1. UHPLC-MS/MS Method for the Analysis of 2,6 Toluene Diisocyanate and 2,4 Toluene Diisocyanate Released from Microa-gglomerated Corks in Wine
- Author
-
Francesco Corrias, E. Cossu, Alberto Angioni, and Paolo Cardu
- Subjects
Detection limit ,Wine ,Cork stopper ,Chromatography ,Toluene diisocyanate ,010401 analytical chemistry ,04 agricultural and veterinary sciences ,Cork ,engineering.material ,040401 food science ,01 natural sciences ,Applied Microbiology and Biotechnology ,Uhplc ms ms ,0104 chemical sciences ,Analytical Chemistry ,chemistry.chemical_compound ,0404 agricultural biotechnology ,chemistry ,2 4 toluene diisocyanate ,engineering ,Safety, Risk, Reliability and Quality ,Safety Research ,Food Science ,Polyurethane - Abstract
Micro-agglomerate corks, made by agglutination of cork granulate through the addition of different adhesives, represent an important slice of the market of cork stoppers. Binder glues which are polyurethane- or butadiene-based have been used since they have strong agglomerating effect. Unfortunately, polyurethane-based glues can have isocyanide end group compounds which can migrate into the wine. 2,4-toluene diisocyanate (2,4-TDI) and 2,6 toluene diisocyanate (2,6-TDI), can be found in adhesive and could migrate into wine. A simple ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) method for the determination of these active ingredients (a.is.) in wine has been developed. The method has been validated under Eurachem CITAC guidelines (Cooperation on International Traceability in Analytical Chemistry). Instrument limit of detection (LOD) and to a limit of quantification (LOQ) for 2,6 TDI and 2,4 TDI were 0.42 and 0.39 μg/L, and 1.72 and 1.57 μg/L, respectively. Four different solvents applied for recoveries showed quite different rates ranging for 2,6 TDI and 2,4 TDI from 17.96 to 88.53 %, and 40.08 to 99.18 %, respectively. Real sample analysis showed low residue levels, especially of 2,6 TDI, with values always below the LOQ. The data reported on real samples allowed to establish that from a risk management purpose, no toxicology risk can be accomplished.
- Published
- 2020
- Full Text
- View/download PDF