morphology and the SC transition shape. Experiments with different diffusion barriers between TES and Nb leads were performed to clarify the origin of this problem. We have demonstrated that the reproducibility of superconducting transitions can be significantly improved by preventing diffusion processes in the TES–leads contact areas.
- Published
- 2018
16. Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers
- Author
-
Peter A. R. Ade, Faustin Carter, K. T. Story, J. S. Avva, Thomas Cecil, S. E. Kuhlmann, Junjia Ding, Gene C. Hilton, K. Vanderlinde, G. I. Noble, W. B. Everett, A. Cukierman, Q. Y. Tang, E. V. Denison, A. E. Lowitz, V. G. Yefremenko, R. N. Gannon, M. R. Young, Carole Tucker, K. L. Thompson, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, N. W. Halverson, John E. Carlstrom, Amy N. Bender, J. A. Sobrin, Z. Pan, N. L. Harrington, Jason W. Henning, T. Natoli, Jason E. Austermann, S. S. Meyer, Kent D. Irwin, N. Whitehorn, D. Dutcher, Ralu Divan, Bradford Benson, K. W. Yoon, Graeme Smecher, A. Foster, Donna Kubik, J. F. Cliche, C. L. Kuo, Adrian T. Lee, Valentine Novosad, Andrew Nadolski, Zeeshan Ahmed, Trupti Khaire, Joshua Montgomery, T. de Haan, M. Jonas, A. J. Gilbert, A. A. Stark, W. Holzapfel, Adam Anderson, J. E. Ruhl, John E. Pearson, Leila R. Vale, C. S. Miller, M. A. Dobbs, N. Huang, J. C. Groh, Aritoki Suzuki, H. Nguyen, L. J. Saunders, C. M. Posada, A. M. Kofman, I. Shirley, Daniel Michalik, O. B. Jeong, Gensheng Wang, Joaquin Vieira, Liliana Stan, Erik Shirokoff, Stephen Padin, M. Korman, A. H. Harke-Hosemann, and J. T. Sayre
- Subjects
010302 applied physics ,Physics ,Physics::Instrumentation and Detectors ,business.industry ,Cosmic microwave background ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Microstrip ,Computer Science::Other ,law.invention ,South Pole Telescope ,Optics ,law ,0103 physical sciences ,Thermal ,Dissipation factor ,General Materials Science ,Transition edge sensor ,010306 general physics ,business - Abstract
In this work, we have measured the properties of membrane-suspended bolometer thermal links and microstrip transmission lines in the transition-edge sensor arrays for the third-generation camera for South Pole Telescope (SPT-3G). A promising technique for controlling the end point of the release etch that defines the thermal link has been developed. We have also evaluated the microstrip loss in our detectors by measuring the optical efficiency of detectors with different lengths of microstrip line. The loss tangent is sufficiently low for the use in multi-chronic pixels for cosmic microwave background instruments like SPT-3G.
- Published
- 2018
17. Design and Assembly of SPT-3G Cold Readout Hardware
- Author
-
Amy N. Bender, A. Cukierman, D. Dutcher, E. V. Denison, V. G. Yefremenko, C. M. Posada, W. B. Everett, Trupti Khaire, John E. Carlstrom, K. L. Thompson, Joaquin Vieira, Q. Y. Tang, Carole Tucker, Joshua Montgomery, A. E. Lowitz, Z. Pan, Alexandra S. Rahlin, Jason E. Austermann, K. W. Yoon, Graeme Smecher, R. Basu Thakur, Chihway Chang, Valentine Novosad, J. E. Ruhl, Faustin Carter, Leila R. Vale, Y. Hori, K. M. Rotermund, K. Vanderlinde, M. A. Dobbs, Peter A. R. Ade, S. E. Kuhlmann, Junjia Ding, K. T. Story, Oliver Jeong, J. F. Cliche, Kent D. Irwin, Gene C. Hilton, W. L. Holzapfel, M. Korman, A. A. Stark, R. N. Gannon, M. R. Young, Donna Kubik, John E. Pearson, Kaori Hattori, T. Natoli, Gensheng Wang, M. Jonas, Aritoki Suzuki, John Groh, A. J. Gilbert, Jason W. Henning, Tucker Elleflot, C. L. Kuo, A. Foster, Adam Anderson, Zeeshan Ahmed, Thomas Cecil, N. W. Halverson, T. de Haan, L. J. Saunders, J. A. Sobrin, H. Nguyen, Jessica Avva, Nathan Whitehorn, S. S. Meyer, Stephen Padin, Masaya Hasegawa, H. Nishino, A. M. Kofman, I. Shirley, Andrew Nadolski, A. H. Harke-Hosemann, G. I. Noble, Aaron Lee, Erik Shirokoff, N. Huang, J. T. Sayre, D. Barron, N. L. Harrington, and Bradford Benson
- Subjects
010302 applied physics ,Physics ,business.industry ,Detector ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Resonator ,Upgrade ,Thermal conductivity ,South Pole Telescope ,Planar ,0103 physical sciences ,Optoelectronics ,General Materials Science ,010306 general physics ,business ,Electrical impedance ,Stripline - Abstract
The third-generation upgrade to the receiver on the South Pole Telescope, SPT-3G, was installed at the South Pole during the 2016–2017 austral summer to measure the polarization of the cosmic microwave background. Increasing the number of detectors by a factor of 10 to ∼16,000 \ud ∼16,000\ud required the multiplexing factor to increase to 68 and the bandwidth of the frequency-division readout electronics to span 1.6–5.2 MHz. This increase necessitates low-thermal conductance, low-inductance cryogenic wiring. Our cold readout system consists of planar thin-film aluminum inductive–capacitive resonators, wired in series with the detectors, summed together, and connected to 4K SQUIDs by 10−μm \ud 10−μm\ud -thick niobium–titanium (NbTi) broadside-coupled striplines. Here, we present an overview of the cold readout electronics for SPT-3G, including assembly details and characterization of electrical and thermal properties of the system. We report, for the NbTi striplines, values of R≤10 −4 Ω \ud R≤10−4Ω\ud , L=21±1 nH \ud L=21±1 nH\ud , and C=1.47±.02 nF \ud C=1.47±.02 nF\ud . Additionally, the striplines’ thermal conductivity is described by kA=6.0±0.3 T 0.92±0.04 μW mm K −1 \ud kA=6.0±0.3 T0.92±0.04 μW mm K−1\ud . Finally, we provide projections for cross talk induced by parasitic impedances from the stripline and find that the median value of percentage cross talk from leakage current is 0.22 and 0.09% \ud 0.09%\ud from wiring impedance.
- Published
- 2018
18. Fabrication of Detector Arrays for the SPT-3G Receiver
- Author
-
N. W. Halverson, K. Vanderlinde, J. E. Ruhl, Leila R. Vale, C. L. Kuo, M. A. Dobbs, K. L. Thompson, Zeeshan Ahmed, Z. Pan, T. Natoli, Aaron Lee, Peter A. R. Ade, C. M. Posada, Bradford Benson, Jason W. Henning, E. V. Denison, A. Foster, A. E. Lowitz, K. T. Story, Amy N. Bender, V. G. Yefremenko, A. Cukierman, D. Dutcher, T. de Haan, Thomas Cecil, Joaquin Vieira, G. I. Noble, Jason E. Austermann, A. H. Harke-Hosemann, Kent D. Irwin, J. F. Cliche, Valentine Novosad, W. L. Holzapfel, K. W. Yoon, R. N. Gannon, M. R. Young, A. J. Gilbert, Andrew Nadolski, Adam Anderson, N. Huang, Donna Kubik, Graeme Smecher, W. B. Everett, Nathan Whitehorn, Daniel Michalik, Gensheng Wang, John Groh, N. L. Harrington, Q. Y. Tang, M. Jonas, Aritoki Suzuki, J. A. Sobrin, Trupti Khaire, Liliana Stan, S. S. Meyer, Carole Tucker, J. T. Sayre, Joshua Montgomery, Erik Shirokoff, Jessica Avva, I. Shirley, C. S. Miller, Stephen Padin, M. Korman, H. Nguyen, A. M. Kofman, Ralu Divan, L. J. Saunders, John E. Pearson, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, A. A. Stark, John E. Carlstrom, Oliver Jeong, Faustin Carter, S. E. Kuhlmann, Junjia Ding, and Gene C. Hilton
- Subjects
010302 applied physics ,Physics ,business.industry ,Detector ,Bolometer ,Condensed Matter Physics ,01 natural sciences ,Multiplexing ,Signal ,Atomic and Molecular Physics, and Optics ,Radio spectrum ,law.invention ,Cardinal point ,Optics ,South Pole Telescope ,law ,0103 physical sciences ,General Materials Science ,Antenna (radio) ,010306 general physics ,business - Abstract
The South Pole Telescope third-generation (SPT-3G) receiver was installed during the austral summer of 2016–2017. It is designed to measure the cosmic microwave background across three frequency bands centered at 95, 150, and 220 GHz. The SPT-3G receiver has ten focal plane modules, each with 269 pixels. Each pixel features a broadband sinuous antenna coupled to a niobium microstrip transmission line. In-line filters define the desired band-passes before the signal is coupled to six bolometers with Ti/Au/Ti/Au transition edge sensors (three bands × \ud ×\ud two polarizations). In total, the SPT-3G receiver is composed of 16,000 detectors, which are read out using a 68× \ud ×\ud frequency-domain multiplexing scheme. In this paper, we present the process employed in fabricating the detector arrays.
- Published
- 2018
19. Erratum: 'The Simons Observatory Large Aperture Telescope Receiver' (2021, ApJS, 256, 23)
- Author
-
Ningfeng Zhu, Tanay Bhandarkar, Gabriele Coppi, Anna M. Kofman, John L. Orlowski-Scherer, Zhilei Xu, Shunsuke Adachi, Peter Ade, Simone Aiola, Jason Austermann, Andrew O. Bazarko, James A. Beall, Sanah Bhimani, J. Richard Bond, Grace E. Chesmore, Steve K. Choi, Jake Connors, Nicholas F. Cothard, Mark Devlin, Simon Dicker, Bradley Dober, Cody J. Duell, Shannon M. Duff, Rolando Dünner, Giulio Fabbian, Nicholas Galitzki, Patricio A. Gallardo, Joseph E. Golec, Saianeesh K. Haridas, Kathleen Harrington, Erin Healy, Shuay-Pwu Patty Ho, Zachary B. Huber, Johannes Hubmayr, Jeffrey Iuliano, Bradley R. Johnson, Brian Keating, Kenji Kiuchi, Brian J. Koopman, Jack Lashner, Adrian T. Lee, Yaqiong Li, Michele Limon, Michael Link, Tammy J Lucas, Heather McCarrick, Jenna Moore, Federico Nati, Laura B. Newburgh, Michael D. Niemack, Elena Pierpaoli, Michael J. Randall, Karen Perez Sarmiento, Lauren J. Saunders, Joseph Seibert, Carlos Sierra, Rita Sonka, Jacob Spisak, Shreya Sutariya, Osamu Tajima, Grant P. Teply, Robert J. Thornton, Tran Tsan, Carole Tucker, Joel Ullom, Eve M. Vavagiakis, Michael R. Vissers, Samantha Walker, Benjamin Westbrook, Edward J. Wollack, and Mario Zannoni
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Published
- 2021
20. The Simons Observatory Microwave SQUID Multiplexing Detector Module Design
- Author
-
Shannon M. Duff, Sarah Marie Bruno, Kaiwen Zheng, Jason E. Austermann, Heather McCarrick, Suzanne T. Staggs, Zachary Atkins, Sara M. Simon, Michael D. Niemack, Megan Gralla, D. Dutcher, Johannes Hubmayr, John A. B. Mates, Bradley R. Johnson, Zachary B. Huber, Leila R. Vale, Nicholas F. Cothard, Jake Connors, A. M. Kofman, Steve K. Choi, Kam Arnold, Nicholas Galitzki, Tammy J. Lucas, Jeff Van Lanen, Kevin D. Crowley, Shawn W. Henderson, Aritoki Suzuki, Yuhan Wang, C. Yu, Edward D. Young, Simon Dicker, Edward J. Wollack, Akito Kusaka, Joel N. Ullom, Bradley Dober, Erin Healy, Zeeshan Ahmed, John Orlowski-Scherer, Adrian T. Lee, Jeffrey Iuliano, Cody J. Duell, Yaqiong Li, Joseph Seibert, Robert Thornton, Jon E. Gudmundsson, Josef Frisch, Ningfeng Zhu, Tomoki Terasaki, Zhilei Xu, Jack Lashner, Tanay Bhandarkar, James A. Beall, Michael J. Link, Shuay-Pwu Patty Ho, Eve M. Vavagiakis, Maximiliano Silva-Feaver, Michael R. Vissers, Gene C. Hilton, Marius Lungu, and Jeff McMahon
- Subjects
Physics ,Squid ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,biology ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Multiplexing ,Optics ,Space and Planetary Science ,Observatory ,biology.animal ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Microwave ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing ($��$mux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a $95\%$ yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 $\mathrm{pA/\sqrt{Hz}}$. This impacts the projected SO mapping speed by $< 8\%$, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded., Accepted to The Astrophysical Journal
- Published
- 2021
21. Design and Bolometer Characterization of the SPT-3G First-year Focal Plane
- Author
-
Volodymyr Yefremenko, Thomas Cecil, A. E. Lowitz, Jason W. Henning, Ki Won Yoon, Nathan Whitehorn, Valentine Novosad, W. B. Everett, A. M. Kofman, Peter A. R. Ade, K. T. Story, Jason E. Austermann, T. Natoli, M. Korman, Graeme Smecher, Kent D. Irwin, A. Cukierman, N. W. Halverson, W. L. Holzapfel, A. Foster, Donna Kubik, A. H. Harke-Hosemann, Trupti Khaire, H. T. Nguyen, Joshua Montgomery, Q. Y. Tang, Gene C. Hilton, Chao-Lin Kuo, Carole Tucker, J. T. Sayre, N. Huang, Faustin Carter, Erik Shirokoff, A. Gilbert, C. L. Chang, Junjia Ding, J. E. Ruhl, John Groh, Daniel Michalik, Zeeshan Ahmed, Adam Anderson, Gensheng Wang, M. A. Dobbs, Leila R. Vale, Alexandra S. Rahlin, Lauren J. Saunders, Z. Pan, R. Basu Thakur, Amy N. Bender, J. A. Sobrin, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, S. S. Meyer, Aaron Lee, D. Dutcher, I. Shirley, E. V. Denison, Jessica Avva, Keith Vanderlinde, Stephen Padin, John E. Carlstrom, G. I. Noble, John E. Pearson, T. de Haan, R. N. Gannon, Bradford Benson, J. F. Cliche, M. R. Young, Keith L. Thompson, M. Jonas, A. Nadolski, Aritoki Suzuki, N. L. Harrington, Antony A. Stark, and Oliver Jeong
- Subjects
Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Multiplexing ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010302 applied physics ,Physics ,Pixel ,business.industry ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,Atomic and Molecular Physics, and Optics ,Cardinal point ,South Pole Telescope ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties., Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 2018
- Published
- 2019
22. Broadband, millimeter-wave antireflection coatings for large-format, cryogenic aluminum oxide optics
- Author
-
N. Huang, W. L. Holzapfel, W. B. Everett, Jason Gallicchio, Z. Ahmed, A. E. Gambrel, Marion Dierickx, J. A. Sobrin, Jason W. Henning, T. de Haan, S. S. Meyer, A. Suzuki, Joaquin Vieira, D. Dutcher, S. Guns, K. W. Yoon, J. Stephen, Graeme Smecher, K. Vanderlinde, Andrew Nadolski, Aled Jones, Lincoln Bryant, Valentine Novosad, J. C. Groh, D. Howe, C. M. Po sada, H. Nguyen, J. Fu, A. H. Harke-Hosemann, T. Natoli, Faustin Carter, L. Florez, John M Kovac, A. Foster, J. T. Sayre, Thomas Cecil, Erik Shirokoff, A. Lowitz, Antony A. Stark, P. Paschos, S. E. Kuhlmann, Junjia Ding, C. L. Kuo, Kent D. Irwin, J. E. Ruhl, A. M. Kofman, Daniel Michalik, K. R. Ferguson, C. Tucker, J. Cheshire, Adam Anderson, M. R. Young, Grace E. Chesmore, Gensheng Wang, M. Korman, Donna Kubik, V. G. Yefremenko, W. Quan, S. Padin, J. F. Cliche, Jeff McMahon, John E. Pearson, J. Meier, Jessica Avva, A. Cukierman, R. Guyser, Andreas Bender, G. I. Noble, M. Jonas, C. Tandoi, N. W. Halverson, Peter A. R. Ade, R. J. Harris, K. T. Story, Bradford Benson, Nathan Whitehorn, N. L. Harrington, Joshua Montgomery, D. Riebel, K. L. Thompson, Z. Pan, Oliver Jeong, Robert Gardner, John E. Carlstrom, J. Farwick, Adrian T. Lee, Alexandra S. Rahlin, R. Basu Thakur, and Chihway Chang
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Fabrication ,Oxide ,FOS: Physical sciences ,Dielectric ,Substrate (electronics) ,Lenslet ,engineering.material ,01 natural sciences ,010309 optics ,chemistry.chemical_compound ,Optics ,Coating ,0103 physical sciences ,Transmittance ,Electrical and Electronic Engineering ,Engineering (miscellaneous) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Atomic and Molecular Physics, and Optics ,chemistry ,engineering ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Refractive index - Abstract
We present two prescriptions for broadband (~77 - 252 GHz), millimeter-wave antireflection coatings for cryogenic, sintered polycrystalline aluminum oxide optics: one for large-format (700 mm diameter) planar and plano-convex elements, the other for densely packed arrays of quasi-optical elements, in our case 5 mm diameter half-spheres (called "lenslets"). The coatings comprise three layers of commercially-available, polytetrafluoroethylene-based, dielectric sheet material. The lenslet coating is molded to fit the 150 mm diameter arrays directly while the large-diameter lenses are coated using a tiled approach. We review the fabrication processes for both prescriptions then discuss laboratory measurements of their transmittance and reflectance. In addition, we present the inferred refractive indices and loss tangents for the coating materials and the aluminum oxide substrate. We find that at 150 GHz and 300 K the large-format coating sample achieves (97 +/- 2)% transmittance and the lenslet coating sample achieves (94 +/- 3)% transmittance., Comment: 19 pages, 11 figures; submitted 05 Dec 2019, accepted 26 Feb 2020
- Published
- 2019
- Full Text
- View/download PDF
23. Tuning SPT-3G transition-edge-sensor electrical properties with a four-ayer Ti–Au–Ti–Au thin-film stack
- Author
-
T. de Haan, A. Cukierman, P. A. R. Ade, Daniel Michalik, W. B. Everett, Gensheng Wang, Trupti Khaire, C. L. Kuo, Joshua Montgomery, Andrew Nadolski, Zeeshan Ahmed, Amy N. Bender, V. Kutepova, C. S. Miller, Q. Y. Tang, K. T. Story, N. L. Harrington, Liliana Stan, D. Dutcher, A. J. Gilbert, Adam Anderson, John E. Pearson, Jessica Avva, Carole Tucker, Bradford Benson, Erik Shirokoff, Stephen Padin, N. W. Halverson, Nathan Whitehorn, Kent D. Irwin, C. M. Posada, W. L. Holzapfel, J. F. Cliche, Aaron Lee, Joaquin Vieira, J. A. Sobrin, Donna Kubik, H. Nguyen, Jason E. Austermann, S. S. Meyer, A. H. Harke-Hosemann, A. E. Lowitz, I. Shirley, J. T. Sayre, L. J. Saunders, K. W. Yoon, A. M. Kofman, Graeme Smecher, N. Huang, G. I. Noble, M. Jonas, Aritoki Suzuki, M. Korman, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, K. Vanderlinde, Jason W. Henning, R. N. Gannon, M. R. Young, John E. Carlstrom, Oliver Jeong, A. A. Stark, Thomas Cecil, T. Natoli, A. Foster, V. Novosad, John Groh, J. E. Ruhl, Leila R. Vale, M. A. Dobbs, K. L. Thompson, Z. Pan, Faustin Carter, S. E. Kuhlmann, Junjia Ding, Gene C. Hilton, E. V. Denison, V. G. Yefremenko, and Ralu Divan
- Subjects
Superconductivity ,Materials science ,business.industry ,Transition temperature ,02 engineering and technology ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Stack (abstract data type) ,0103 physical sciences ,Proximity effect (audio) ,Optoelectronics ,General Materials Science ,Thin film ,Transition edge sensor ,010306 general physics ,0210 nano-technology ,business ,Layer (electronics) - Abstract
We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope’s third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.
- Published
- 2018
24. SPT-3G: a multichroic receiver for the South Pole Telescope
- Author
-
N. Kuklev, H. M. Cho, Faustin Carter, Junjia Ding, Gene C. Hilton, E. V. Denison, N. Huang, V. G. Yefremenko, Christian L. Reichardt, Peter S. Barry, K. L. Thompson, Alexandra S. Rahlin, Z. Pan, Gilbert Holder, A. A. Stark, N. W. Halverson, T. de Haan, R. Basu Thakur, Chihway Chang, Kent D. Irwin, N. L. Harrington, John Groh, W. L. Holzapfel, Q. Y. Tang, Jessica Avva, A. Cukierman, John E. Carlstrom, Donna Kubik, T. Natoli, A. E. Lowitz, John E. Pearson, Stephen Padin, Bradford Benson, J. E. Ruhl, Jason W. Henning, W. B. Everett, Carole Tucker, Leila R. Vale, A. Foster, Daniel Michalik, Thomas Cecil, Gensheng Wang, Jason E. Austermann, Valentine Novosad, J. A. Sobrin, K. W. Yoon, Oliver Jeong, H. Nguyen, Graeme Smecher, Lindsey Bleem, Amy N. Bender, S. S. Meyer, R. N. Gannon, Karen Byrum, L. J. Saunders, J. F. Cliche, D. Dutcher, C. M. Posada, M. R. Young, K. Vanderlinde, I. Shirley, Steve Kuhlmann, Matt Dobbs, Joaquin Vieira, Lloyd Knox, G. I. Noble, A. M. Kofman, C. L. Kuo, T. M. Crawford, M. Jonas, Aritoki Suzuki, Zeeshan Ahmed, Peter A. R. Ade, K. T. Story, Nathan Whitehorn, Trupti Khaire, Joshua Montgomery, A. J. Gilbert, Adam Anderson, J. T. Sayre, A. H. Harke-Hosemann, E. M. Leitch, M. Korman, Erik Shirokoff, Aaron Lee, and Andrew Nadolski
- Subjects
Physics ,Gravitational wave ,Cosmic microwave background ,Detector ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Condensed Matter Physics ,01 natural sciences ,Multiplexing ,Atomic and Molecular Physics, and Optics ,South Pole Telescope ,Gravitational lens ,0103 physical sciences ,General Materials Science ,010306 general physics ,010303 astronomy & astrophysics ,Galaxy cluster - Abstract
A new receiver for the South Pole Telescope, SPT-3G, was deployed in early 2017 to map the cosmic microwave background at 95, 150, and 220 GHz with ∼ \ud ∼\ud 16,000 detectors, 10 times more than its predecessor SPTpol. The increase in detector count is made possible by lenslet-coupled trichroic polarization-sensitive pixels fabricated at Argonne National Laboratory, new 68× \ud ×\ud frequency-domain multiplexing readout electronics, and a higher-throughput optical design. The enhanced sensitivity of SPT-3G will enable a wide range of results including constraints on primordial B-mode polarization, measurements of gravitational lensing of the CMB, and a galaxy cluster survey. Here we present an overview of the instrument and its science objectives, highlighting its measured performance and plans for the upcoming 2018 observing season.
- Published
- 2018
25. The Simons Observatory: The Large Aperture Telescope (LAT)
- Author
-
Nicholas Galitzki, Michael R. Vissers, Osamu Tajima, Kevin D. Crowley, Karen Perez Sarmiento, Edward J. Wollack, J. Richard Bond, C. Hervias-Caimapo, Simon Dicker, Frederick Matsuda, Shreya Sutariya, Michele Limon, Brian J. Koopman, Saianeesh K. Haridas, D. Kaneko, Andrea Zonca, Federico Nati, Zachary B. Huber, Zhilei Xu, Ningfeng Zhu, Tomoki Terasaki, A. M. Kofman, Robert Thornton, Gabriele Coppi, Samantha Walker, Peter A. R. Ade, Jack Lashner, Jeffrey Iuliano, Tanay Bhandarkar, Rita Sonka, Maximiliano Silva-Feaver, Zachary Whipps, Carole Tucker, Shunsuke Adachi, Michael J. Link, Grace E. Chesmore, Eve M. Vavagiakis, Bradley Dober, Mario Zannoni, Michael D. Niemack, Steve K. Choi, Tammy J. Lucas, Joel N. Ullom, Shannon M. Duff, Shuay-Pwu Patty Ho, Nicholas F. Cothard, Emmanuel Schaan, Johannes Hubmayr, Kathleen Harrington, Mark J. Devlin, Patricio A. Gallardo, Joseph E. Golec, Lucio Piccirillo, Heather McCarrick, Yuji Chinone, Grant Teply, Jon E. Gudmundsson, Jake Connors, J. A. Beall, and John Orlowski-Scherer
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Medicine ,Large aperture ,Radio spectrum ,law.invention ,Telescope ,Sky ,Observatory ,law ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Microwave ,Astrophysics - Cosmology and Nongalactic Astrophysics ,media_common - Abstract
The Simons Observatory (SO) is a Cosmic Microwave Background (CMB) experiment to observe the microwave sky in six frequency bands from 30GHz to 290GHz. The Observatory -- at $\sim$5200m altitude -- comprises three Small Aperture Telescopes (SATs) and one Large Aperture Telescope (LAT) at the Atacama Desert, Chile. This research note describes the design and current status of the LAT along with its future timeline., 4 pages, 1 figure
- Published
- 2021
26. Particle Physics with the Cosmic Microwave Background with SPT-3G
- Author
-
A. Cukierman, M. A. Dobbs, Thomas Cecil, Aaron Lee, W. L. K. Wu, P. A. R. Ade, Trupti Khaire, J. A. Sobrin, Joshua Montgomery, Jason Gallicchio, S. S. Meyer, Zeeshan Ahmed, S. Padin, Robert Gardner, Amy N. Bender, G. P. Holder, Keith L. Thompson, A. E. Gambrel, Faustin Carter, J. E. Ruhl, D. Dutcher, Junjia Ding, Kent D. Irwin, T. M. Crawford, J. Stephen, Ki Won Yoon, T. Natoli, Carole Tucker, K. T. Story, M. R. Young, K. R. Ferguson, A. E. Lowitz, Jason W. Henning, A. Foster, Aled Jones, Volodymyr Yefremenko, John E. Pearson, Adam Anderson, Graeme Smecher, Antony A. Stark, Nathan Whitehorn, Lincoln Bryant, N. W. Halverson, G. I. Noble, W. L. Holzapfel, Oliver Jeong, John E. Carlstrom, T. de Haan, P. Paschos, V. Novosad, Donna Kubik, N. Huang, Srinivasan Raghunathan, D. Riebel, Z. Pan, Sebastian Bocquet, W. B. Everett, Chao-Lin Kuo, Christian L. Reichardt, John Groh, Lloyd Knox, Daniel Michalik, Gensheng Wang, M. Jonas, A. Nadolski, Aritoki Suzuki, W. Quan, Jessica Avva, C. M. Posada, Erik Shirokoff, Steve Kuhlmann, Joaquin Vieira, S. Guns, J. T. Sayre, A. H. Harke-Hosemann, Keith Vanderlinde, H. T. Nguyen, M. Korman, Alexandra S. Rahlin, Scott Dodelson, R. Basu Thakur, C. L. Chang, D. Howe, Lindsey Bleem, K. Aylor, A. M. Kofman, Bradford Benson, and N. L. Harrington
- Subjects
Physics ,History ,Sterile neutrino ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) ,7. Clean energy ,01 natural sciences ,Universe ,Computer Science Applications ,Education ,Relativistic particle ,South Pole Telescope ,0103 physical sciences ,Angular resolution ,Neutrino ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,media_common - Abstract
The cosmic microwave background (CMB) encodes information about the content and evolution of the universe. The presence of light, weakly interacting particles impacts the expansion history of the early universe, which alters the temperature and polarization anisotropies of the CMB. In this way, current measurements of the CMB place interesting constraints on the neutrino energy density and mass, as well as on the abundance of other possible light relativistic particle species. We present the status of an on-going 1500 sq. deg. survey with the SPT-3G receiver, a new mm-wavelength camera on the 10-m diameter South Pole Telescope (SPT). The SPT-3G camera consists of 16,000 superconducting transition edge sensors, a 10x increase over the previous generation camera, which allows it to map the CMB with an unprecedented combination of sensitivity and angular resolution. We highlight projected constraints on the abundance of sterile neutrinos and the sum of the neutrino masses for the SPT-3G survey, which could help determine the neutrino mass hierarchy., 6 pages, 2 figures, TAUP 2019
- Published
- 2020
27. Optical characterization of the SPT-3G camera
- Author
-
J. A. Sobrin, Leila R. Vale, S. S. Meyer, Matt Dobbs, Volodymyr Yefremenko, Ki Won Yoon, V. Novosad, I. Shirley, Faustin Carter, N. Huang, M. Jonas, Aritoki Suzuki, Erik Shirokoff, John E. Pearson, S. E. Kuhlmann, Junjia Ding, Daniel Michalik, Gene C. Hilton, E. V. Denison, Jason W. Henning, J. F. Cliche, Gensheng Wang, Alexandra S. Rahlin, T. Natoli, J. E. Ruhl, R. Basu Thakur, Chihway Chang, Zeeshan Ahmed, A. E. Lowitz, Kent D. Irwin, W. L. Holzapfel, T. de Haan, A. Foster, N. W. Halverson, Chao-Lin Kuo, A. H. Harke-Hosemann, H. Nguyen, K. Vanderlinde, Donna Kubik, W. B. Everett, Keith L. Thompson, Thomas Cecil, Jessica Avva, L. J. Saunders, Stephen Padin, Oliver Jeong, A. M. Kofman, John E. Carlstrom, C. M. Posada, Ari Cukierman, Joaquin Vieira, Q. Y. Tang, M. Korman, John Groh, Z. Pan, Carole Tucker, R. N. Gannon, M. R. Young, Amy N. Bender, Andrew Nadolski, Jason E. Austermann, Graeme Smecher, D. Dutcher, J. T. Sayre, G. I. Noble, N. L. Harrington, Antony A. Stark, Bradford Benson, A. J. Gilbert, Adam Anderson, Trupti Khaire, Joshua Montgomery, Peter A. R. Ade, K. T. Story, Nathan Whitehorn, and Adrian T. Lee
- Subjects
Physics ,business.industry ,Frequency band ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,7. Clean energy ,Atomic and Molecular Physics, and Optics ,Fourier transform spectroscopy ,law.invention ,010309 optics ,Optics ,South Pole Telescope ,law ,0103 physical sciences ,General Materials Science ,Transition edge sensor ,010306 general physics ,business - Abstract
The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ∼ \ud ∼\ud 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.
- Published
- 2018
28. Design and characterization of the SPT-3G receiver
- Author
-
A. E. Lowitz, Adrian T. Lee, T. de Haan, Carole Tucker, Keith L. Thompson, Kent D. Irwin, T. Natoli, J. E. Ruhl, W. B. Everett, Antony A. Stark, W. L. Holzapfel, K. Vanderlinde, Andrew Nadolski, V. Novosad, Matt Dobbs, A. J. Gilbert, Adam Anderson, Donna Kubik, Bradford Benson, Peter A. R. Ade, A. Foster, J. T. Sayre, K. T. Story, J. F. Cliche, Amy N. Bender, G. I. Noble, Volodymyr Yefremenko, Ari Cukierman, A. M. Kofman, D. Dutcher, M. Jonas, Ki Won Yoon, Nathan Whitehorn, Thomas Cecil, Aritoki Suzuki, Graeme Smecher, N. W. Halverson, C. L. Chang, Jason W. Henning, Zeeshan Ahmed, Erik Shirokoff, Trupti Khaire, N. Huang, Joshua Montgomery, M. R. Young, A. H. Harke-Hosemann, N. L. Harrington, H. T. Nguyen, M. Korman, J. A. Sobrin, Chao-Lin Kuo, Alexandra S. Rahlin, John Groh, R. Basu Thakur, S. S. Meyer, Z. Pan, Faustin Carter, Junjia Ding, Oliver Jeong, John E. Carlstrom, Daniel Michalik, Gensheng Wang, J. Gallichio, John E. Pearson, W. Quan, Jessica Avva, Stephen Padin, C. M. Posada, Steve Kuhlmann, Joaquin Vieira, and S. Guns
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,Computer science ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,FOS: Physical sciences ,Design elements and principles ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,Electronic engineering ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Throughput (business) ,Astroparticle physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,Characterization (materials science) ,South Pole Telescope ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Sensitivity (electronics) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The SPT-3G receiver was commissioned in early 2017 on the 10-meter South Pole Telescope (SPT) to map anisotropies in the cosmic microwave background (CMB). New optics, detector, and readout technologies have yielded a multichroic, high-resolution, low-noise camera with impressive throughput and sensitivity, offering the potential to improve our understanding of inflationary physics, astroparticle physics, and growth of structure. We highlight several key features and design principles of the new receiver, and summarize its performance to date., Conference Presentation at SPIE Astronomical Telescopes + Instrumentation 2018, conference 10708
- Published
- 2018
29. Year two instrument status of the SPT-3G cosmic microwave background receiver
- Author
-
J. C. Groh, Chao-Lin Kuo, Christian L. Reichardt, V. Novosad, N. W. Halverson, Thomas Cecil, A. E. Lowitz, C. M. Posada, A. J. Gilbert, Aled Jones, Adam Anderson, Joaquin Vieira, S. Guns, Ki Won Yoon, N. Huang, Jason Gallicchio, K. Aylor, John E. Carlstrom, Matt Dobbs, Faustin Carter, Erik Shirokoff, H. Nguyen, S. E. Kuhlmann, T. M. Crawford, Srinivasan Raghunathan, Jessica Avva, Junjia Ding, Gene C. Hilton, Kent D. Irwin, Stephen Padin, A. H. Harke-Hosemann, T. de Haan, T. Natoli, G. I. Noble, W. L. Holzapfel, A. M. Kofman, Daniel Michalik, Volodymyr Yefremenko, W. L. K. Wu, W. B. Everett, H-M. Cho, Donna Kubik, Gensheng Wang, E. M. Leitch, L. S. Bleem, A. Foster, J. E. Ruhl, Jason W. Henning, M. Korman, Keith L. Thompson, W. Quan, J. A. Sobrin, Karen Byrum, S. S. Meyer, Amy N. Bender, Ari Cukierman, Andrew Nadolski, D. Dutcher, E. V. Denison, Peter S. Barry, J. F. Cliche, Zeeshan Ahmed, Antony A. Stark, K. Vanderlinde, N. L. Harrington, L. R. Vale, John E. Pearson, Z. Pan, Peter A. R. Ade, Sebastian Bocquet, M. Jonas, Bradford Benson, K. T. Story, Aritoki Suzuki, Oliver Jeong, Alexandra S. Rahlin, Scott Dodelson, Nathan Whitehorn, R. Basu Thakur, Chihway Chang, Carole Tucker, Trupti Khaire, Joshua Montgomery, Graeme Smecher, Adrian T. Lee, Lloyd Knox, Gilbert Holder, M. R. Young, and J. T. Sayre
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,High Energy Physics - Experiment ,Telescope ,High Energy Physics - Experiment (hep-ex) ,law ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,Physics ,Gravitational wave ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Polarization (waves) ,South Pole Telescope ,13. Climate action ,Sky ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The South Pole Telescope (SPT) is a millimeter-wavelength telescope designed for high-precision measurements of the cosmic microwave background (CMB). The SPT measures both the temperature and polarization of the CMB with a large aperture, resulting in high resolution maps sensitive to signals across a wide range of angular scales on the sky. With these data, the SPT has the potential to make a broad range of cosmological measurements. These include constraining the effect of massive neutrinos on large-scale structure formation as well as cleaning galactic and cosmological foregrounds from CMB polarization data in future searches for inflationary gravitational waves. The SPT began observing in January 2017 with a new receiver (SPT-3G) containing $\sim$16,000 polarization-sensitive transition-edge sensor bolometers. Several key technology developments have enabled this large-format focal plane, including advances in detectors, readout electronics, and large millimeter-wavelength optics. We discuss the implementation of these technologies in the SPT-3G receiver as well as the challenges they presented. In late 2017 the implementations of all three of these technologies were modified to optimize total performance. Here, we present the current instrument status of the SPT-3G receiver., 21 pages, 9 Figures, Presented at SPIE Astronomical Telescopes + Instrumentation 2018
- Published
- 2018
30. Characterization and performance of the second-year SPT-3G focal plane
- Author
-
Thomas Cecil, John E. Carlstrom, M. Korman, J. A. Sobrin, A. J. Gilbert, N. Huang, T. de Haan, Oliver Jeong, Adam Anderson, Ki Won Yoon, S. S. Meyer, N. L. Harrington, J. T. Sayre, Keith L. Thompson, Jason W. Henning, Carole Tucker, Trupti Khaire, Joshua Montgomery, John E. Pearson, A. E. Lowitz, M. Jonas, Bradford Benson, Andrew Nadolski, Ari Cukierman, Aritoki Suzuki, Erik Shirokoff, Peter A. R. Ade, Amy N. Bender, Chao-Lin Kuo, K. T. Story, Jason Gallicchio, D. Dutcher, M. R. Young, A. H. Harke-Hosemann, T. Natoli, Z. Pan, W. B. Everett, Kent D. Irwin, W. L. Holzapfel, J. E. Ruhl, John Groh, K. Vanderlinde, Nathan Whitehorn, A. Foster, Donna Kubik, Graeme Smecher, V. Novosad, J. F. Cliche, Alexandra S. Rahlin, R. Basu Thakur, Chihway Chang, Zeeshan Ahmed, Faustin Carter, H. Nguyen, Adrian T. Lee, S. E. Kuhlmann, Junjia Ding, A. M. Kofman, C. M. Posada, Joaquin Vieira, S. Guns, Volodymyr Yefremenko, N. W. Halverson, Jessica Avva, Stephen Padin, Daniel Michalik, Gensheng Wang, W. Quan, Matt Dobbs, Antony A. Stark, and G. I. Noble
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Microstrip ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Pixel ,Linear polarization ,business.industry ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,South Pole Telescope ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The third-generation instrument for the 10-meter South Pole Telescope, SPT-3G, was first installed in January 2017. In addition to completely new cryostats, secondary telescope optics, and readout electronics, the number of detectors in the focal plane has increased by an order of magnitude from previous instruments to ~16,000. The SPT-3G focal plane consists of ten detector modules, each with an array of 269 trichroic, polarization-sensitive pixels on a six-inch silicon wafer. Within each pixel is a broadband, dual-polarization sinuous antenna; the signal from each orthogonal linear polarization is divided into three frequency bands centered at 95, 150, and 220 GHz by in-line lumped element filters and transmitted via superconducting microstrip to Ti/Au transition-edge sensor (TES) bolometers. Properties of the TES film, microstrip filters, and bolometer island must be tightly controlled to achieve optimal performance. For the second year of SPT-3G operation, we have replaced all ten wafers in the focal plane with new detector arrays tuned to increase mapping speed and improve overall performance. Here we discuss the TES superconducting transition temperature and normal resistance, detector saturation power, bandpasses, optical efficiency, and full array yield for the 2018 focal plane., Comment: 13 pages, 11 figures
- Published
- 2018
31. On-chip narrow-band filters for antenna-coupled LEKIDs (Conference Presentation)
- Author
-
S. Rowe, Erik Shirokoff, A. Hornsby, Andrew Nadolski, Q. Y. Tang, Peter S. Barry, A. M. Kofman, Paul Moseley, Simon Doyle, and Joaquin Vieira
- Subjects
Physics ,Optics ,Transmission line ,business.industry ,Capacitive sensing ,Detector ,Antenna (radio) ,Diplexer ,business ,Noise (electronics) ,Multiplexer ,Microstrip - Abstract
The next generation of cosmic microwave background (CMB) experiments, such as CMB-S4, will require large arrays of multi-chroic, polarisation-sensitive pixels. Arrays of lumped-element kinetic inductance detectors (LEKIDs) optically coupled through an antenna and transmission line structure are a promising candidate for such experiments. Through initial investigations of small prototype arrays, we have shown this compact device architecture can produce intrinsic quality factors < 10^5, allowing for MUX ratios to exceed 10^3. Moreover, we have demonstrated that additional noise from two-level systems can be reduced to an acceptable level by removing the dielectric from over the capacitive region of the KID, while retaining the microstrip coupling into the inductor. To maximise the efficiency of future focal planes, it is desirable to observe multiple frequencies simultaneously within each pixel. Therefore, we utilise the proven transmission line coupling scheme to introduce band-defining structures to our pixel architecture. Initially targeting the peak of the CMB at 150-GHz, we present a preliminary study of these narrow-band filters in terms of their spectral bandwidth and out of band rejection. By incorporating simple in-line filters we consider the overall impact of adding such structures to our pixel by investigating detector performance in terms of noise and quality factor. Based on these initial results, we present preliminary designs of an optimised mm-wave diplexer that is used to split-up the 150 GHz atmospheric window into multiple sub-bands, before reaching the absorbing length of the LEKID. We present measurements from a set of prototype filter-coupled detectors as the first demonstration towards construction of large-format, multi-chroic, antenna-coupled LEKIDs with the sensitivity required for future CMB experiments.
- Published
- 2018
32. Design and performance of the antenna coupled lumped-element kinetic inductance detector
- Author
-
Peter S. Barry, Erik Shirokoff, A. Hornsby, Andrew Nadolski, Joaquin Vieira, A. M. Kofman, E. Mayer, Q. Y. Tang, and Simon Doyle
- Subjects
Cosmic microwave background ,FOS: Physical sciences ,Large format ,01 natural sciences ,Multiplexing ,Microstrip ,law.invention ,Optics ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,QC ,QB ,Physics ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Power (physics) ,Lens (optics) ,Antenna (radio) ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Focal plane arrays consisting of low-noise, polarisation-sensitive detectors have made possible the pioneering advances in the study of the cosmic microwave background (CMB). To make further progress, the next generation of CMB experiments (e.g. CMB-S4) will require a substantial increase in the number of detectors compared to the current stage 3 instruments. Arrays of kinetic inductance detectors (KIDs) provide a possible path to realising such large format arrays owing to their intrinsic multiplexing advantage and relative cryogenic simplicity. In this proceedings, we report on the design of a novel variant of the traditional KID design; the antenna-coupled lumped-element KID. A polarisation sensitive twin-slot antenna placed behind an optimised hemispherical lens couples power onto a thin-film superconducting microstrip line. The power is then guided into the inductive section of an aluminium KID where it is absorbed and modifies both the resonant frequency and quality factor of the KID. We present the various aspects of the design and preliminary results from the first set of seven-element prototype arrays and compare to the expected modelled performance.
- Published
- 2018
33. Broadband anti-reflective coatings for cosmic microwave background experiments
- Author
-
J. Gallichio, Amy N. Bender, John E. Pearson, D. Dutcher, C. M. Posada, Volodymyr Yefremenko, Joaquin Vieira, S. Guns, V. Novosad, Ki Won Yoon, W. B. Everett, Daniel Michalik, Antony A. Stark, Gensheng Wang, Carole Tucker, G. I. Noble, W. Quan, K. Vanderlinde, Aled Jones, A. E. Lowitz, Kent D. Irwin, Z. Pan, W. L. Holzapfel, John E. Carlstrom, T. de Haan, Peter A. R. Ade, Donna Kubik, Matt Dobbs, Jason W. Henning, T. Natoli, Chao-Lin Kuo, A. J. Gilbert, K. T. Story, Jessica Avva, Adam Anderson, R. Guyser, Stephen Padin, Faustin Carter, John Groh, Alexandra S. Rahlin, S. E. Kuhlmann, Junjia Ding, N. W. Halverson, R. Basu Thakur, Chihway Chang, Keith L. Thompson, Oliver Jeong, Graeme Smecher, A. Foster, Thomas Cecil, M. Jonas, Aritoki Suzuki, Andrew Nadolski, J. F. Cliche, N. Huang, Nathan Whitehorn, Ari Cukierman, M. R. Young, J. A. Sobrin, S. S. Meyer, Trupti Khaire, Joshua Montgomery, J. E. Ruhl, J. T. Sayre, Zeeshan Ahmed, Adrian T. Lee, Erik Shirokoff, H. Nguyen, J. Fu, A. M. Kofman, A. H. Harke-Hosemann, N. L. Harrington, M. Korman, and Bradford Benson
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Cosmic microwave background ,FOS: Physical sciences ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radiation ,engineering.material ,01 natural sciences ,law.invention ,Optics ,Coating ,law ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,021001 nanoscience & nanotechnology ,Cardinal point ,South Pole Telescope ,Anti-reflective coating ,Extremely high frequency ,engineering ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business - Abstract
The desire for higher sensitivity has driven ground-based cosmic microwave background (CMB) experiments to employ ever larger focal planes, which in turn require larger reimaging optics. Practical limits to the maximum size of these optics motivates the development of quasi-optically-coupled (lenslet-coupled), multi-chroic detectors. These detectors can be sensitive across a broader bandwidth compared to waveguide-coupled detectors. However, the increase in bandwidth comes at a cost: the lenses (up to $\sim$700 mm diameter) and lenslets ($\sim$5 mm diameter, hemispherical lenses on the focal plane) used in these systems are made from high-refractive-index materials (such as silicon or amorphous aluminum oxide) that reflect nearly a third of the incident radiation. In order to maximize the faint CMB signal that reaches the detectors, the lenses and lenslets must be coated with an anti-reflective (AR) material. The AR coating must maximize radiation transmission in scientifically interesting bands and be cryogenically stable. Such a coating was developed for the third generation camera, SPT-3G, of the South Pole Telescope (SPT) experiment, but the materials and techniques used in the development are general to AR coatings for mm-wave optics. The three-layer polytetrafluoroethylene-based AR coating is broadband, inexpensive, and can be manufactured with simple tools. The coating is field tested; AR coated focal plane elements were deployed in the 2016-2017 austral summer and AR coated reimaging optics were deployed in 2017-2018., Comment: 13 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
34. Fabrication of antenna-coupled KID array for Cosmic Microwave Background detection
- Author
-
Andrew Nadolski, Joaquin Vieira, R. Basu Thakur, Peter S. Barry, Q. Y. Tang, Erik Shirokoff, and A. M. Kofman
- Subjects
Fabrication ,Cosmic microwave background ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Microstrip ,law.invention ,Resonator ,law ,0103 physical sciences ,General Materials Science ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Ground plane ,Physics ,business.industry ,Bolometer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Optoelectronics ,Antenna (radio) ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business ,Microwave - Abstract
Kinetic Inductance Detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the $O(500,000)$ detectors needed for the upcoming Cosmic Microwave Background - Stage 4 (CMB-S4) experiment. We have fabricated antenna-coupled MKID array in the 150GHz band optimized for CMB detection. Our design uses a twin slot antenna coupled to inverted microstrip made from a superconducting Nb/Al bilayer and SiN$_x$, which is then coupled to an Al KID grown on high resistivity Si. We present the fabrication process and measurements of SiN$_x$ microstrip resonators., Comment: 7 pages, 9 figures, submitted to Journal of Low Temperature Physics
- Published
- 2017
- Full Text
- View/download PDF
35. Polypropylene/Cellulosic Fiber Composites Chemical Treatment of the Cellulose Assuming Compatibilization Between the Two Materials
- Author
-
M. Kofman, Catherine Joly, and Robert Gauthier
- Subjects
Polypropylene ,chemistry.chemical_classification ,Materials science ,Polymers and Plastics ,General Chemistry ,Adhesion ,Compatibilization ,Isocyanate ,chemistry.chemical_compound ,Cellulose fiber ,chemistry ,Materials Chemistry ,Ceramics and Composites ,Inverse gas chromatography ,Cellulose ,Composite material ,Alkyl - Abstract
The present work deals with the realization of composites with a polypropylene (PP) matrix and cellulosic fibers as reinforcement. In order to achieve a good adhesion with the PP matrix, the modification of different cellulosic fibers has been performed with various chemical functions: carboxylic anhydrides, isocyanates, vinylsulfone, and chlorotriazine systems. All these compatibilizing agents carry an alkyl chain or a PP chain. Grafting is evidenced by infrared and ESCA spectroscopies, and the grafting rates for the different chemicals are determined by microweighing measurements. Modification of the surface characteristics is followed by wettability tests and inverse gas chromatography. Determination of the water sorption isotherm for the treated fibers shows an important decrease in water regain in the case of isocyanate treatments in swelling medium. Enhancement of adhesion between fibers and the matrix is demonstrated by mechanical tests: the interfacial shear stress obtained by the microbo...
- Published
- 1996
36. The Organization of Product Development
- Author
-
Fred M. Kofman, Kamal M. Malek, Richard K. Lester, and Michael J. Piore
- Subjects
Economics and Econometrics ,Process management ,business.industry ,New product development ,Product management ,Business - Published
- 1994
37. ChemInform Abstract: Synthesis and Biological Activity of 1,3-Bis(3- dimethoxyphosphorylpropyl) Derivatives of Uracil and 6-Methyluracil
- Author
-
A. I. Rakhimov, G. V. Kovalev, S. G. Kovalev, Alexander A. Spasov, M. S. Novikov, P. M. Vasil'ev, V. I. Petrov, A. M. Kofman, A. B. Rozenblit, A. A. Ozerov, and V. E. Golender
- Subjects
chemistry.chemical_compound ,chemistry ,Stereochemistry ,Organic chemistry ,Uracil ,Biological activity ,General Medicine - Published
- 2010
38. ChemInform Abstract: Prognosis of the Activity of β-Lactam Antibiotics
- Author
-
G. A. Veinberg, A. M. Kofman, and E. Lukevics
- Subjects
chemistry.chemical_compound ,Chemistry ,medicine.drug_class ,Antibiotics ,medicine ,Lactam ,Nanotechnology ,General Medicine ,Microbiology - Published
- 2010
39. Book reviews
- Author
-
Philip M. Taylor, M. Kofman, Philip Thody, Margaret A. Majumdar, Stephen K. Carter, Brendan Kiernan, J. N. Westwood, Peter Humphreys, and Mark Webber
- Subjects
Political Science and International Relations ,Geography, Planning and Development ,General Earth and Planetary Sciences ,Development ,General Environmental Science - Published
- 1992
40. Prediction of the activity of ?-lactam antibiotics
- Author
-
E. Lukevits, G. A. Veinberg, and A. M. Kofman
- Subjects
High probability ,medicine.drug_class ,Stereochemistry ,Chemistry ,Organic Chemistry ,Antibiotics ,Anticoagulant activity ,Comparative evaluation ,chemistry.chemical_compound ,Biochemistry ,medicine ,Lactam ,Biologically active substances ,Penam - Abstract
The pharmacological properties of penam, 3-cepheme, and semisynthetic penicillins were predicted by means of the ORAKUL automated system. A comparative evaluation of the similarity between the structures of these compounds and the structures of 8800 biologically active substances in the data base of the system made it possible to uncover the high probability of the manifestation of anti-inflammatory, analgesic, antitumorigenic, antiallergic, and anticoagulant activity by structural analogs of β-lactam antibiotics.
- Published
- 1992
41. T-15 ECR-system
- Author
-
B. V. Cheremukhov, V. I. Malygin, E. V. Seredenko, V. M. Kofman, V. V. Lyublin, S. N. Vlasov, V. V. Alikaev, V. G. Yakubovsky, I. M. Roife, A. G. Nechaev, V. G. Ivkin, and G. A. Grad
- Subjects
Materials science ,business.industry ,Pulse duration ,High voltage ,Plasma ,Condensed Matter Physics ,law.invention ,Power (physics) ,Optics ,Nuclear magnetic resonance ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,law ,Gyrotron ,Magnet ,Dielectric heating ,business ,Waveguide - Abstract
In this paper the ECR-system designed for plasma experiments on electron-cyclotron resonance heating on the T-15 facility is described. Its power is 12 MW, RF-wavelength 3.6 mm, operating pulse duration 1.5 s. The generator complex consists of 24 independently operating gyrotrons. RF-power from each unit is injected into the plasma from outboard side by means of combined waveguide and quasi-optical transmission components. The direction of RF-wave injection is perpendicular or at the angle with respect to the toroidal field. RF-generator magnet system (MS) comprises the main superconducting solenoid with the maximum field 5 T and two normal correcting coils. Power supply system of the whole complex and filament heating supply system with gyrotron emission current stabilization are also described. The system for gyrotron protection against the high voltage breakdowns limits the energy at the breakdown to not more than 10 J. The main principles of the automatic control system organization and of th...
- Published
- 1992
42. TandEM: Titan and Enceladus mission
- Author
-
Coustenis, A. Atreya, S.K. Balint, T. Brown, R.H. Dougherty, M.K. Ferri, F. Fulchignoni, M. Gautier, D. Gowen, R.A. Griffith, C.A. Gurvits, L.I. Jaumann, R. Langevin, Y. Leese, M.R. Lunine, J.I. McKay, C.P. Moussas, X. Müller-Wodarg, I. Neubauer, F. Owen, T.C. Raulin, F. Sittler, E.C. Sohl, F. Sotin, C. Tobie, G. Tokano, T. Turtle, E.P. Wahlund, J.-E. Waite, J.H. Baines, K.H. Blamont, J. Coates, A.J. Dandouras, I. Krimigis, T. Lellouch, E. Lorenz, R.D. Morse, A. Porco, C.C. Hirtzig, M. Saur, J. Spilker, T. Zarnecki, J.C. Choi, E. Achilleos, N. Amils, R. Annan, P. Atkinson, D.H. Bénilan, Y. Bertucci, C. Bézard, B. Bjoraker, G.L. Blanc, M. Boireau, L. Bouman, J. Cabane, M. Capria, M.T. Chassefière, E. Coll, P. Combes, M. Cooper, J.F. Coradini, A. Crary, F. Cravens, T. Daglis, I.A. de Angelis, E. de Bergh, C. de Pater, I. Dunford, C. Durry, G. Dutuit, O. Fairbrother, D. Flasar, F.M. Fortes, A.D. Frampton, R. Fujimoto, M. Galand, M. Grasset, O. Grott, M. Haltigin, T. Herique, A. Hersant, F. Hussmann, H. Ip, W. Johnson, R. Kallio, E. Kempf, S. Knapmeyer, M. Kofman, W. Koop, R. Kostiuk, T. Krupp, N. Küppers, M. Lammer, H. Lara, L.-M. Lavvas, P. Le Mouélic, S. Lebonnois, S. Ledvina, S. Li, J. Livengood, T.A. Lopes, R.M. Lopez-Moreno, J.-J. Luz, D. Mahaffy, P.R. Mall, U. Martinez-Frias, J. Marty, B. McCord, T. Salvan, C.M. Milillo, A. Mitchell, D.G. Modolo, R. Mousis, O. Nakamura, M. Neish, C.D. Nixon, C.A. Mvondo, D.N. Orton, G. Paetzold, M. Pitman, J. Pogrebenko, S. Pollard, W. Prieto-Ballesteros, O. Rannou, P. Reh, K. Richter, L. Robb, F.T. Rodrigo, R. Rodriguez, S. Romani, P. Bermejo, M.R. Sarris, E.T. Schenk, P. Schmitt, B. Schmitz, N. Schulze-Makuch, D. Schwingenschuh, K. Selig, A. Sicardy, B. Soderblom, L. Spilker, L.J. Stam, D. Steele, A. Stephan, K. Strobel, D.F. Szego, K. Szopa, C. Thissen, R. Tomasko, M.G. Toublanc, D. Vali, H. Vardavas, I. Vuitton, V. West, R.A. Yelle, R. Young, E.F.
- Abstract
TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere. © Springer Science + Business Media B.V. 2008.
- Published
- 2009
43. Book reviews
- Author
-
Peter J.S. Duncan, Pauline Kollontai, Philip Thody, Alastair Mcauley, Neil Robinson, Ronald J. Hill, Frank Knowles, M. Kofman, Margot Light, Edward M. Spiers, and José Amodia
- Subjects
Political Science and International Relations ,Geography, Planning and Development ,General Earth and Planetary Sciences ,Development ,General Environmental Science - Published
- 1991
44. Observational pain assessment versus self-report in paediatric triage
- Author
-
T Hod, E Kozer, M Kofman, M Leder, and Itai Shavit
- Subjects
Male ,medicine.medical_specialty ,Self Disclosure ,Adolescent ,Visual analogue scale ,Pain ,Critical Care and Intensive Care Medicine ,law.invention ,Randomized controlled trial ,Pain assessment ,law ,Medicine ,Humans ,Single-Blind Method ,Self report ,Child ,Pain Measurement ,Observer Variation ,Pain score ,business.industry ,Infant ,General Medicine ,Emergency department ,Prognosis ,Triage ,Emergency Medicine ,Physical therapy ,Observational study ,Female ,business ,Emergency Service, Hospital - Abstract
To examine if observational pain assessment can be used for purposes of triage in children aged3 years.A prospective, single blind, controlled trial was undertaken in children who presented to the emergency department (ED) with pain. Pain was assessed in the waiting room and again at triage before any treatment was administered using the Alder Hey Triage Pain Score (AHTPS), an observational tool designed for triage, and a self-report tool, either the Wong-Baker Faces Pain Rating Scale (WBS) for 3-7-year-old children or a visual analogue scale (VAS) for 8-15-year-old children. Scores were compared by instrument (observational and self-report) and ED location (waiting room and triage room).75 children (29 aged 3-7 years and 46 aged 8-15 years) were enrolled in the study. The AHTPS scores were significantly lower than the scores measured by the WBS/VAS (p0.001). The level of pain measured by both methods (self-report, observational) was lower in the triage room. Compared with the AHTPS, the WBS and VAS scored significantly lower in the triage room than in the waiting room (p0.042 and p0.006, respectively).Observational pain assessment underestimates children's perception of pain and should not be recommended in children aged3 years. Triage has a calming effect on children.
- Published
- 2008
45. Synthesis and biological activity of 1,3-di(3-dimethoxyphosphorylpropyl) derivatives of uracil and 6-methyluracil
- Author
-
Alexander A. Spasov, G. B. Kovalev, V. I. Petrov, V. E. Golender, A. M. Kofman, Alexander Ozerov, A. I. Rakhimov, S. G. Kovalev, Mikhail S. Novikov, P. M. Vasil'ev, and A. B. Rozenblit
- Subjects
Pharmacology ,chemistry.chemical_classification ,Pyrimidine ,Chemistry ,Stereochemistry ,Pharmacology toxicology ,RNA ,Uracil ,Biological activity ,Alkylation ,chemistry.chemical_compound ,Drug Discovery ,Nucleotide ,DNA - Abstract
The uracil fragment is frequently encountered in nature as part of heterocyclic compounds. It is included in DNA and RNA in the form of nucleotides. Many uracil derivatives exhibit a high level of biological activity. The alkylated and acylated derivatives of 5-fluorouracil, for example, l-(2-tetrahydrofuryl)-5-fluorouracil [2], is widely used for the chemotherapy of malignant tumors. Derivatives of pyrimidine nucleosides and nucleotides are used as antiviral preparations [ii].
- Published
- 1990
46. L'organisation du développement des produits
- Author
-
Michael Piore, Richard K. Lester, Fred M. Kofman, and Kamal M. Malek
- Published
- 1997
47. Influence of a bubble screen on shock-wave perturbation in a fluid
- Author
-
E. I. Timofeev, A. N. Polenov, S. V. Khomik, B. E. Gel'fand, M. M. Kofman, and A. G. Gumerov
- Subjects
Shock wave ,Physics ,Fuel Technology ,General Chemical Engineering ,Bubble ,General Physics and Astronomy ,Energy Engineering and Power Technology ,Perturbation (astronomy) ,General Chemistry ,Mechanics ,Moving shock - Published
- 1985
48. A statistical study of the informational base of biologically active pyridine compounds
- Author
-
M. V. Shimanskaya, V. E. Golender, L. Ya. Leitis, A. M. Kofman, K. Rubina, and A. B. Rozenblit
- Subjects
chemistry.chemical_compound ,Computer analysis ,chemistry ,Organic Chemistry ,Pyridine ,Organic chemistry ,Biological activity ,Base (topology) - Abstract
A computer analysis of the literature material clarified the types of activity most characteristic for pyridine derivatives.
- Published
- 1985
49. Transient combustion processes in solid-propellant rocket chambers
- Author
-
I. M. Kofman, A. V. Shmelev, L. A. Sukhanov, and Yu. A. Gostintsev
- Subjects
Propellant ,Fuel Technology ,business.product_category ,Materials science ,Rocket ,General Chemical Engineering ,General Physics and Astronomy ,Energy Engineering and Power Technology ,General Chemistry ,Transient (oscillation) ,Mechanics ,business ,Combustion - Published
- 1974
50. Statistical study of data file on biologically active compounds. VIII. Statistical analysis of organic sulfur compounds
- Author
-
A. É. Skorova, S. K. Germane, A. M. Kofman, A. B. Rozenblit, and V. E. Golender
- Subjects
Pharmacology ,Active compound ,Chemistry ,Stereochemistry ,Drug Discovery ,Pharmacology toxicology ,Data file ,Organic chemistry ,chemistry.chemical_element ,Biological activity ,Statistical analysis ,Sulfur - Published
- 1984
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.